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Query re-optimization is an adaptive query processing technique that re-invokes the optimizer at certain

points in query execution. The goal is to dynamically correct the cardinality estimation errors using the

statistics collected at runtime to adjust the query plan to improve the overall performance. We identify a

key weakness in existing re-optimization algorithms: their subquery division and re-optimization trigger

strategies rely heavily on the optimizer’s initial plan, which can be far away from optimal. We, therefore,

propose QuerySplit, a novel re-optimization algorithm that skips the potentially misleading global plan and

instead generates subqueries directly from the logical plan as the basic re-optimization units. By developing a

cost function that prioritizes the execution of less “damaging” subqueries, QuerySplit successfully postpones

(sometimes avoids) the execution of complex large joins to maximize their probability of having smaller input

sizes. We implemented QuerySplit in PostgreSQL and compared our solution against four state-of-the-art

re-optimization algorithms using the Join Order Benchmark. Our experiments show that QuerySplit reduces

the benchmark execution time by 35% compared to the second-best alternative. The performance gap between

QuerySplit and an optimal optimizer is within 4%.

CCS Concepts: • Information systems → Query optimization.

Additional Key Words and Phrases: Adaptive query processing, Re-optimization

ACM Reference Format:
Junyi Zhao, Huanchen Zhang, and Yihan Gao. 2023. Efficient Query Re-optimization with Judicious Subquery

Selections. Proc. ACM Manag. Data 1, 2, Article 185 (June 2023), 26 pages. https://doi.org/10.1145/3589330

1 INTRODUCTION
Given a query, a cost-based optimizer in a relational database management system (DBMS)

enumerates a subset of valid plans through dynamic programming and computes the cost for

each plan by feeding the estimated cardinalities of the intermediate results to the cost model. If such

estimations are way off, no matter how precise the cost model is, the optimizer is likely to choose a

sub-optimal plan, thus slowing down the query [23]. Unfortunately, it is difficult to get accurate

cardinality estimations (CE) consistently, especially for joins because columns are often correlated

in real-world data sets [33, 43]. Researchers have proposed new approaches beyond conventional

histograms, including multidimensional histogram [12], sketch [6, 34], sampling [24, 43] and
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machine learning [39] to improve on the CE accuracy. None of them, however, is robust enough to

be able to declare victory in solving the problem [23, 25, 33].

The intrinsic difficulty of cardinality estimation calls for alternative approaches to query

optimizations. One of such is re-optimization [19, 20, 27, 29, 33]. The idea is straight-forward: if

the optimizer cannot make accurate predictions of the cardinalities upfront, we will have to correct

its mistakes dynamically at runtime. Therefore, the process of re-optimization is an interleaving

of query execution and query optimization: it executes the query partially, obtains some true

cardinalities and runtime statistics, and then invokes the optimizer again, hoping to improve the

efficiency of the remaining plan. The recent investigation by Perron et al. shows that even a basic

re-optimization strategy could remedy a significant portion of the performance losses caused by

cardinality mis-estimations [33].

The key problem of designing a re-optimization strategy is to decide (1) which subquery to

execute next and (2) when to materialize the intermediate results and re-invoke the optimizer.

Existing solutions rely heavily on the optimizer’s initial plan [19, 27, 29, 33]. They repeatedly

extract subtrees from the complete plan to execute and then use the results to refine the remaining

parts. The initial plan, however, can be far away from optimal because of inaccurate cardinality

estimations. In this case, the DBMS is likely to choose the “wrong” subplan (e.g., costly itself or

generate large results) to execute first, and such a mistake is often unrecoverable by subsequent

re-optimization steps.

Meanwhile, these solutions are “reactive” in terms of when to trigger re-optimization, i.e., the

re-optimization frequency depends heavily on the initial physical plan. For example, mid-query re-

optimization by Kabra et al. only materializes results at pipeline breakers (e.g., a sort operation) [19].

Consequently, for a left-deep join tree where each join is a nest-loop join, re-optimization is never

triggered. On the contrary, Pop aggressively materializes the output at every nest-loop join, causing

a large performance and space overhead because of re-optimization [27].

In this paper, we propose a novel re-optimization algorithm, called QuerySplit, to address the

above issues. The key idea is to skip the potentially misleading global plans and instead extract

subqueries directly from the logical plan as the basic units for re-optimization. Join operators in

the logical plan are grouped into subqueries according to heuristics developed from the primary-

foreign-key relationships to bound/minimize the output sizes of intermediate results.

Such a “query split” algorithm is more robust to balance the gains and costs of re-optimization

than those operating on the physical plan. QuerySplit then adopts a greedy algorithm to select a

subquery with the smallest cost and output cardinality to execute for each iteration. The intuition

is that the performance of a complex query is often determined by a few large joins (e.g., fact-fact

table join). By executing “simpler” (or “less-damaging”) subqueries first and re-optimizing the rest,

we increase the probability of delaying the execution of those large joins and thus approaching an

optimal plan. Notice that the re-optimization points are purely determined by the logical plan. The

optimizer is only invoked for the subqueries to get/update their costs and output cardinalities at

each iteration, and the subqueries are usually simple enough for existing optimizers to generate

reasonably good plans quickly.

We implemented QuerySplit in PostgreSQL and compared our algorithm against the state-of-

the-art re-optimization solutions [19, 27, 29, 33], robust query processing techniques [6, 15, 40, 41],

and learned cardinality estimation algorithms [16, 21, 44] on the Join Order Benchmark (JOB) [23]

(as well as TPC-H [3] and Decision Support Benchmark (DSB) [9]). Our experiments show that

QuerySplit reduces the JOB execution time by 35% as opposed to the second-best alternative

algorithm. Moreover, compared to an optimal optimizer (i.e., an optimizer fed by the true cardinality

of each operator), QuerySplit slows down the benchmark execution by less than 4%.
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The contributions of this paper are as follows. First, we identified that relying on the sub-optimal

initial plan is a key weakness of existing re-optimization strategies. Second, we proposed the

QuerySplit algorithm that extracted subqueries directly from the logical plan based on the primary-

foreign-key relationships to achieve a robust re-optimization efficiency. Finally, we integrated

QuerySplit into PostgreSQL and demonstrated the superiority of our algorithm by comparing it to

state-of-the-art solutions.

2 BACKGROUND & MOTIVATION
2.1 Cardinality Estimation
Cardinality estimation refers to the process of estimating the number of rows generated by each

operator at query optimization. It is used as an input parameter to the optimizer’s cost model.

Improved cardinality estimation enables more accurate cost estimation, thus helping the optimizer

select an efficient plan. Most DBMSs maintain table/column-level statistics such as histograms

and the number of distinct values, from which they derive the selectivity of basic single-column

predicates. The more challenging tasks are to estimate the selectivity of conjunctive predicates

involving multiple columns and to estimate the join cardinality. Because it is too costly to maintain

a relatively complete set of multi-column statistics, the optimizer has to make assumptions about

the correlation between columns in these cases.

Most widely-used DBMSs such as PostgreSQL and MySQL assume independent data distributions

between columns [23, 28]. It is considered one of the best strategies an optimizer could apply

given the lack of statistics. In reality, however, highly correlated columns are common, and this

approach is likely to deliver underestimated cardinalities [23]. Although the accuracy of cardinality

estimation for complex queries can be improved through sampling [24, 43] and machine learning

techniques [39], none of the approaches is robust enough, and their intrinsic overhead is hardly

justified in real-world database applications [33]. What makes it worse is error propagation. For

an N-way natural join, for example, the cardinality estimation error at each join step could grow

exponentially with N [17]. This theoretical result matches what we have observed in practice.

2.2 Re-optimization
Query re-optimization is a technique of adaptive query processing [5, 8] where the optimizer is

(re)invoked at execution time to correct potential bad plans. Specifically, the optimizer selects a few

operations in the physical plan to materialize the intermediate results. It then compares the true

cardinality (i.e., statistics from the actual intermediate results) against the previously estimated

value. If those values differ too much, the optimizer would re-plan the remaining part of the query

using the true cardinality
1
. Although re-optimization itself brings overheads, the revised plan is

almost guaranteed to be at least as good as the original one. Re-optimization, therefore, is a process

of interleaving the execution of the query engine and the optimizer, as shown in Figure 1.

optimizer executor
optimizer executor

traditional
new plan

plan 

run-time statistics
output

output

temporary storagere-opt

Fig. 1. Structure difference between traditional
query processing and re-optimization

Table 1. The ratio of queries whose global plans
deviate from the optimal plan with different
degrees

Similarity 0 1 2 > 2

Ratio 13% 12% 32% 43%

1
As a result, the re-planning makes “explaining” a query before execution more difficult.
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Existing re-optimization algorithms [19, 27, 29, 33] operate directly on global physical plans.

They choose a subtree from the plan obtained from the previous re-optimization cycle and execute

that subplan to decide whether further re-optimization is needed. Such a strategy of “selecting a

partial query to execute” can be problematic if the referencing global plan deviates largely from

an optimal one. And once an undesirable subplan (typically involving large tables but with an

underestimated cardinality) is chosen, the damage often propagates through later re-optimization

iterations.

Figure 2 shows an example to illustrate such an unrecoverable subplan execution. The query

is a 5-way join extracted from the JOB benchmark. There is an index built for each join column.

As shown in Figure 2(a), the optimal plan joins table n and ci first and uses the results to probe

table t in an index nest-loop join (denoted as NL in the figure). The actual initial plan (Figure 2(b)),

however, underestimates the cardinality of k Z mk and thus chooses to execute this subplan first.

We use S1 to denote the intermediate result of k Z mk. Once we discover that S1 is much larger

than the prior estimation, we trigger the optimizer to re-plan the rest of the query. However, the

best the optimizer can do at this point is shown in Figure 2(c). Because the large temporary table S1
does not have an index, the DBMS must perform a hash join (highlighted in bold red) for the last

step, which could be orders of magnitude slower than probing the existing indexes of the two base

tables.

⋈NL

cin

⋈NL

t

⋈NL

mk

⋈NL

k

(a) Optimal plan

⋈NL

⋈NL

t

⋈NL

ci

⋈NL

n

mkk

(b) Initial plan

S1

⋈NL

⋈NL

t

⋈HJ

cin

(c) Re-Optimized plan after

the first join

Fig. 2. How a bad global plan influences re-
optimization

R2R1

R3

R4R3

R1

Plan BPlan A

No same part

(a) Similarity = 0

R2R1

R3

R3R1

R2

Same part

Plan BPlan A

(b) Similarity = 1

R2R1

R3

R2R1

R4

Same part

Plan BPlan A

(c) Similarity = 2

Fig. 3. The example of different similarity

To show how much an initial global plan can deviate from optimal, we investigate the query

plans in the Join Order Benchmark using the optimizer from PostgreSQL. We define the similarity

score of two plans as the number of leaf nodes included in their largest common subtree. For

example, as shown in Figure 3, if the first joins of the two plans differ completely, they have a

similarity score of 0 (Figure 3(a)); if the probe side scans the same table (but joins a different one),

the similarity of the plans is 1 (Figure 3(b)); similarity = 2 means that the plans differ after the

first join (Figure 3(c)). In Table 1, we demonstrate how often initial global plans diverge from the

optimal ones early in the execution. We observe that more than half of the JOB queries have initial

plans whose optimality does not “survive” after one join, among which a quarter of the plans even

made mistakes on the first join.
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(d) Re-optimizing S3

Fig. 4. QuerySplit example

The second problem of existing algorithms is that the re-optimization decision is made reactively

according to the types of physical plan nodes. Such a heuristic-based approach often leads to extreme

re-optimization frequencies. If the system triggers re-optimization only at pipeline breakers, it never

gets a chance to change the ordering of the nest-loop joins in a left-deep plan. On the other hand,

if the system invokes re-optimization at every join, the overhead of materializing intermediate

results might be intimidating: it essentially converts the execution from the Volcano model to the

fully-materialized one.

2.3 A Proactive Strategy
As shown in Section 2.2, a suboptimal global plan can cause irrecoverable damages to the

effectiveness of existing re-optimization algorithms. We, therefore, argue that a better strategy is to

examine the query’s logical plan and decide proactively when to materialize results (and re-invoke

the optimizer) before execution. We call this scheme QuerySplit. Specifically, we divide the logical

plan into subqueries based on the primary-foreign-key relationships and optimize them separately.

Because each subquery is relatively simple, it is less likely that the optimizer would make serious

mistakes as in a global plan. We then choose one of the subqueries to run and materialize its output.

Once the execution is finished, we use the updated statistics (e.g., output size) to re-optimize the

remaining relevant subqueries. This process continues until no subquery is left to be executed. The

execution order is determined by a “ranking” function (detailed in Section 4.2) where subqueries

with small costs and output sizes are prioritized.

Figure 4 shows an example of a 5-way join re-optimized using QuerySplit. We first split the

query into three subqueries and optimize them separately: S1=R2 Z R3, S2=R3 Z R4 Z R5, and S3=R1
Z R2. We then choose S1 to execute and materialize its output as T1. Using the statistics of T1, we
trigger re-optimization on the remaining subqueries S2=T1 Z R4 Z R5 and S3=R1 Z T1 (Figure 4(c)).
S2 is selected to run next. The result is materialized in T2, whose statistics is used to re-optimize

the final subquery S3=R1 Z T2.

Compared to traditional re-optimization algorithms, QuerySplit is more robust at avoiding

suboptimal plans, and has more control over the re-optimization cost. First, QuerySplit does not

depend on global physical plans. Because the difficulty of the optimization task grows exponentially

as the number of joins increases, the optimizer is likely to make mistakes when planning a complex

query by entirety. As discussed in Section 2.2, “early mistakes” are common and they cannot be

recovered through re-optimization. In QuerySplit, on the other hand, the optimizer only deals with

much simpler subqueries, and the probability of generating bad plans is reduced dramatically.

Second, QuerySplit has predictable re-optimization overhead because it determines where to

re-invoke the optimizer before executing the query. The overhead is also adjustable by modifying

the subquery granularity. In this way, QuerySplit avoids undesirable re-optimization frequencies

caused by various physical plan shapes, as described in Section 2.2. The trade-off, though, is

that QuerySplit might miss certain optimization opportunities that are only recognizable when

examining the query as a whole. QuerySplit could be “myopic” because the optimizer only operates
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at the subquery level. Our detailed evaluation (Sections 6.3 and 6.5), however, demonstrate that

such a trade-off is modest and is outweighed by the aforementioned benefits.

The rest of the paper is organized as follows. Section 3 provides an overview of QuerySplit with

correctness proof. Section 4 discusses two critical policies that could largely determine the efficiency

of our algorithm. Section 5 briefly describes the integration of QuerySplit into PostgreSQL. An

evaluation of QuerySplit along with detailed case studies is presented in Section 6 followed by the

related work in Section 7.

3 QUERYSPLIT

If not 𝜙

Merge the results 

in result set

Subquery execution

QSA

Algorithm

SSA

Variable

If 𝜙

If has overlap

If no overlap

Replace overlap

Subquery 

set

Materialized 

result

Result set

Examine 

subquery set

Logical plan

Fig. 5. The workflow ofQuerySplit
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(c) Modify S2

m1R3

S2
R3.c=m1.b

m2

(d) Execute S2

Fig. 6. An example of howQuerySplit works

In this section, we present an overview of the QuerySplit algorithm followed by a proof of

correctness. Algorithm details and implementation are further discussed in Section 4.

3.1 Algorithm Overview
As shown in Figure 5, QuerySplit takes in a query’s logical plan and runs the Query Splitting

Algorithm (QSA) against it. For simplicity, we restrict the input to be select-projection-join (SPJ)

queries only (i.e., queries involving only select, projection, and join operators). Algorithm extension

to support Non-SPJ queries is discussed in Section 3.3. The goal of QSA is to generate a set of

subqueries where a serial execution of the subqueries would have the same result as executing the

original query. We discuss the requirements of such a valid subquery set in Section 3.2.

With a valid subquery set, QuerySplit proceeds to enter a loop. At each loop iteration, QuerySplit

picks a subquery from the current set to execute according to the Subquery Selection Algorithm

(SSA). Although SSA does not affect correctness, it has a significant impact on the efficiency of

the entire QuerySplit algorithm. We discuss different subquery ranking strategies in detail in

Section 4.2. The selected subquery is then removed from the set, and the execution results as well

as the associated statistics are materialized.

Next, QuerySplit examines each of the remaining subqueries in the set: if it overlaps with the

just-executed subquery (i.e., they have shared relations), the shared relations are replaced with the

corresponding materialized results. If it turns out that the just-executed subquery does not overlap

with any of the subqueries in the set, its execution results are pushed to the result set. The loop
continues until the subquery set becomes empty. Finally, QuerySplit merges the results (through

Cartesian product) if there are multiple items in the result set.

Figure 6 shows an example. The original query is 𝑅1 Z𝑅1.𝑎=𝑅2.𝑏 𝑅2 Z𝑅2.𝑏=𝑅3.𝑐 𝑅3, where 𝑅1.𝑎

denotes attribute 𝑎 from relation 𝑅1. After running the QSA, we obtain two subqueries in the set:

𝑆1 = 𝑅1 Z𝑅1.𝑎=𝑅2.𝑏 𝑅2 and 𝑆2 = 𝑅2 Z𝑅2.𝑏=𝑅3.𝑐 𝑅3. Suppose the SSA selects 𝑆1 to execute first, and

the materialized result is denoted by𝑚1. We next examine the remaining subquery 𝑆2. Because 𝑆2

and 𝑆1 share the common relation 𝑅2, we substitute𝑚1 for 𝑅2 and rewrite 𝑆2 as𝑚1 Z𝑚1.𝑏=𝑅3.𝑐 𝑅3.
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We then enter the next iteration and execute 𝑆2. Because there is no more subquery in the set, we

push the execution result𝑚2 to the result set and complete the algorithm.

Notice that the projection operators can be added to the subqueries following the general

projection push-down rules. We omit projections in the following discussions for presentation

clarity.

3.2 Correctness
As indicated above, the correctness of QuerySplit depends on the output of QSA (i.e., the subquery

set). In this subsection, we define the required properties of the subquery set and prove that the

QuerySplit algorithm is correct given a valid subquery set.

Given a set of relations R and a set of predicates P over R, we define the normal form of an SPJ

query as

𝑞(R, P) = (𝜎P (𝑟1 × 𝑟2 × ... × 𝑟𝑚)), 𝑟𝑖 ∈ R

A query 𝑞′ (R′, P ′) is said to be a subquery of 𝑞(R, P) if R′ ⊆ R and P ′ ⊆ P . A Query Splitting

Algorithm (QSA) takes a query 𝑞 as input and produces a set of subqueries of 𝑞. QuerySplit then

operates on this subquery set, as described in Section 3.1. Intuitively, in order for QuerySplit to

produce the same result as the original query, the subquery set generated by QSA must “cover” all

the relations and predicates in the original query. More formally,

Definition 1. Given an SPJ query 𝑞(R, P), let Q = {𝑞1 (R1, P1), ..., 𝑞𝑛 (R𝑛, P𝑛)} be a set of
subqueries of q. Q is said to cover 𝑞 (denoted as Q ⇀𝑐 𝑞) if the following holds:
(1) ∪𝑛

𝑖=1R𝑖 = R
(2) ∪𝑛

𝑖=1P𝑖 logically implies P. 2

The above definition guarantees that each base relation 𝑟𝑖 in R and each predicate 𝑝𝑖 in P must

appear at least once in the subquery set Q. Notice that the definition allows the same 𝑟𝑖 or 𝑝𝑖 to be

included in multiple subqueries. This does not affect the correctness of the QuerySplit algorithm

because the duplicates will be removed during the (materialized) result substitution step. In fact,

the “coverness” property is sufficient to prove the correctness of the entire QuerySplit algorithm.

Theorem (1). Let 𝑞(R, P) be an SPJ query, Q be a set of subqueries of 𝑞. QuerySplit produces the
same output as 𝑞 if Q ⇀𝑐 𝑞.

Proof sketch:We prove the theorem by induction. For the base case, if there is only one query 𝑞′ in
Q, and Q ⇀𝑐 𝑞, then 𝑞

′
and 𝑞 are equivalent queries. Suppose the statement is true for |Q | = 𝑛 − 1,

we want to prove that it also holds for |Q | = 𝑛. Let Q = {𝑞1, 𝑞2, ..., 𝑞𝑛}. Without loosing generality,

suppose the first query executed by QuerySplit is 𝑞1, and the remaining set is Q’ = {𝑞2, ..., 𝑞𝑛}.
If 𝑞1 overlaps (i.e., with at least one shared relation) with a query 𝑞𝑖 in Q’ , we can prove that

substituting the materialized view of 𝑞1 into 𝑞𝑖 does not change the overall query result. Then, the

remaining subquery set (after the substitution) Q” = {𝑞2, ..., 𝑞′𝑖 , ..., 𝑞𝑛} falls back to the induction

hypothesis. On the other hand, if 𝑞1 does not overlap with any of the queries in Q’ , then executing

this “isolated” subquery first and pushing its result to the final buffer does not affect the correctness

of the original query. Again, after executing 𝑞1, the remaining subquery set Q’ falls back to the

induction hypothesis. A detailed proof can be found in the extended version of this paper (with an

anonymous link) [46].

2
“A logically implies B" means that each predicate from B can be inferred by A.
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3.3 Dealing with Non-SPJQueries
The focus of the QuerySplit algorithm is on optimizing the join ordering of SPJ queries. In this

subsection, we briefly discuss how to extend QuerySplit to be compatible with queries containing

Non-SPJ operators.

First of all, we do not distinguish between the join types when running the QSA. After getting

the subquery set, we perform an extra check for each subquery containing “special” joins (i.e., outer

join, semi-join, and anti-join) to determine whether executing it in the current iteration would

violate any ordering constraints. If a violation is detected, the subquery is temporarily removed

from the candidate set for this iteration. If the candidate set becomes empty after the check, the

execution falls back to follow a global physical plan.

Besides special joins, a majority of the Non-SPJ optimizations (e.g., subquery flattening/merging

and outer join simplification) are performed at the rule-based transformation stage [7, 10, 28, 30].

These optimizations happen before the QuerySplit algorithm, and their results (i.e., the transformed

plan) are consumed by QuerySplit at the cost-based enumeration stage in the following way. Given

a Non-SPJ operator 𝜙 whose inputs are generated by a set of SPJ subqueries (including special joins)

𝑞1, 𝑞2, ..., 𝑞𝑛 , we apply the QuerySplit algorithm to each of the subqueries and feed their results

to 𝜙 . Unlike the subquery execution within QuerySplit where the result must be materialized for

re-optimization, the data transfer between 𝜙 and the 𝑞𝑖 ’s can be pipelined.

For a query plan that contains multiple Non-SPJ operators, we segment the plan tree according

to these operators and execute them from the bottom up after completing each Non-SPJ operator,

we materialize its result and treat it as a base relation in the subsequent QuerySplit invocations.

Figure 7 shows an example. On the left, there is a query plan containing two Non-SPJ operators:

a Union and an Avg aggregation. We first divide the plan tree based on these two operators so that

they become the roots of their own subtrees. For each of the subtrees, we execute the SPJ part of

the plan first. In the Avg subtree, for example, the subquery 𝑅3 Z 𝑅4 Z 𝑅5 is first executed through

QuerySplit, and the result is used as an input to the Avg operator. We then materialize the output

of Avg and Union as relation 𝑇1 and 𝑇2, and use those to replace the corresponding subtrees in the

root plan. Finally, we invoke QuerySplit again on the root plan to obtain the final result.

⋈
⋈b>avg

Avg𝜎a
𝜎b

R1R1

R2

R5

⋈
⋈

R3 R4

∪

(a) Non-SPJ query

⋈
⋈b> T1.tRel T2

R2 Rel T1

Avg

R5

⋈⋈
R4

Rel T1: Rel T2:

𝜎a

R1R1R3

𝜎b

∪

(b) New SPJ query

Fig. 7. How to deal with Non-SPJ query

Notice that a potential limitation of adopting the above Non-SPJ extension of QuerySplit is

that it might miss a few global optimization opportunities such as group-by pushdown
3
during

the cost-based enumeration stage. Our evaluation on TPC-H [3] and DSB [9] (an extension to

TPC-DS [2]) in Section 6 shows that such a negative impact is limited and is often outweighed

3
As far as we know, neither PostgreSQL 15.1 [10] nor MySQL 8.0 [28] supports group-by pushdown.
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SELECT MIN(k.keyword) AS movie_keyword
MIN(n.name) AS actor_name,
MIN(t.title) AS hero_movie

FROM cast_info AS ci, keyword AS k,
movie_keyword AS mk, name AS n,
title AS t

WHERE … filter conditions …
AND k.id = mk.keyword_id
AND t.id = mk.movie_id
AND t.id = ci.movie_id
AND ci.movie_id = mk.movie_id
AND n.id = ci.person_id;

(a) Original SQL

P-Relation: k, n, t
F-Relation: ci, mk

mk ci

t

k n
Non-foreign key 

join
Foreign key join

(b) Join schema

subquery S1 subquery S2

mk ci

t

k n

(c) Directed join graph

Fig. 8. Join graph split by Foreign-Key-Center

by the benefit of a more optimized join ordering. A deeper integration of Non-SPJ operators into

QuerySplit is beyond the scope of this paper, and we leave it as future work.

4 SUBQUERY CREATION & SELECTION POLICIES
In Section 3, we mainly focused on the correctness of the QuerySplit algorithm. To fully exploit

QuerySplit’s ability to deliver good query performance, we discuss two critical policies in this

section: (1) how to pick a subquery set from a (exponentially) large number of valid choices, and (2)

how to select a subquery from an existing set at each QuerySplit iteration.

4.1 Generating a Subquery Set
As described in Section 3.2, a subquery set Q output by the Query Splitting Algorithm (QSA) is valid

if it “covers” the original query 𝑞. The number of the candidate sets, however, grows exponentially

with the complexity of 𝑞 (e.g., the number relations in 𝑞). The goal of the QSA is to perform an

efficient search in the candidate space and produce a subquery set that best serves the overall

QuerySplit algorithm.

Intuitively, we prefer subqueries that return small results. There are two potential advantages.

First, the cost of materializing the output of such a subquery is small in each QuerySplit iteration.

Second, because the materialized result will become a new base relation to participate in subsequent

executions, having a smaller size is beneficial to improving the performance of succeeding

subqueries.

We, therefore, propose a subquery generation strategy, called the FK-Center strategy (i.e., Foreign-
Key-Center). FK-Center leverages the concept of non-expanding operators proposed by Hertzschuch

et al. [15]. A non-expanding operator is defined as an operator that has an output size smaller

than or equal to its input size. The FK-Center strategy is based on the non-expanding property of

the primary-foreign-key joins. Given a query, we define FK-relation as a relation that has at least

one foreign-key reference to another relation and PK-relation as a relation whose primary key is

referenced by other relations.
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We then construct a directed join graph for the query where each vertex represents a relation

and each edge represents a join predicate (single table predicates are associated with the vertices).

For each edge, its direction is from an FK-relation to a PK-relation. If the join happens between two

relations with the same type, the edge is bidirectional. Redundant join predicates (e.g., those form

cycles in the join graph) are deleted with the priority of removing bidirectional edges.

The FK-Center strategy works by traversing all the vertices in the directed join graph. For each

vertex that has at least one outgoing edge, we create a subquery centered at this vertex (i.e., relation)

with all the relations it points to. We next demonstrate the process with an example.

Figure 8(a) shows the SQL text of Query 6d from the Join Order Benchmark. Among the five join

predicates, four of them (𝑘 Z 𝑚𝑘 , 𝑡 Z 𝑚𝑘 , 𝑡 Z 𝑐𝑖 , and 𝑛 Z 𝑐𝑖) are primary-foreign-key joins. We

first build the directed join graph, indicating the primary-foreign-key relationships, as shown in

Figure 8(b). Because𝑚𝑘 , 𝑡 , and 𝑐𝑖 form a join cycle, we remove the redundant bidirectional edge

between𝑚𝑘 and 𝑐𝑖 from the graph. We then scan the node list and detect that𝑚𝑘 and 𝑐𝑖 have

outgoing edges. We, therefore, create subquery 𝑆1 = 𝑘 Z 𝑚𝑘 Z 𝑡 centered around𝑚𝑘 and subquery

𝑆2 = 𝑡 Z 𝑐𝑖 Z 𝑛 centered around 𝑐𝑖 , as illustrated in Figure 8(c).

We note that for a query that follows a strict star schema, the FK-Center strategy takes no

effect because there is a single center (i.e., the fact table) in the join graph (and hence, no re-

optimization is carried out by the QuerySplit algorithm). Star-schema queries, however, are relatively

easy to optimize because all the joins are primary-foreign-key joins (thus non-expanding). This

prevents the optimizer from making “huge” mistakes (e.g., exploded intermediate results) regarding

the join ordering. Our experiments on TPC-H which contains mostly star-schema queries show

that all the state-of-the-art query optimization algorithms, including re-optimization, learned

cardinality estimation, and robust query processing, produce plans with similar performance

(refer to Section 6.3, Figure 12). Their improvement over the default PostgreSQL optimizer is also

limited. Therefore, it is reasonable in practice to adopt the FK-Center strategy because it focuses on

re-optimizing the inverse star-schema pattern, which are more likely to have severe cardinality

estimation errors [23].

We further introduce two alternative strategies, named PK-Center (i.e., Primary-Key-Center) and
MinSubquery, for comparison in the evaluation. PK-Center is the dual of FK-Center: the directed

join graph in PK-Center has all edges reversed (i.e., from a PK-relation to an FK-relation), making

the PK-relation at the center of each generated subquery. The other alternative MinSubquery refers

to the strategy of dividing the query into minimum-sized subqueries. For each join predicate in

the original query, we construct a subquery containing only the involved relations with their

corresponding filter conditions, thus creating the smallest join units.

Table 2. Cost Functions for SSA

Function Name Expression

Φ1 C(𝑞)
Φ2 C(𝑞) · log(S(𝑞))
Φ3 C(𝑞) ·

√︁
S(𝑞)

Φ4 C(𝑞) · S(𝑞)
Φ5 S(𝑞)

Parser

Optimizer

Executor

QSA

input query

SSA

logical plan

subquery set

selected subquery

Temporary 
Table

materialize

Statistics 
Collector

#rows, NDV, …

PostgreSQL module QuerySplit module

Client
final subquery

result

Fig. 9. ImplementingQuerySplit in PostgreSQL
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4.2 Subquery Execution Order
Given a subquery set generated by the FK-Center strategy, the second policy decision is how

to determine the execution order of the subqueries (i.e., the aforementioned Subquery Selection

Algorithm, or SSA). Although this order is irrelevant to the correctness of QuerySplit, it can largely

affect the overall query performance. For example, if the largest join in the query is executed

early in the re-optimization process, the overhead of materializing its output and scanning it in

subsequent executions is overwhelming.

As mentioned in the introduction, it is beneficial to run the “simpler” subqueries first and delay

the execution of large joins by as much as possible. In this way, we increase the probability of

reducing the input sizes of those large joins with a modest re-optimization cost. We, therefore,

developed a set of cost functions Φ to measure the “simplicity” of the subqueries, as shown in

Table 2. At each QuerySplit iteration, we compute Φ for each subquery in the set and select the one

with the smallest value to execute.

The two metrics used to compute Φ for a subquery 𝑞 are the estimated cost generated from the

optimizer (denoted by C(𝑞)) and the cardinality estimation of 𝑞’s output (denoted by S(𝑞)). The
intuition is that we want to prioritize a subquery that is fast to execute and has the most potential

to speed up later subqueries. Correspondingly, the optimizer-generated cost reveals the complexity

of the current subquery, while the output size estimation suggests its potential “burden” on future

subqueries. For both metrics, a smaller value is better.

A combination of C(𝑞) and S(𝑞) indicates the algorithm’s aggressiveness in investing the cost

of the present subquery for potential future benefits. A larger factor of C(𝑞) suggests a more

conservative strategy that emphasizes picking the easiest subquery to execute at the moment. On

the contrary, putting more emphasis on S(𝑞) means that the algorithm believes that firing a more

complex subquery with a smaller result set is going to pay off in subsequent executions. Φ1 through

Φ5 defined in Table 2 indicate five strategies with an ascending weight of S(𝑞). Our evaluation in

Section 6.2 shows that a balanced SSA strategy (i.e., Φ4 = C(𝑞) · S(𝑞)) in QuerySplit delivers the

best and most robust performance.

5 IMPLEMENTATION
We implemented the QuerySplit algorithm in PostgreSQL 12.3 in C. As shown in Figure 9, we

included two newmodules: the Query Splitting Algorithm (QSA)module and the Subquery Selection

Algorithm (SSA) module. The data flow is redirected accordingly to perform subquery execution

and re-optimization.

Specifically, the QSA module receives a logical plan from the built-in parser and runs the

FCenter-based algorithm (Section 4.1) to produce a subquery set that covers the original query. The

subqueries in the set are logical plans of the same type as the input of QSA. The subquery set is

then sent to the SSA module for execution.

Upon receiving the subquery set, the SSA module starts a loop to consume one subquery at each

iteration. As described in Section 4.2, the SSA computes the cost function Φ for each subquery and

sends the one with the smallest cost to the execution engine. During this process, the SSA invokes

PostgreSQL’s native optimizer on each subquery to obtain its execution time estimation (i.e., C(𝑞))
and its output size estimation (i.e., S(𝑞)).

The execution result of the selected subquery (except for the last one) is materialized in a memory

buffer by setting the output destination to a temporary table in PostgreSQL. The materialized table

is then sent to the Statistics Collector, where a set of PostgreSQL’s native routines are performed to

compute the basic statistics about the table such as the number of rows, number of distinct values,

histograms, etc. After the statistical analysis, both the temporary table and its associated statistics
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are sent back to the SSA module to update the remaining “overlapping” subqueries, preparing for

the next iteration.

The source code of QuerySplit-integrated PostgreSQL is available on Github through the

anonymous link in [47].

6 EVALUATION
The evaluation of QuerySplit is organized as follows. In Section 6.2, we first examine the policies

proposed in Section 4 for the QSA and SSA algorithms. Because the cost function in SSA relies on the

optimizer’s output, we then investigate the robustness of our algorithm against varying cardinality

estimation errors. Next, we show our main results in Section 6.3, where we compare the end-to-end

performance of QuerySplit to that of existing baselines using the Join Order Benchmark (JOB) [23].

A follow-up study on whether to collect run-time statistics on the materialized intermediate results

is presented in Section 6.4 to show the trade-offs. In Section 6.5, We investigate whether the cost

functions proposed in Section 4.2 can boost the performance of existing re-optimization algorithms.

In Section 6.6, we conduct detailed case studies to provide further insights about the reasons why

QuerySplit outperforms the baselines in a majority of situations.

6.1 Workload & Experiment Setup
• Join Order Benchmark (JOB) JOB is a collection of manually-created queries over the IMDB

data set [1]. It has been widely used in prior work to evaluate the optimizer in relational database

management systems (DBMSs) [6, 15, 33]. JOB is known to have more complex queries than

the standard TPC-H [3] and is preferable for stress-testing the optimizer. There are a total of

113 queries in JOB with 91 of them returning non-empty results. We use these 91 queries in our

evaluation. By default, we build a B+tree index for each primary key and foreign key appearing

in the schemas.

• Decision Support Benchmark (DSB) DSB extends the standard TPC-DS benchmark [2] with

data skews [9]. There are 52 queries (15 SPJ and 37 Non-SPJ) in DSB. We set the scale factor to 5

in the evaluation.

• TPC-H TPC-H [3] is the standard for benchmarking analytical queries by convention. It follows

a star-schema and contains 22 (Non-SPJ) queries. We set the scale factor to 3 in the evaluation.

All experiments are performed on a server equipped with an Intel®Core®i9-10900K CPU (3.70

GHz) and 128 GB of DRAM. Similar to QuerySplit, all the baseline algorithms are also implemented

in PostgreSQL. We use the same parameter configuration in PostgreSQL across all solutions. We

set the max_parallel_workers to 0 to guarantee a serial execution of the queries in the workload.

The effective_cache_size is set to 8 GB. Other parameters follow the PostgreSQL default. The

execution of each query times out after 1000 seconds. We repeat each experiment three times and

report the average measurements.

6.2 Policies in QSA & SSA
For the cost function Φ used to determine the subquery execution order (i.e., SSA), besides the

five candidates proposed in Table 2, we introduce an additional baseline global_deep that orders

the subqueries according to the global physical plan. At each QuerySplit iteration, we choose the

deepest join operator in the global plan tree and obtain the involved relation set R. The algorithm
then searches the subquery set and finds the one(s) whose relation set is a superset of R. If multiple

subqueries satisfy the requirement, the algorithm randomly picks a subquery to send for execution.

Notice that QuerySplit with the global_deep SSA policy is different from executing the global plan

directly because the subquery set is not derived from the global plan.
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Table 3. JOB execution time for different combinations of QSA and SSA policies

SSA

Time(s) QSA

FK-Center PK-Center MinSubquery

Φ1: C(𝑞) 421 378 463

Φ2: C(𝑞) · log(S(𝑞)) 327 349 428

Φ3: C(𝑞) ·
√︁
S(𝑞) 328 339 418

Φ4: C(𝑞) · S(𝑞) 295 350 427

Φ5: S(𝑞) 348 407 474

global_deep 356 413 401

Table 3 shows the execution time of JOB using QuerySplit with different combinations of QSA

and SSA policies. For QSA policies, FK-Center consistently outperforms the others (except for Φ1).

This result confirms that keeping more non-expanding operators in subqueries is beneficial to

re-optimization (the USE paper presents similar findings [15]). The FK-Center policy achieves the

goal by preserving as much primary-foreign-key joins as possible when splitting the original query.

For SSA policies, Φ3 and Φ4 outperform the others in general. The results indicate that subqueries

with both short execution time and small output cardinality should have execution priority in

re-optimization, and a more balanced weight assignment between these two metrics tends to

improve the query performance. Overall, a combination of FK-Center and Φ4 in QuerySplit leads to

an outstanding performance of the DBMS, as shown in Table 3.

Robustness test Because the cost functions Φ1 - Φ5 depend on the output from the optimizer,

we next test the robustness of these cost functions against cardinality estimation (CE) errors.

The experiments are designed in the following way. For each JOB query, we execute every valid

subquery from it and record its true output cardinality (true_card). Next, we generate the erroneous
cardinality (err_card) by adding a controlled noise to the true cardinality:

𝑒𝑟𝑟_𝑐𝑎𝑟𝑑 = 2
𝑁 (`,𝜎2 ) ∗ 𝑡𝑟𝑢𝑒_𝑐𝑎𝑟𝑑

where 𝑁 (`, 𝜎2) represents a normal distribution with ` as the mean and 𝜎 as the standard

deviation. We then inject the erroneous cardinalities into PostgreSQL’s optimizer via the method

proposed by Cai et al. [6] so that we can control the quality of the cardinality estimations (CE).

Figure 10 shows the time of executing the JOB workload under the aforementioned different

QuerySplit policies with a varying mean and standard deviation of the injected CE noise.

Regardless of the choice of cost functions, modest errors (i.e.,𝜎 = 0.5, 1, 2) in cardinality estimation

have a small negative impact on the query performance when QuerySplit adopts the FK-Center or

MinSubquery QSA policy. The PK-Center policy is more sensitive to inaccurate cardinalities because

a PK-Center subquery is more likely to include multiple large FK-relations, where a miscalculation

of the join cardinality could incur an unrecoverable penalty. When the injected CE error becomes

large (i.e., 𝜎 = 4, which means 𝑃𝑟𝑜𝑏(CE error > 1500%) > 30%), QuerySplit is no longer robust no

matter what QSA and SSA strategies it selects. Because a policy combination of FK-Center and

Φ4 outperforms the other pairs consistently under modest CE errors, we set both policies as the

default in subsequent experiments.

6.3 A Comparison to Baseline Solutions
In this section, we compare QuerySplit against the following baselines, including four re-

optimization algorithms and two approaches to improve cardinality estimation.
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Fig. 10. Execution time of QuerySplit on JOB under erroneous cardinality estimations

• Default: PostgreSQL with the default optimizer.

• Optimal: PostgreSQL with an “ideal” optimizer. We provide the optimizer with the accurate

cardinality of every possible intermediate result so that it generates an optimal plan. This serves

as the upper-bound for all the evaluated approaches. Note that the “optimality” here is with

respect to perfect cardinality estimates.

• Reopt: A re-optimization algorithm that triggers the optimizer at each pipeline breaker if it

detects that the deviation between the true statistics and the estimation exceeds a threshold [19].

• Pop: A re-optimization algorithm extending Reopt where the optimizer is triggered aggressively

in more situations including at nest-loop join operators [27].

• IEF: Incremental Execution Framework (IEF) byNeumann andGalindo-Legaria [29] is an adaptive

query processing framework where query executions halt at pre-determined places in the global

plan to remove uncertainty in cardinality estimation errors.

• Perron19: A most recent study on the effectiveness of re-optimization [33]. In the original paper,

the authors compare the true cardinality of each operator with the estimated value obtained

from the EXPLAIN command. They then materialize the intermediate results of those operators

with large CE errors and re-execute the query to study the performance trade-offs. Because it is

impractical to get a global view of the true cardinalities by executing the query in advance, we

modified the algorithm by setting a relative threshold (e.g., estimation error is 32× off compared

to collected statistics) as the run-time re-optimization trigger.

• USE, Pessi.: USE [15] and Pessimistic Cardinality Estimation (Pessi.) [6] provide robust cardinality
estimation using sketches. Although USE forms subqueries during query optimization, its

execution is non-adaptive.
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• FS: A robust query processing technique that considers both cost and plan robustness (i.e.,

insensitive to cardinality estimation errors) during query optimization [40].

• OptRange: An algorithm that derives the range of estimated cardinalities where the current

plan stays optimal [41]. This can serve as a heuristic to reduce unnecessary re-optimizations.

• NeuroCard, DeepDB, MSCN: state-of-the-art learned cardinality estimation algorithms, where

NeuroCard [44] and DeepDB [16] are trained directly against the data while MSCN [21] requires

a set of training queries. These algorithms, however, have limited support to string columns.

For baselines that do not provide a PostgreSQL integration, we implemented them according to

the paper with the best effort. Implementation details can be found in our (anonymous) extended

report [46]. For each algorithm, we evaluated two index states: (1) indexes are built for primary

key (Pk) columns only, and (2) indexes are built for primary key (Pk) and foreign key (Fk) columns.

6.3.1 Join Order Benchmark. Figure 11 reports the end-to-end execution time of the JOB

workload for QuerySplit and the above baselines. In both Pk index only and Pk + Fk index cases,

QuerySplit achieves the shortest execution time compared to the prior solutions. The performance

improvements are more significant when both primary-key and foreign-key indexes are included

(which is the default in JOB) because the (sub)plan qualities between different algorithms diverge

more with an enlarged optimization space.

Notice that the performance difference between QuerySplit and Optimal is very small (< 4%),

indicating that QuerySplit is able to identify and quickly converge to an optimal plan. It also shows

that the re-optimization overhead in QuerySplit is modest. The four re-optimization baselines (i.e.,

Reopt, Pop, IEF, and Perron19) achieve a certain amount of improvement over the Default, but
they are still noticeably slower than the optimal. This is because they are all held back by the initial

physical plan in the re-optimization process. We provide case studies in Section 6.6 to demonstrate

QuerySplit’s advantages in detail.

Compared to the robust query processing baselines (i.e., USE
4
, Pessi, FS, and OptRange),

QuerySplit still exhibits significant performance advantages, especially when both primary key and

foreign key columns have indexes built (i.e., the blue bars in Figure 11). This is because robust query

processing algorithms tend to settle down with plans that are insensitive to cardinality estimation

errors and thus miss the opportunity to approach plans that are closer to the optimal. Meanwhile,

4
Note that USE has the same performance in both index configurations because it disables nest-loop join, and thus ignores

indexes in its query planning.
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learned cardinality estimation (i.e., NeuroCard, DeepDB, and MSCN) achieves limited performance

improvement because JOB contains many string columns where the learned cardinality estimators

fail to handle: they have to fall back to PostgreSQL’s default in those cases. These results confirm

the finding in Perron et al. [33] that re-optimization is likely to be more effective and efficient than

refining CE in improving query performance.

Table 4. Materialization frequency and memory usage of re-optimization algorithms in JOB

Algorithms

Avg mem per Avg mat. freq. Total mem per

subquery (MB) per query query (MB)

QuerySplit 5.79 2.66 15.40

Reopt 43.31 0.21 9.09

Pop 7.01 4.62 32.39

IEF 14.59 3.11 45.37

Perron19 10.99 6.59 72.42

** “Total mem per query” in the table refers to the total memory used to materialize the intermediate results. For reference,

the peak memory usage for Default and Optimal is 572MB and 563MB, respectively.

Table 4 shows the materialization frequency and the associated memory usage of each of the

re-optimization algorithms in JOB. Compared to the baselines, QuerySplit has the lowest memory

consumption per subquery (i.e., per re-optimization iteration) because the FK-Center-based QSA

preserves as many non-expanding operators in the subqueries as possible. QuerySplit also has

the second lowest re-optimization frequency per query. Reopt achieves the lowest because it only

triggers re-optimization at pipeline breakers with large CE errors. Overall, except for Reopt that

adopts an over-conservative strategy, the materialization memory cost of QuerySplit is significantly

lower than that of the other competitors.

6.3.2 TPC-H. Unlike JOB, TPC-H serves as a worst-case benchmark for QuerySplit because

it follows the star-schema pattern and all of its queries are Non-SPJ queries. Figure 12 shows

the results for TPC-H. Note that we only include the baseline approaches that support Non-SPJ

queries in the figure. QuerySplit still produces the fastest plans among the baselines, although

the performance improvements are much smaller than those in JOB. As discussed in Section 4.1,

re-optimization is often unnecessary for star-schema queries because the optimizers are less likely

to make serious mistakes. QuerySplit outperforms existing re-optimization algorithms, nonetheless,

because QuerySplit triggers a (“useless”) re-optimization less frequently in TPC-H.

6.3.3 Decision Support Benchmark. Finally, we show the evaluation results for DSB, a mostly

star-schema benchmark containing both SPJ and Non-SPJ queries. For SPJ queries, as shown

in Figure 13, QuerySplit is close to the “optimal” and outperforms the baselines, especially in

the Pk-index-only setting. Compared to the JOB results, the overall benefit of re-optimization in

DSB is less remarkable because of the star-schema pattern. Notice that the learned cardinality

estimation algorithms becomemore effective because DSB has fewer string attributes involved in the

queries. The results for Non-SPJ queries of DSB (Figure 14) are similar to those of TPC-H. Although

QuerySplit targets at JOB-like workloads
5
that are proven to be challenging for optimizers [23], our

experiments with TPC-H and DSB show that QuerySplit keeps a robust performance consistently,

thanks to its low re-optimization overhead.

5
With part of the queries following the inverse star-schema pattern.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 185. Publication date: June 2023.



Efficient Query Re-optimization with Judicious Subquery Selections 185:17

QuerySplit Default Reopt Pop IEF Perron19 FS OptRange

E
x
ec

u
ti

o
n
 t

im
e 

(s
)

100

0

20

40

60

80

120

Re-optimization Robust Query ProcessingPk index

Pk + Fk index
140

Fig. 12. TPC-H Execution Time

0

40

20

60

80

Re-optimization Learned CERobust Query Processing

E
x

ec
u

ti
o

n
 t
im

e
(s

)

PK index PK & FK index

100

120

Fig. 13. DSB Execution Time – SPJQueries

0

100

50

150

Re-optimization Robust Query Processing

E
x

ec
u

ti
o

n
 t
im

e
(s

)

PK index PK & FK index

200

250

Fig. 14. DSB Execution Time – Non-SPJ Queries

6.4 Collecting Statistics Or Not?
We continue with a follow-up study onwhether collecting statistics on the materialized intermediate

results is beneficial for each re-optimization algorithm. The statistics include the number of distinct

values, most common values and their frequencies, equal-width/depth histograms, etc. Note that

the basic row count is already obtained during the result materialization. Collecting the above

statistics requires extra table scans in PostgreSQL. Such an overhead may not exist if the DBMS is

sophisticated enough to generate the statistics while materializing the intermediate results.
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Table 5. JOB execution time for existing re-optimizations algorithms with cost functions fromQuerySplit.

SSA

Time(s) QSA

Reopt Pop IEF Perron19

Φ1: C(𝑞) 488 406 877 412

Φ2: C(𝑞) · log(S(𝑞)) 482 479 835 420

Φ3: C(𝑞) ·
√︁
S(𝑞) 475 480 855 418

Φ4: C(𝑞) · S(𝑞) 483 485 857 417

Φ5: S(𝑞) 492 487 800 415

Original 493 401 367 416

Nevertheless, all the four re-optimization baselines choose to collect statistics at runtime by

default. The reasoning is that collecting these statistics is going to help plan future subqueries

because the optimizer has little knowledge of the newly materialized relation(s).

We repeat the JOB experiments for the re-optimization algorithms in two different settings: (1)

collecting the statistics for every materialized intermediate result, and (2) disabling the statistics

collector and only passing along the row count to the optimizer.

Figure 15 shows the benchmark results. Surprisingly, collecting statistics at runtime has no effect

(even a slightly negative effect) on the overall query performance in Perron19 and QuerySplit,

despite the performance of other algorithms depending heavily on those statistics. This is because

each subquery in Perron19 only involves at most two relations and is, therefore, less likely for

the optimizer to make mistakes due to the lack of statistics. For QuerySplit, each subquery mostly

contains primary-foreign-key joins. Because PostgreSQL’s optimizer does not use any additional

statistics other than the row count of the primary-key table to estimate the cardinality of such a

join, collecting the statistics provides little benefit for the optimizer to generate a better plan.

The above experiments show that whether to collect statistics during re-optimization should not

be a “no-brainer”. The decision depends heavily on the re-optimization algorithm and the quality

of the system’s native optimizer.

6.5 Existing Re-optimization Algorithms with New Cost Functions
We investigate whether the cost functions proposed in Section 4.2 can boost the performance of

existing re-optimization algorithms in this section. We repeat the JOB experiments on Re-opt, Pop,

IEF, and Perron19 and use our cost functions (i.e., Φ1 −Φ5) to determine which subquery to execute

first. Table 5 presents the benchmark execution times.
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(a) Result size at each iteration (b) Execution time at each iteration

Fig. 16. Timelines for the “Avoided Large Join”

Overall, simply applying the proposed cost functions to existing re-optimization algorithms

brings little benefit. IEF, in particular, experienced major performance degradation because the new

cost functions break IEF’s optimization strategy of prioritize subqueries with a high uncertainty in

cardinality estimation. These experiments demonstrate that a “wise” cost function alone is incapable

of compensating for a sub-optimal subquery division in a re-optimization algorithm.

6.6 Insights intoQuerySplit
In this section, we provide a deeper analysis on the reasons why QuerySplit outperforms existing

re-optimization algorithms. An intuition is that QuerySplit prioritizes the execution of subqueries

that produce smaller intermediate results and, thus, postponing potential large joins by as much as

possible.

To verify this, we plot two sets of “timelines” for each JOB query, where the X-axis is the count

of completed re-optimization iterations. For the first set of timelines, we monitor the size of the

intermediate result at each re-optimization iteration for each evaluated algorithm (Reopt is omitted

because of poor performance). For the second set of timelines, we plot the execution time for the

corresponding subquery at each iteration.

When comparing QuerySplit against Pop, IEF, Perron19, and Optimal (for reference), we

summarized four representative categories out of the 91 JOB queries:

• Avoided Large Joins: QuerySplit successfully avoided performing large join(s) that appears in

other re-optimization algorithms.

• Delayed Large Joins: QuerySplit postponed the large join(s) to later iterations with (hopefully)

a smaller input size and a smaller impact on the performance of other subqueries.

• No Difference: The timeline patterns and the performance are similar between QuerySplit

and other re-optimization algorithms.

• Worse: A rare case where QuerySplit unexpectedly produced large intermediate results and

performed worse than the others.

We next provide detailed case studies for each category.

6.6.1 Avoided Large Join. Figure 16 shows the intermediate result size and execution time at each

re-optimization iteration for a representative query in this category. We can see that Pop, IEF and

Perron19 execute a subquery that generates a large intermediate result close to 1M rows in an

early (2nd) iteration. The execution time of this subquery is also large, as shown in Figure 16(b).

The reason is that both algorithms rely on a bad initial plan (generated by the PostgreSQL’s default

optimizer) that decides to execute this large join early because of cardinality estimation errors. On
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(a) Result size at each iteration (b) Execution time at each iteration

Fig. 17. Timelines for the “Delayed Large Join”

(a) Result size at each iteration (b) Execution time at each iteration

Fig. 18. Timelines for the “No Difference”

(a) Result size at each iteration (b) Execution time at each iteration

Fig. 19. Timelines for the “Worse”

the other hand, QuerySplit successfully avoided the large join by first executing simple subqueries

that imposed highly-selective filters on the large input relations. As expected, these wise choices

perfectly overlap with the optimal plan.

6.6.2 Delayed Large Join. A representative set of re-optimization timelines for this category is

presented in Figure 17. The observation is that all of the re-optimization algorithms execute at

least one subquery that generates a large intermediate result. QuerySplit, however, delays such

an execution by as much as possible because the cost function Φ4 used in the SSA module has a
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(a) Join Graph of JOB query #9c (b) Perron19

(c) QuerySplit (d) Optimal

Fig. 20. (a)The join graph of JOB query #9c and (b)(c) execution processes of the example query in Delayed
Large Joins (The blue and red text represents the actual cardinality and the execution time respectively, and
the cutting lines represent where the re-optimization is triggered)

strong preference for subqueries that are “easy” and produce small outputs. Delaying the execution

of large joins reduces the probability of letting them slow down additional subqueries. As shown in

Figure 17(a), because Perron19 executes a large join as early as in the third iteration, its succeeding

iteration suffers from large input and output sizes again due to the ripple effect.

We show the concrete query in Figure 20 for a case study. Figure 20(a) shows the join graph of

the JOB query. The (effective) execution plan for Perron19, QuerySplit, and Optimal are illustrated
in Figures 20(b) to 20(d), respectively. Both Perron19 and QuerySplit encounter the large join mc
Z cn that produces an output relation x with a size of 2.2M) in one of their subqueries. However,

because Perron19 performs this join too early, its subsequent join (i.e., x Z t) becomes even larger

(2.2M × 4.8M) and takes 1.9s to complete. On the contrary, QuerySplit delays the execution of mc
Z cn towards the end and gets rewarded by having a much smaller-scale subsequent join (2.2M ×
19K) that can be finished in less than 0.1s.

An interesting observation is that the large mc Z cn is completely avoided in the optimal plan. By

comparing the plans between QuerySplit and Optimal carefully, we found that the decisive mistake

made by QuerySplit is choosing to execute an Z 𝑆1 first instead of mc Z 𝑆1. This is because an Z 𝑆1
has a much smaller estimated cost from the optimizer (i.e., 46K vs. 132K for C(𝑞)) and a similar

estimated output size (i.e., 19K vs. 18K for S(𝑞)) compared to cn Z mc Z 𝑆1. A more sophisticated

cost function Φmight be able to further reduce these undesirable decisions. Nevertheless, we notice

that the differences in query execution time between QuerySplit and Optimal are small despite

our algorithm generating a larger intermediate result.
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(a) Join graph of JOB query #15c

(b) Execution process of QuerySplit (c) Execution process of IEF

Fig. 21. (a) The join graph of JOB query #15c and (b)(c) the execution processes of the example queries
in Worse (The blue text outside the bracket and in the bracket represents the actual cardinality and the
estimated cardinality respectively, the red text represents the execution time, and the cutting lines represent
where the re-optimization is triggered)

6.6.3 No Difference. As shown in Figure 18, in this category, all the re-optimization algorithms

converge to the same (effective) execution plan. This is because the cardinality estimation of these

queries is relatively accurate to prevent the optimizer and the re-optimizing process from making

mistakes.

6.6.4 Worse. This is a relatively infrequent category where QuerySplit is slower than the other

competitors because of a bad decision leading to a large intermediate result. The re-optimization

timelines of a representative query are shown in Figure 19. QuerySplit consumes more time and

produces larger outputs than the others in the first and fourth iterations.

We found that almost all the bad cases are small queries, each getting split into only two

subqueries in QuerySplit. Figure 21 shows an example. Again, Figure 21(a) shows the join graph

of the JOB query. We depict the (effective) execution plan for QuerySplit and IEF in Figures 20(b)

and 20(c), respectively. Other alternative algorithms have the same plan as IEF.
We observe that both QuerySplit and IEF generate the identical subqueries: S1 = ci Z rt Z

t Z chn and S2 = mc Z cn Z t Z ct. The difference is that QuerySplit chose to execute S1 first,
while IEF chose to prioritize S2. This is because PostgreSQL’s optimizer makes a huge mistake in

estimating the cardinality of S1. Such a mistake “tricks” QuerySplit into believing that S1 has a
much smaller output size than S2 (1386 vs. 11K), an advantage outweighing the difference between
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Table 6. Frequencies and the average performance effect of the four categories of JOB queries

Category Frequency Average Perf. Effect

Avoided Large Join 40 / 91 40.5%

Delayed Large Join 23 / 91 21.7%

No difference 18 / 91 3.8%

Worse 10 / 91 -39.5%

their execution cost (5.3s vs. 0.71s). Considering the true cardinality for S1 and S2 are similar (10K

vs. 13K), QuerySplit made a bad decision in executing the heavier S1 first.
The lesson learned (for future improvements) is that fine-grained subqueries are preferred in

re-optimization because they are less likely to cause devastating cardinality estimation errors even

with a mediocre optimizer.

6.6.5 Summary. Table 6 presents the query count of each of the above categories out of the 91 JOB

queries. The average performance effect refers to QuerySplit’s relative performance improvement

over the best alternative algorithm. The query counts show that ≈ 70% of the queries belong to

the first two categories where QuerySplit outperforms alternative re-optimization algorithms by a

sizeable gap. Although queries get slowed down significantly in the Worse category, it has a small

effect on the overall benchmark performance because such a query is infrequent and the query

itself is small.

7 RELATEDWORK
There are two research directions related to our work: (a) adaptive query processing and (b)

cardinality estimation techniques. We review existing work in these directions in the following

two subsections.

7.1 AdaptiveQuery Processing
Adaptive query processing is a research direction with a long history. Babu and Bizarro [5]

have conducted a comprehensive review of existing works in this direction. According to their

investigation, adaptive query processing techniques can be broadly categorized into three families:

plan-based system (re-optimization), routing-based system and continuous-query-based system.

7.1.1 Re-optimization. A re-optimization system monitors the execution of the current plan and

re-optimizes the plan whenever the actual condition differs significantly from the estimations made

by the optimizer.

As far as we know, Reopt is the first research that proposed the idea of re-optimization. Reopt [19]

adds statistics collecting operators after pipeline breakers (e.g., hash or sort) in the physical plan.

When a deviation is detected, the database calculates the benefit of re-planning the remaining part of

the query and compares it with the cost of re-optimization. Pop [27] is very similar to Reopt, except

that Pop can trigger re-optimization in more join nodes, like the outer side of nest-loop join. Instead

of deciding when to materialize based on the node type, incremental execution framework (IEF) [29]

chose the node in the global physical plan which has the maximal estimation error on cardinality to

materialize. The estimation error on cardinality is estimated based on the statistics and assumptions

used. Recently, Perron et al. [33] conducts a simulation study to investigate the effectiveness of

re-optimization. They use the EXPLAIN command to evaluate cardinality estimation error, and

materialize the intermediate results that deviate too much from estimation as a temporary table.

Their result shows that re-optimization can sharply improve the execution time in PostgreSQL.
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Compared to the QuerySplit framework, the above methods choose the subtree of the global

physical plan to execute. Such a strategy can go wrong when the referencing global plan deviates

largely from an optimal one. And if a bad subplan is chosen, the damage often influences later

execution.

7.1.2 Routing-based system. Routing-based systems behave differently compared to traditional

RDBMS. They process queries by routing tuples through a pool of operators. The idea of the routing-

based system can be traced back to INGRES [42]. The most representative work is Eddies [4], which

adds a new operator called ripple join and can change the join order in ripple joins. Compared to

re-optimization, routing-based systems totally abandon the optimizer, making routing algorithms

highly dependent on the greedy algorithm and therefore unsuitable for complex queries [18].

7.1.3 Continuous-query-based System. Continuous-Query-based, or CQ-based, systems are used

for queries that will run many times or a very long time, which is prevalent in data stream systems.

Compared to other adaptive query processing, CQ-base systems pay attention to the runtime

change of stream characteristics and system conditions, rather than cardinality estimation errors

of a given query.

7.2 Cardinality Estimation
Re-optimization and improving cardinality estimation directly are two complementary and

competitive approaches towards an optimal plan. Cardinality estimation techniques can be

categorized into traditional methods and learned methods [37], depending on whether machine

learning techniques are used.

7.2.1 Traditional Methods. Traditional methods include sketch [6, 15, 34], histogram [12] and

sampling [24, 43]. One particularly related work in this part is USE [15], in which the idea of using

non-expanding operators (e.g., filter and Pk-Fk join) is independently proposed. In USE, these

operators are prioritized to form subqueries (which is similar to subqueries formed in FCenter).

Then, sketch-based cardinality estimation techniques are used to decide the join order between

subqueries. However, USE is not an adaptive query processing method, and it uses standard query

optimization after conducting the above query transformation.

7.2.2 Learned Methods. Learned methods can be further divided into two categories: data-driven

cardinality estimator [12, 13, 16, 22, 36, 38, 44, 45] and query-driven cardinality estimator [11, 14,

21, 26, 31, 32, 35, 36]. The data-driven cardinality estimator approximates the data distribution

of a table by mapping each tuple to its probability of occurrence in the table. The query-driven

cardinality estimator uses some models to learn the mapping between queries and cardinalities.

Although learned methods are indeed more accurate than traditional methods, they often suffer

from high training and inference costs [37].

8 CONCLUSION
In this paper, we propose QuerySplit, a re-optimization framework which ignores the potentially

misleading global plans and instead extracts subqueries directly from the original logical plan. We

proposed a cost function that prioritizes the execution of simple subqueries with small output

sizes. Experimental results on Join Order Benchmark showed that QuerySplit outperforms other

re-optimization methods and state-of-the-art sketch-based cardinality estimation techniques, and

reaches near-optimal execution time.
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