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We propose the concept of Intra-Query Runtime Elasticity (IQRE) for cloud-native data analysis. IQRE enables a
cloud-native OLAP engine to dynamically adjust a query’s Degree of Parallelism (DOP) during execution. This
capability allows users to utilize cloud computing resources more cost-effectively. We present Accordion, the
first IQRE query engine. Accordion can adjust the parallelism of a query at any point during query execution
without pausing data processing. It features a user-friendly interface and an auto-tuner backed by a “what-if”
service to allow users to adjust the DOP according to their query latency constraints. The design of Accordion
follows the execution model in Presto, an open-source distributed SQL query engine developed at Meta. We
present the implementation of Accordion and demonstrate its ease of use, showcasing how it enables users to
minimize compute resource consumption while meeting their query time constraints.
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1 Introduction
The emergence of cloud-native databases [1–4] allows efficient data analysis in the cloud environ-
ment. Leveraging massively parallel processing engines [5–7], these systems provide users with
a robust parallel data processing experience, harnessing the extensive computational resources
available in the cloud. Nonetheless, the challenge of economically using cloud databases remains
inadequately addressed. Users often struggle to determine the optimal allocation of computing re-
sources within their temporal and financial constraints, primarily due to the difficulty in predicting
the relationship between resource utilization and query execution time before query execution. Ex-
isting methodologies [15, 25, 31, 47, 49] typically involve constructing performance-cost models that
necessitate the execution of specific user-provided workloads. These methods are time-consuming,
less accessible for non-specialized users, and often lack generalizability [55]. However, the time-
resource relationship is not available only after the query is executed. During query execution, by
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Welcome to Accordion Cloud !

SQL>
SQL>
SQL> select    l_orderkey ... 

 from    orders, lineitem 
 where    ... ;

SQL>

#QUERY-2024-09-26-172446-da95fe9

 Execution time: ---s

Stage:2 
Stage:3

#QUERY-2024-09-25-123415-4fca483

 Execution time: 34.032s

Controller

In Progress

Controller

 Complete

Fig. 1. Accordion’s Main Interface – it includes a SQL input box on the left and the query execution progress
tracking box on the right.
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Fig. 2. Accordion’s Controller Interface – it is composed of three sections: the query plan display box, the
auto-tuner box, and the stage information box.

collecting runtime information (table scanning rate, throughput rate) of the query, it is possible to
predict the relationship between the remaining time of query execution and resource usage (degree
of parallelism). If parallelism can be dynamically adjusted during query execution, users could
more effectively align execution time and resource expenditure with their budgetary requirements
by the predicted relationship.

In this paper, we introduce the concept of Intra-Query Runtime Elasticity (IQRE) and present the
first IQRE query engine, named Accordion. IQRE refers to the capability of dynamically adjusting
the parallelism of a query during execution without pausing data processing. This approach allows
users to initiate a query with a minimal allocation of computational resources and subsequently
modify the execution speed or resource consumption according to their requirements.

Accordion1 was implemented in C++ from scratch, following the execution model in Presto [45],
an open-source distributed SQL engine developed by Meta.

Accordion’s execution engine adopts the vectorized push-basedmodel and uses Apache Arrow [8]
as the data exchange format between compute nodes. Accordion features a user-friendly interface
to facilitate adjusting the Degree of Parallelism (DOP) at query execution time. As shown in Figure 1,
users enter SQL statements in the query input box, which will be submitted to the Accordion
cluster for execution. Running queries are displayed in the query progress tracking box. Each query
contains multiple progress bars (corresponding to different stages). The query execution finishes
when all the progress bars are filled.
1https://github.com/Blueratzxk/Accordion_engine
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Fig. 3. Architecture of Presto.

Users can adjust the parallelism for each stage at execution time by tuning the DOP knobs in the
controller interface (Figure 2). The controller interface provides detailed runtime information, in-
cluding the query plan, real-time throughput for each stage, and the estimated remaining execution
time. We also provide an auto-tuner backed by a “what-if” service that can help users automatically
tune the query’s DOP to meet their latency constraints.

This paper makes three primary contributions. First, we propose intra-query runtime elasticity
(IQRE) for cloud-native databases as an important step toward cost-intelligent query processing.
Second, we introduce Accordion, the first query engine that implements IQRE efficiently. Finally,
we demonstrate that Accordion is easy to use and can use as few compute resources as possible to
satisfy the query’s latency constraint.

2 Background
Presto [45] has been widely used by enterprises and cloud database vendors for large-scale data
analysis due to its high flexibility and elasticity. It is a query engine without storage components.
In this section, we provide an overview of Presto’s architecture and discuss the challenges of
implementing IQRE directly in Presto.
As illustrated in Figure 3, a Presto cluster consists of a coordinator node and multiple worker

nodes. The coordinator is responsible for query parsing, analyzing, planning, optimizing, and task
scheduling. Worker nodes are responsible for query processing and result return. Upon receiving a
query, the coordinator analyzes the SQL statement, generates a distributed physical plan through
optimization, and then schedules tasks — the smallest unit for distributed execution — on the worker
nodes. Each worker node contains a task manager for creating and terminating tasks. Worker nodes
execute these tasks to process data from base tables or to handle intermediate data generated by
other workers. Presto uses RPC to exchange data between tasks.

Physical Plan to Fragments. Consider a simple query:

SELECT l_orderkey
FROM lineitem

INNER JOIN orders ON l_orderkey=o_orderkey
INNER JOIN customer ON c_custkey=o_custkey

WHERE o_orderdate < 1994 -03 -05

Presto obtains a physical plan after parsing, analyzing, and optimizing the query. There are two
special types of nodes in the plan: the exchange node and the local exchange node. These nodes
are introduced during query optimization to partition the plan into sub-plans. The query optimizer
divides the physical plan into multiple fragments based on the locations of the exchange nodes,
resulting in a fragment (stage) tree as illustrated in Figure 4. The scheduler allocates tasks across the
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Fig. 4. Example query’s distributed physical plan.

cluster based on this stage tree to create a distributed execution plan. An execution stage includes
multiple tasks. Each task is mapped to a compute node. Figure 5 presents a partially distributed
execution plan for the stage tree, displaying only stages 1, 3, 4, and 5. Each stage is assigned two
tasks, with each task identified by a unique task ID that consists of the stage number and the task
sequence number.

Fragment to Pipelines. A fragment cannot be executed directly within a task; it must first be
rewritten and then subdivided into a collection of pipelines. The division is performed by pipeline
breakers, including the local exchange node and the hash join node in this plan. Figure 6 illustrates
the process of converting a fragment into pipelines within the task of stage 3. Initially, the fragment
is rewritten to introduce an output node. Subsequently, each local exchange node is divided into
a sink node and a source node, while each join node is split into a probe node and a build node.
This process results in a collection of plan node sequences, each of which will be transformed into
a pipeline. A pipeline is defined as a sequence of operator factories, each capable of producing
multiple physical operators. Consequently, each pipeline can generate physical operator sequences
(driver), which represent the smallest unit of scheduling and execution in a task (the relationship
between pipeline and driver is similar to the relationship between class and object in object-oriented
programming).

Driver Execution. Each driver can be executed by threads (the task manager keeps a thread
pool and will spawn multiple drivers for each task; the drivers are scheduled by the task manager
using a multi-level queue). Drivers involved in the table scan stage and those containing exchange
operators require RPC addresses for execution. As depicted in Figure 5, Presto utilizes the “split”
object to set and update these addresses for drivers. There are primarily two types of splits in
Presto: remote splits and system splits. A remote split, which includes a node’s URL and a task ID,
is used to establish data exchange connections between intermediate-stage (non-table scan stage)
tasks and upstream stages’ tasks. A system split is used to tell the table scan stage tasks where to
get data chunks from external data sources for processing.
In the table scan stage, a data chunk is divided into smaller pages (sub-chunks), which are

distributed among tasks for parallel processing. Pages also passed between physical operators. As
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illustrated in Figure 6, each physical operator, driven by a thread, sequentially performs page input,
processing, and output.

Each physical operator can exist in one of three states: finished, unfinished, or finishing. When a
driver needs to be closed, the thread transitions each operator to the finished state in succession.
Once all operators have reached the finished state, the driver is destroyed.

Task Execution. To illustrate the execution process of a task, we will use the task from stage 3 as
an example. Figure 7 details the execution of this task. Each pipeline generates two drivers. Pipeline
0 and Pipeline 2 request pages from the upstream tasks via exchange operators. Each exchange
operator contains a receive buffer, which temporarily stores the data retrieved from upstream tasks.
The driver of pipeline 0 passes the page to the local exchange structure (generated from the local
exchange node) for hash partitioning. Pipeline 1 gets pages from the local exchange structure to
build the hash table. Pipeline 2 receives the data and performs the probe operation. The probe result
is hash-partitioned by the task output operator (containing a hash function) and then stored in the
task output buffer. This buffer contains a vector of buffer IDs, each corresponding to a downstream
task whose task sequence number matches the buffer ID. These downstream tasks then access
pages using their task sequence numbers.
As shown in Figure 5, if a task has no more pages to process, it will send “end pages” to notify

the downstream tasks. With the help of the end page, the query’s tasks can be automatically closed
in a bottom-up fashion.
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Challenges. Implementing IQRE in Presto requires adjusting the number of tasks within a stage
(stage DOP) or the number of drivers within a task (task DOP) during query execution. This is
difficult because of the following challenges. First, Presto establishes the stage and task DOPs
before query execution and does not permit modifications during query processing. It requires
a dynamic scheduler capable of spawning or terminating tasks and drivers at runtime to break
such early bindings. Second, the data exchange topology between tasks and drivers is fixed at
query planning time in Presto. Modifying this topology requires extensive changes to various
components, including the output buffers, drivers, task output operators, hash functions, etc. Third,
Presto adopts a fixed capacity (configurable, default 32 MB) for the task output buffers. When the
buffers are too large, tasks from the downstream stage might starve, waiting for data to process.
This makes DOP tuning at this stage ineffective. On the other hand, if the buffers are too small, the
network overhead becomes significant.

We will address these challenges in Section 4. First, we present the new architecture of Accordion
in the next section.
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3 System Overview
Accordion is also a vectorized and push-based query engine like Presto. As shown in Figure 8,
Accordion introduces a DOP auto-tuner and a runtime DOP tuning module on top of the existing
design. The auto-tuner contains a predictor and tuning request filter. The Predictor (what-if service,
as detailed in Section 5) handles prediction tasks. It obtains query runtime information from the
scheduler to estimate the remaining execution time and the anticipated time after parallelism
adjustments. These results are returned to users or used for DOP auto-tuning. The request filter is
used to filter unreasonable tuning requests (e.g., requests that would cause a waste of resources and
requests for finished queries). The runtime DOP tuning module encompasses a dynamic optimizer
and a dynamic scheduler. Upon receiving a tuning request, the auto tuner will generate tuning
actions to the dynamic optimizer, which determines the type of DOP tuning required and invokes
the dynamic scheduler to perform the tuning operations. Figure 9 illustrates the two types of DOP
tuning available in Accordion: intra-task DOP tuning ( 1○), which involves changing the number
of drivers for a pipeline (detailed in Section 4.3), and intra-stage DOP tuning ( 2○), which involves
changing the number of tasks for a stage (detailed in Section 4.4). In the next section, we describe
how we implement these new features.

4 Intra-Query Runtime Elasticity
In this section, we focus on how to address the challenges mentioned in Section 2 to implement
IQRE. Section 4.1 provides a solution overview of IQRE. Section 4.2 describes the redesign of buffers
for efficient stage DOP tuning. Section 4.3 and Section 4.4 show the process of tuning task DOP
and stage DOP, respectively. Section 4.5 discusses the parallelism tuning for hash join. Section 4.6
describes how to use runtime elasticity to reduce shuffle overhead.
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4.1 Solution of Runtime Elasticity
We now analyze the overall solution for runtime elasticity. Operators in query plans can be classified
into two types: stateless and stateful. Stateless operators process pages without relying on any
state, directly generating output pages from input pages. In contrast, stateful operators depend on
external or historical data to compute output and cannot derive results solely from input pages.
In Accordion, stateless operators include filter, project, sink, source, exchange, task output, and
table scan. If a stage or pipeline consists of stateless operators only, we can freely adjust its DOP by
generating tasks or drivers dynamically.
Stateful operators in Accordion include aggregation (aggregation operator) and join (hash join

operator and cross join operator). The aggregation operator maintains global data, which limits the
flexibility to modify the parallelism of the task or stage it resides in. To enable runtime elasticity, we
adopt a two-stage aggregation model [9, 10], similar to Presto. This model divides the aggregation
into a partial and final aggregation. The partial aggregation operator handles group-by and pre-
aggregation operations, and since its state data can be destroyed and reconstructed, it is considered
stateless. The final aggregation operator is stateful: it merges all the partial results with its task
and stage parallelism fixed at 1. For join operators, probe-side data processing must wait for the
build-side to complete before it can begin. In tasks containing join operations, we focus on adjusting
the parallelism of the probe pipeline. When the hash table building is finished on the build side, the
probe pipeline can freely generate and close drivers. However, increasing the parallelism for the
stage containing the join operation requires hash table repartition/reconstruction, which we will
discuss in detail in Section 4.5.

4.2 Redesign of Buffers
As previously mentioned, generating new tasks for a stage requires adjusting numerous components
of both upstream and downstream stages. To ensure efficiency and robustness in stage DOP
adjustments, we confine the scope of components affected by parallelism modifications to the
upstream and downstream buffers. We made significant enhancements to the task output buffer,
redistributing more responsibilities to it and enabling its capacity to dynamically adjust as the DOP
of the downstream stage changes.

4.2.1 Redesign of Task Output Buffer. The task output buffer is now responsible for data distribution,
shuffling, and parallelism variation adaptation, while the task output operator focuses solely on
page delivery. This design ensures that when downstream parallelism changes, the task output
buffer can quickly detect new downstream tasks and update the data allocation scheme accordingly.
It resembles a shuffle service found in big data frameworks, such as the Spark shuffle service [46]
and BigQuery shuffle service [26]. A shuffling service typically consists of a shuffling cluster that
receives intermediate data generated by other clusters (e.g., a Spark cluster) to assist in performing
shuffling operations. Additionally, shuffle services can perform dynamic optimizations, leveraging
technologies like Adaptive Query Execution (AQE) [11] to determine appropriate parallelism for
subsequent job execution stages. However, AQE can only adjust parallelism for a stage after the
completion of the previous stage and does not allow for DOP modifications during data processing.
In contrast, Accordion can alter stage DOP at any moment (but we believe that adaptive query
execution is quite orthogonal to IQRE, and they can be applied simultaneously in one system).

Accordion currently features two types of output buffers: shared buffers and shuffle buffers. As
illustrated in Figure 10, both buffers contain a page queue and a page cache. All pages produced
by a task are stored in the page queue via the task output operator. The page cache, which is not
always necessary, is utilized for reshuffling or redistributing pages for the join build side. The page
queue is implemented using TBB’s concurrent queue [12] to facilitate efficient concurrent access.
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Each downstream task retrieves pages using a buffer ID. The Buffer ID array can dynamically
change in response to fluctuations in the number of upstream tasks. The shuffle buffer employs
shufflers to process pages, with each shuffler containing multiple shuffle executors—threads that
perform shuffling operations. The number of executors corresponds to the number of downstream
tasks. Each shuffled page queue is linked to a specific buffer ID. And buffer IDs are grouped
according to the shuffler to which they belong to form buffer ID groups. And the downstream tasks
corresponding to the buffer ID group form task groups.

4.2.2 Runtime Elastic Buffer. As mentioned before, to prevent the buffer capacity from affecting the
query execution, we designed the runtime elastic buffer. The buffer capacity is adjusted dynamically
by the consumer side at runtime. As illustrated in Figure 11, if the consumer detects that the buffer
is empty, it indicates that the consumption rate is exceeding the production rate. In this case, the
consumer will increase the buffer size to accommodate more pages generated or requested by the
producer. To align the buffer size with the consumption rate, the consumer periodically (e.g., every
500 milliseconds) counts the number of pages processed and uses this data to resize the buffer. This
means that the consumer can determine the optimal amount of data to cache based on its recent
consumption capabilities. Since the buffer size is adjusted in real time, we can initially set all buffer
capacities to the size of a page.
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4.3 Intra-Task Runtime DOP Tuning
This section describes how to adjust the task parallelism. Tuning intra-task DOP involves adjusting
the number of drivers for a pipeline within a task.
Increasing task DOP. Adding task DOP involves generating new drivers for pipelines, but

certain data must be preserved to ensure logical correctness during tuning. As shown in Figure 12a,
for the exchange pipeline (pipeline containing exchange operator), the task maintains a global
remote split set which saves all the remote splits the current task uses. When a new driver is created,
these splits are directly assigned to the new exchange operator, bypassing the need for coordinator
involvement. For the task output pipelines (pipeline containing task output operator) and source
pipelines (pipeline containing source operator), it is necessary to track the number of upstream
pipeline drivers by recording the number of head physical operators in the upstream pipeline. This
record helps determine if the upstream pipeline has completed processing.

End page. In Presto, the end page is primarily used to ensure that downstream stages conclude
normally after data processing is complete. Accordion extends this functionality by using the
end page to safely shut down one or more tasks or drivers during data processing. The end page
can be generated by the table scan operator, the task output buffer, the exchange operator, or the
local exchange structure. By sending “end signals” to these components, we effectively manage
the shutdown of drivers and tasks. As depicted in Figure 13, when an operator within the driver
receives the end page, a stateless operator will enter the finished state and pass the end page to the
next operator. In contrast, a stateful operator must wait until all results are output before entering
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the finished state and passing the end page along. The end page is transmitted between operators,
facilitating normal driver shutdowns.

Decreasing task DOP.We utilize an end signal to shut down drivers. For the exchange pipeline,
upon receiving the end signal, the exchange operator halts data reception and adds an end page to
the exchange buffer. If we want to decrease the source pipeline parallelism, we let the task send
an end signal to the corresponding local exchange structure, which then generates end pages and
relays them to source operators. If any component—whether the exchange operator, local exchange
structure, or task output buffer—detects that upstream execution is complete (i.e., the number
of received end pages matches the number of upstream drivers), it broadcasts end pages to the
downstream components.

4.4 Intra-Stage Runtime DOP Tuning
This section describes how to adjust the stage parallelism. Intra-stage DOP runtime tuning involves
adjusting the number of tasks within a stage.
During the query scheduling phase, the scheduler constructs an initial distributed execution

plan based on the stage tree, traversing it in a bottom-up manner to generate tasks for each stage
and establish communication links between them. The dynamic scheduler then tunes the DOP
for each stage within this execution plan. Figure 14 presents the stage DOP tuning process on the
partial execution plan for the query depicted in Figure 5. Below, we detail the process of adding
tasks to an execution plan.

Increasing stage DOP. Enhancing the stage DOP involves three steps: 1. Generating a new task
(task3_2) for the stage (stage 3). 2. Provide the address of the new task (including the worker node’s
IP and task ID) to the parent stage tasks (task1_0 and task1_1). 3. Setting the addresses of the child
stage tasks (task4_0, task4_1, task5_0, and task5_1) for the new task.
Decreasing stage DOP. As mentioned before, the end page is used to close tasks. As shown

in the Figure 14. If we want to close task3_2, the dynamic scheduler sends end signals to the task
output buffers (buffer ID 2) of stage 3’s child stages. End pages are generated and passed through
task3_2 to task1_0 and task1_1. Task1_0 and task1_1 delete the RPC address of task3_2 and then
task3_2 is destroyed.

4.5 DOP Switching for Partitioned Hash Join
This section analyzes the runtime elasticity of hash joins, which can be categorized into two types:
broadcast hash join and partitioned hash join.

Changing the DOP of a stage containing a join operation requires hash table reconstruction. For
partitioned hash joins, the hash table is distributed across multiple tasks, complicating parallelism
tuning.
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Fig. 16. DOP tuning of broadcast join stage and partitioned hash join stage.

Consider a two-way join query:

SELECT count(l_orderkey) FROM Lineitem INNER
JOIN Orders ON Lineitem.orderkey = Orders.orderkey

Figure 15 illustrates the distributed physical plan of the two-way join. Figure 16 presents two
partial execution plans (left for broadcast join and right for partitioned hash join) for the two-way
join. Each rectangle represents a task. As shown in Figure 16a, increasing the parallelism of stage 1
simply involves generating a new task (Join1) and reconstructing a new hash table on Join1 via
stage 3. For partitioned hash join, we implement parallelism modifications using a method called
“DOP switching”. This entails the build side (stage 3) first creating a new distributed hash table in
a new task group, after which the probe side utilizes this new task group for the remaining join
operations (the previous task group is closed).
A critical challenge is efficiently building a new distributed hash table. An intuitive solution

is to re-balance the distributed hash table from the previous task group, a method employed in
various works [21, 28]. However, we argue that this approach is unsuitable for query DOP tuning, as
re-balancing can disrupt probe operations, leading to increased query latency. Instead, “rebuilding
the hash table by the upstream stage” is more robust and minimizes disruption to query execution.
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To optimize DOP tuning, we ensure that the probe side only switches DOP after the new task group
completes the hash table construction.

We employ intermediate data caching to facilitate this method for multi-table joins. Specifically,
the build-side stage temporarily stores intermediate results for subsequent reuse. As depicted in
Figure 17, the new distributed hash table can be created from the intermediate data cache of the
upstream stage. This caching technique is widely utilized in distributed systems (e.g., Snowflake,
Redshift) to significantly reduce query latency. In Presto, this mechanism is referred to as fragment
result caching [13].

4.6 Elastic Shuffle Stage
The shuffle operation can easily become a bottleneck for partitioned hash joins, and reshuffling
can significantly impact the efficiency of DOP switching. The solution is to increase the number
of nodes involved in the shuffling. There are two primary methods to reduce shuffle latency: 1.
Distributing data across more compute/storage nodes. 2. Inserting a shuffle stage downstream of
the table scan stage. Users can adjust the shuffle rate by tuning the parallelism of the shuffle stage
at runtime. The shuffle stage consists solely of a pipeline comprising an exchange operator and a
task output operator, with the shuffle buffer performing the shuffle operations.

5 Automatic DOP Tuning
Accordion incorporates an auto-tuner designed to optimize the DOP of a query automatically
without users’ attention. It also provides a user-friendly interface for tuning the query DOP
manually to understand the effect of each parallelism adjustment. Users can interact with the
auto-tuner via buttons, which guide them in adjusting parallelism effectively with what-if service.

The implementation of the auto-tuner relies on three components: runtime bottleneck localization,
stage remaining execution time prediction, and DOP tuning request filter. Runtime bottleneck
localization means the system identifies stage IDs that require adjustment based on the execution
progress of the query—these stages are computational bottlenecks. Additionally, if the query
encounters non-computational bottlenecks (e.g., network bottleneck), the system can detect and
highlight these as well. The stage remaining execution time prediction informs users of the expected
remaining execution time for a stage when parallelism is modified, facilitating better user decision-
making based on their needs. The DOP tuning request filter is used to filter invalid or inefficient
parallelism tuning requests.
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5.1 Runtime Bottleneck Localization
We identify computational bottlenecks by adding special counters to the exchange buffer. Suppose
a stage is not a computational bottleneck. In that case, it indicates that the page processing rate
of tasks in this stage exceeds the page producing rate of the upstream stage, resulting in this
stage’s tasks’ exchange buffers often being empty. Conversely, a computational bottleneck stage
will typically have a populated exchange buffer. As discussed in Section 4.2.2, when the exchange
buffer becomes empty, the consumer side increases the buffer size. We let each task maintain a
turn-up counter. For each increase, the turn-up counter increments by one. So, If the counter’s value
remains unchanged during stage execution, we classify this stage as a computational bottleneck.
Accordion collects and organizes query runtime information using a "query-stage-task" hierar-

chical structure, as illustrated in Figure 18. Each task stores its own runtime information in the task
context, and the coordinator’s runtime information collector periodically collects this information
by task information fetchers from tasks’ contexts. This information is grouped and aggregated by
stage and query to support decision-making. This contains the counter information mentioned
above. When the coordinator receives the user’s prediction request, it goes through the entire stage
info tree and locates the stage bottleneck based on the information recorded. The coordinator also
monitors other metrics, such as the NIC utilization to determine if a stage is experiencing a network
bottleneck.

5.2 DOP Tuning Request Filter
In some scenarios, tuning parallelism may be ineffective. The DOP tuning filter is designed to
block such inappropriate requests. Currently, the filter handles two types of requests: 1. parallelism
adjustment requests for queries or stages that have already been finished, 2. unsuitable requests
for stages containing join operations. For example, if a stage is close to completion and the time
required to rebuild the hash table exceeds the remaining execution time, adjusting the parallelism
would be a waste of resources.

To realize this, we need to estimate the remaining execution time for a stage and compare it with
the hash table construction time. We illustrate this with the example in Figure 17. Since a stage has
multiple tasks (each task has a hash table build time), we represent the hash table build time for
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the stage by the maximum hash table build time of its tasks. To predict the remaining time, we
monitor the progress [20, 29] of the stage’s execution. In this paper, we leverage the table scanning
progress of the table scan stage (upstream stage of probe side) to predict the remaining execution
time for the join stage. The coordinator periodically records the remaining data volume (𝑉𝑟𝑒𝑚𝑎𝑖𝑛)
of the table scan stage and calculates the data consumption rate (𝑅𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ). The remaining time
can then be estimated as 𝑇𝑟𝑒𝑚𝑎𝑖𝑛 = 𝑉𝑟𝑒𝑚𝑎𝑖𝑛/𝑅𝑐𝑜𝑛𝑠𝑢𝑚𝑒 . If the estimated remaining time is less than
the hash table construction time, the DOP tuning request is rejected.
Below we explain why it is sufficient to compute only the progress of the table scan stage. In

fact, the query progress on the Accordion main UI only shows the progress of each table scan
stage. Given that query execution processes data in a streaming fashion, data from the table scan
stage is incrementally passed to downstream stages rather than all at once. Each intermediate
stage retrieves a limited number of pages from the table scan stage at a rate aligned with its own
processing capacity, thereby avoiding the problem of excessive data caching. Consequently, the
rate at which data is consumed in the table scan stage serves as a reliable approximation of overall
query execution progress.

5.3 Stage Remaining Execution Time Prediction
We employ a straightforward principle to predict the remaining execution time of a stage. Specifi-
cally, if the DOP of a target stage is scaled up by a factor of 𝑛, then the throughput of its upstream
stage must also scale up by the same factor. In Section 5.2, we outlined how to calculate the re-
maining execution time 𝑇𝑟𝑒𝑚𝑎𝑖𝑛 of a stage. Assume that the current parallelism of the target stage
is 𝑛1, and the desired parallelism is 𝑛2, where 𝑛2 > 𝑛1, the factor for the increase in parallelism is
𝑛𝑓 = 𝑛2/𝑛1. If the throughput of the current stage can indeed increase by a factor of 𝑛𝑓 , we predict
the remaining execution time of the current stage as follows: 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = (𝑇𝑟𝑒𝑚𝑎𝑖𝑛 −𝑇𝑡𝑢𝑛𝑖𝑛𝑔)/𝑛𝑓 .
Here, 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 refers to the time needed for parallelism adjustment. If the stage does not involve join
operators, then 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 ≈ 0. However, if the stage includes join operators, 𝑇𝑡𝑢𝑛𝑖𝑛𝑔 ≈ 𝑇𝑏𝑢𝑖𝑙𝑑 , where
𝑇𝑏𝑢𝑖𝑙𝑑 represents the time required for hash table reconstruction.

However, 𝑛𝑓 cannot be arbitrarily large values in practice.
The maximum 𝑛𝑓 is influenced by the upstream stage’s CPU and network utilization, among

other factors. If the upstream throughput rate is affected by CPU utilization, we can use the
remaining CPU resources and the current CPU utilization of the upstream stage to estimate a
maximum 𝑛𝑓 . This value is calculated in real-time from data collected by the runtime information
collector. Estimating 𝑛𝑓 helps prevent unreasonable parallelism adjustments, such as increasing
stage parallelism by a factor of 1000. When a user requests an increase in parallelism by a factor of
𝑛, the coordinator first calculates 𝑛𝑓 based on runtime data. If 𝑛 < 𝑛𝑓 , the coordinator uses 𝑛 to
compute the remaining time; otherwise, it uses 𝑛𝑓 directly for the calculation.

5.4 DOP Auto-Tuner
In this section, we describe the auto-tuner in detail (Figure 19). The DOP auto-tuner supports three
types of requests: direct DOP tuning (manual adjustment of DOP), one-time auto-tuning (tuning
the stage DOP once based on latency constraint), and DOP monitor (periodically checking stage
execution progress to adjust DOP).

The auto-tuner decomposes the query stage info tree into multiple DOP tuning units. Each unit
comprises a progress indicator (at the table scanning stage) and tuning knobs (intermediate stages
with adjustable parallelism). These units collectively form an execution Directed Acyclic Graph
(DAG), presented as a DOP tuning panel. By leveraging the DAG, the auto-tuner monitors query
execution progress and dynamically operates the tuning knobs according to the time constraints.
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Fig. 20. Standalone TPC-H benchmark results – for Accordion, Presto, and Prestissimo with scale factor of 1.

Upon receiving a tuning request, the auto-tuner predicts the remaining execution time for the
target stage and generates a DOP-time list that estimates the stage’s execution time at various
DOP configurations. It then selects the DOP configuration that most closely aligns with the query
latency constraint and applies the adjustment via the tuning panel. Users can also enable the DOP
monitor (Figure 19), especially for long-running queries, that will periodically track the execution
progress of each stage and incrementally adjust the DOP to meet the query’s latency constraint
while minimizing resource usage.

6 Evaluation
In this section, we evaluate the efficiency of IQRE of Accordion. Section 6.1 details the experimental
setup. Section 6.2 evaluates the intra-task runtime elasticity, while Section 6.3 evaluates the stage
runtime elasticity. Section 6.4 evaluates the DOP switching and elastic shuffle stage performance.
Finally, Section 6.5 demonstrates the effect of DOP auto-tuning.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 178. Publication date: June 2025.



Intra-Query Runtime Elasticity for Cloud-Native Data Analysis 178:17

Table 1. TPCH-SF100 Table Setup—Total 107GB

Table Partitioning scheme Table size Split size

Nation 1 node, 1 split/node 2.5KB 2.5KB
Region 1 node, 1 split/node 512B 512B
Supplier 10 nodes, 1 split/node 137MB 13.7MB
Part 10 nodes, 1 split/node 2.29GB 0.23GB

Partsupp 10 nodes, 1 split/node 11.37GB 1.13GB
Customer 10 nodes, 1 split/node 2.29GB 0.23GB
Orders 10 nodes, 1 split/node 16.57GB 1.66GB
Lineitem 10 nodes, 7 splits/node 74GB 1.06GB

6.1 Experimental Setup
We conducted experiments on a cluster of 21 AWS EC2 (c5.2xlarge) nodes, each node equipped with
16GB of RAM, and 30GB SSD, with a 10Gbps NIC bandwidth. The cluster comprises 1 coordinator
node, 10 storage nodes, and 10 compute nodes.

We first tested Accordion’s benchmark (as shown in Figure 20) with 12 TPC-H queries (SF1) on a
single node and compared it to Presto and Prestissimo (the C++ version of Presto) to verify that
the system implementation is reasonable. Then we performed experiments on TPC-H with a scale
factor of 100 (TPC-H SF100).
In Presto, the table scan operator can fetch splits from remote sources (such as Hive, AWS S3,

etc.) for processing. To eliminate the variability introduced by different data sources and formats,
we used CSV format for data storage. The table scan operator reads CSV files via the Apache
Arrow CSV file reader (Apache Arrow supports various file formats, including CSV, Parquet, ORC,
and so on). Since no remote data source is used in this experiment, the TPC-H tables need to be
manually divided into multiple splits before query processing. Table 1 outlines the partitioning
scheme for each TPC-H table. Accordion includes a built-in scripting language for controlling
query initiation and parallelism adjustments at specified times. We use script executor to track
throughput variations, manage both parallelism changes and result recording in experiments.

6.2 Task DOP Runtime Tuning
This section evaluates the intra-task parallelism adjustment. We take TPC-H Q3 as an example to
show the evaluation results. Figure 21 presents the distributed physical plan of Q3, while Figure 22
displays the execution times for Q3 across various degrees of intra-stage and intra-task parallelism
(representing Presto-like execution times without runtime adjustments). Figure 23 illustrates the
throughput variations for each stage of Q3 with stage parallelism of 1, omitting stages 0 and 5 due
to their negligible throughput and brief duration.
From Figure 21, we observe two types of dependencies between stages: execution dependency,

where one stage must be completed before another can start, and data dependency, where a stage
requires data from an upstream stage for processing. For instance, stage 2 has a data dependency
on stage 1, while stage 3 exhibits an execution dependency on stage 1.

Figure 24 presents the throughput variations resulting from intra-task DOP tuning for Q3. The
initial stage and task parallelism for Q3 are both set to 1. The notation “AC S𝑛, 𝑎,𝑏” indicates
that adding task DOP for all tasks of stage 𝑛 from 𝑎 to 𝑏 at the time marked by the red line. For
stages with join operations, yellow dashed lines indicate the completion of hash table construction.
The script executor adjusted the DOP for stage 3 twice and for stage 1 three times, progressively
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Fig. 25. Stage DOP tuning results – Q1, Q3, Q5 and Q7.

increasing throughput with each adjustment. Throughput improves immediately (within 11̃0ms)
post-DOP tuning due to rapid physical pipeline generation. Notably, the third adjustment for stage
1 does not enhance throughput, as the first two adjustments already maximized CPU utilization.
The total execution time for the query is 307.87 seconds, reflecting a 58.42% reduction compared to
the original execution time of 740.34 seconds (shown in Figure 22).
To assess the overhead associated with task DOP adjustments, we initiated the execution of

query Q3 with a task DOP of 1, progressively increasing the parallelism to 𝑛 while recording its
final execution time. The results are depicted in Figure 22 (IntraTask-Inc curve). The overhead of
task DOP tuning primarily comprises scheduling overhead and the overhead of generating tasks
and drivers. Our analysis reveals that for all queries, the task and driver generation overhead is
minimal, consistently below 1 ms. The initial query plan construction for Q3 involves 65 RESTful
requests, incurring a total cost of 313 ms (each RESTful request in Accordion takes between 1 and
10 ms). This shows that task DOP tuning can promptly adjust the query execution speed. The
observed gap between the IntraTask-Inc curve and the Intra-Task curve is attributable to scheduling
delays.
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6.3 Stage DOP Runtime Tuning
In this section, we evaluate the intra-stage parallelism adjustment. We still use Q3 as an example.
The initial intra-stage DOP of the Q3 is 1, the initial intra-task DOP is 1, and the intra-task DOP
remains unchanged during execution. Figure 25a illustrates the throughput variations for Q3 as
stage parallelism is adjusted.

The notation “AP S𝑛, 𝑎,𝑏” denotes the adding parallelism for stage𝑛 from 𝑎 to𝑏 at the timemarked
by the red line. Initially, we adjusted the DOP for stage 3 three times, followed by five adjustments
for stage 1. As both stages involve join operations, each parallelism adjustment necessitates hash
table reconstruction, indicated by the yellow dashed lines appearing post-adjustment. The time
interval 𝑇𝑏𝑢𝑖𝑙𝑑 between the red and yellow dashed lines reflects the duration for rebuilding the
hash table, which depends on the data volume for the build side: 2.991s for stage 3 on average and
14.11 seconds for stage 1 on average. The last parallelism adjustment for stage 1 is rejected as the
coordinator determines that the estimated remaining execution time is less than the stage’s 𝑇𝑏𝑢𝑖𝑙𝑑 .
The overall execution time for the query is 194.76 seconds, achieving a 73.71% reduction.

To evaluate the overhead of stage DOP tuning, we conducted a similar experiment to the one
described in Section 6.2, with results illustrated by the IntraStage-Inc curve in Figure 22. The
overhead for stage DOP tuning includes hash table reconstruction in addition to task scheduling.
Once tasks and drivers are created, the coordinator completes the scheduling process. Consequently,
hash table reconstruction for multiple tasks occurs in parallel, enabling Accordion to efficiently add
𝑛 tasks simultaneously. The time required for hash table reconstruction is primarily divided into
two components: data transfer (including shuffle and network transfer) and hash table construction.
The larger the volume of data on the build side, the greater the interval between the IntraStage-Inc
curve and the IntraStage curve becomes.

The query initialization time for Q3 and the state transfer time (i.e., the time from issuing a DOP
adjustment request to completing the request) are provided in the caption of Figure 25a. Additional
experimental results for other queries is presented in Figure 25.

6.4 Partitioned Hash Join DOP Tuning
This section focuses on the evaluation of parallelism tuning for partitioned hash join. We use Q2J
(Figure 15) in Section 4.4 as an example for evaluation. The initial stage parallelism for query Q2J is
set to 2, while the intra-task parallelism remains at 1 throughout execution. The execution time of
the Q2J with the parallelism of 2 is 1331.991s.

6.4.1 DOP Switching Evaluation. Figure 15 illustrates the distributed physical plan of Q2J, showing
execution dependency between stage 1 and stage 3, and data dependency between stage 2 and stage
1. Figure 26 depicts the throughput variations during parallelism adjustments for Q2J. The query
initialization time is 284ms. Stage DOP tuning takes an average of 23ms. The query’s DOP is adjusted
three times, with the last request rejected by the coordinator due to the remaining execution time
being less than𝑇𝑏𝑢𝑖𝑙𝑑 . The notation “AP S1,2,4” indicates switching stage 1’s parallelism from 2 to 4.
The partitioned hash join requires the table reshuffling of the upstream stage and multiple hash
table building of the current stage, resulting in multiple yellow dashed lines after each adjustment
request. We can see that the process of hash join is not interrupted during the process of hash table
rebuilding. The total execution time for the query is 584.01 seconds, yielding a 56.16% reduction in
execution time.

In this query, the overhead of parallelism switching consists of shuffle time and hash table build
time, the Table 2 illustrates the details. For stages without partitioned hash joins, reducing paral-
lelism requires only a few RESTful requests (tens to hundreds of milliseconds). In contrast, stages
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Fig. 26. The stage throughput variation curves of the intra-stage parallelism tuning of Q2J.

Table 2. State transfer details of Q2J

DOP switching Total time Shuffle time Build time

2 -> 4 42.67s 12.55s 30.12s
4 -> 6 29.03s 8.80s 21.03s
6 -> 8 21.61s 5.12s 16.49s

ExchangeExchange

TableScan TableScan
(Orders) (Customer)

Stage 1

Stage 3 Stage 4

hash-partitioned shuffle
Exchange

Shuffle
hash-partitioned shuffle

Stage 2
Filter

Fig. 27. The physical plan after adding shuffle stage.

with partitioned hash joins always incur reshuffling when adjusting parallelism, but distributing
data across more nodes can improve the DOP switching performance.

6.4.2 Elastic Shuffle Stage Evaluation. Partitioned hash join presents two computational bottle-
necks: shuffle bottlenecks and join bottlenecks. To evaluate the effectiveness of the shuffle stage,
we used the query: "select count(o_orderkey) from orders join customer on o_custkey=c_custkey
where c_ nationkey = 9" (the execution plan is similar to Q2J). Initially, the orders table was stored
across two nodes to intentionally make the shuffle operation the query bottleneck. Executing the
query under these conditions (S1 Stage DOP:10, Task DOP:1) resulted in a total execution time of
45.22 seconds. Next, as illustrated in Figure 27, we added a shuffle stage downstream of the orders
table and re-executed the query. The results in Figure 28 show that the throughput of stages S1 and
S3 gradually increased as the parallelism of stage S2 was increased. However, the effect of further
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Fig. 28. The stage throughput variation curves of shuffle stage parallelism tuning.
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Fig. 29. An Q3’s stage DOP tuning throughput curves – which marks the estimated time and the actual
execution time.

parallelism increases became less significant because the query bottleneck shifted from the shuffle
stage to the join stage. The query initialization time was 232 ms, and the parallelism switching
overhead was 12 ms. The query’s execution time was reduced to 30.21 seconds, representing a
33.19% reduction in overall execution time.

6.5 Automatic DOP Tuning
In this section, we evaluate the effectiveness of the prediction of the stage remaining execution
time and the effectiveness of the automatic DOP tuning.

6.5.1 Stage Remaining Execution Time Prediction. Figure 29 presents a throughput curve for stage
DOP tuning in Q3. The query begins with a stage parallelism of 2 and a task parallelism of 3.
Before each stage parallelism adjustment, the script executor estimates the remaining execution
time and subsequently applies the DOP tuning request. For instance, before the first adjustment
for stage 1, the prediction module calculates that changing the parallelism to 8 (2+6) results in a
remaining execution time of 14.22 seconds. The estimation process is as follows: 1. The module first

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 178. Publication date: June 2025.



Intra-Query Runtime Elasticity for Cloud-Native Data Analysis 178:23

0.00

2.00  S1

AP
S10,3,6

RP
S10,6,5

AP
S1,3,7 S1,7,4 S1,4,1

0.00

5,000.00  S2

0.00
200.00  S10

0 20 40 60 80
0.00

2,000.00
4,000.00

 S11

Execution Time (s)

T
hr

ou
gh

pu
ts

 (T
up

le
s/

m
s)

RP RPRP
S10,5,4

RP
S10,4,1

(a) Q2—Initial: 562ms; State transfer: {S1: 14.34s; S10:
635ms}.

0.00
10.00  S1

AP
S3,3,5

RP
S3,5,4

AP
S1,3,5

RP
S1,5,4

AP
S1,4,8

0.00

5,000.00  S2

0.00
500.00

1,000.00
 S3

0 25 50 75 100 125 150 175
0.00

2,000.00  S4

Execution Time (s)

T
hr

ou
gh

pu
ts

 (T
up

le
s/

m
s)

RP
S3,4,3

RP
S3,3,2

(New time 
constraint: 30s)

(b) Q3—Initial: 465ms; State transfer: {S1: 13.65s; S3:
3.45s}.

Fig. 30. Automatic DOP tuning throughput curves – Q2 and Q3.

calculates the remaining execution time at the current parallelism as 59.28 seconds. 2. The hash
table construction time is approximately 2.4s. 3. The estimated time is (49.68− 2.4)/4+ 2.4 = 14.22𝑠 .
The time point for the parallelism adjustment is at the 10th second, the time at the end of stage 3 is
23.37s, and the predicted time is 10+14.22=24.22s. In Figure 29, stage 1’s parallelism adjustment
occurs at the 40-second mark. The estimated completion time is 40+26.24s=66.24s. The actual
finished time is at 71.55 seconds. The above data proves the accuracy of the time prediction of the
predictor.

6.5.2 DOP Auto-tuning. Below, we illustrate the impact of DOP auto-adjustment using queries Q2
and Q3 as examples.

The execution time of Q2 is primarily influenced by S1 (with upstream table scan stage S2) and
S10 (with upstream table scan stage S11). For this auto-tuning task, the objective was to complete
the query within 100 seconds. The DOP planning module initiated query with a stage DOP of 3
and a task DOP of 2, and it provided time constraints for each table scan stage, specifying that S11
should complete its table scan within 50 seconds and S2 within 50 seconds. The auto-tuning process
is shown in Figure 30a, where “RP S𝑛,𝑎,𝑏” indicates that the auto-tuner reduced the parallelism
of stage 𝑛 by from 𝑎 to 𝑏 at a specific time point. The only overhead incurred during parallelism
reduction is the scheduling overhead, averaging 42 ms. As shown in Figure 30a, the auto-tuner
adjusts parallelism to meet time constraints while minimizing resource usage.

The execution time of Q3 is primarily determined by S1 (with upstream table scan stage S2) and
S3 (with upstream table scan stage S4). In this task, the target was to complete the query within
200 seconds. The DOP planning module initiated query with a stage DOP of 3 and a task DOP
of 2, and it set time constraints for S4 to complete its scan within 80 seconds and S2 within 120
seconds. The corresponding auto-tuning curves are provided in Figure 30b. Unlike Q2, a new time
constraint was introduced in real-time via the system UI at approximately the 150s, requiring S1
to finish execution within 30 seconds from that point. In response, the auto-tuner discarded the
existing time-constrained plan and adjusted the DOP based on the updated constraint (AP S1,4,8).
As shown in Figure 30b, the auto-tuner successfully modified the DOP, enabling S1 to complete
within the time constraints.
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7 Related Work
Intra-Query Elasticity. Currently, the database and big data area mainly use “dynamic query
optimization” to change resource usage during query execution. It can be categorized into three
types: adaptive query processing, adaptive query execution, and query re-planning. Adaptive
query processing [42, 57] is primarily applied in traditional standalone relational databases. These
methods break down a query into multiple sub-queries, re-optimizing subsequent queries based on
the results of earlier ones. Adaptive query execution [11, 18, 40, 48] is more common in distributed
environments, such as big data and cloud-native databases, and involves running queries in stages,
using intermediate results to re-optimize the remaining query. Query re-planning focuses on
adapting queries to new computing environments [30, 53] or execution configurations [33], allowing
re-planned queries to continue from a checkpoint. However, these methods typically require
materializing intermediate results and halting data processing, making them unsuitable for frequent
and efficient parallelism tuning.
Inter-Query (Workload) Elasticity. Current research in the field of cloud databases predomi-
nantly emphasizes the runtime elasticity of queryworkloads. These studies leverage the auto-scaling
capabilities provided by cloud vendors to implement elastic computing. Prominent cloud databases,
including Redshift [18, 37], Snowflake [1], BigQuery [3], and Azure SQL Database [14], are well-
equipped to efficiently support workload elasticity. In addition, serverless computing technologies
[19, 36, 41] enable users to execute computational tasks using cloud functions, offering a scalable
and cost-effective alternative to traditional architectures. In this paper, we extend runtime elasticity
research from inter-query to intra-query.
Query optimization and scheduling of cloud databases. Cloud databases primarily rely on rule-
based and cost-based optimizers [17, 23, 27, 38, 45, 48, 52, 56, 58]. Various machine learning-based
query optimization methods have been proposed [16, 24, 34, 35, 44]. [22] uses machine learning to
determine a near-optimal DOP for query execution. Most query schedulers [39, 51] aim to optimize
workloads. Additionally, numerous machine learning-based query schedulers have been developed
[32, 43, 44, 50, 54]. However, these methods typically lack the capability for intra-query runtime
optimization and scheduling.

8 Conclusion and Future Work
In this paper, we propose the concept of intra-query runtime elasticity, which enables a cloud-native
OLAP engine to dynamically adjust the query degree of parallelism during execution. We introduce
Accordion, the first IQRE query engine, capable of modifying parallelism at any point without
pausing or interrupting the query execution. we experimentally demonstrate that Accordion is
able to efficiently and automatically regulate the degree of parallelism to satisfy the user’s query
time constraints while minimizing computational resource usage. In the future, we will further
enhance IQRE in three key directions: 1. Heterogeneous IQRE. Incorporating heterogeneous nodes,
such as GPU nodes, to dynamically optimize query performance. 2. Dynamic execution plan.
Modifying execution plans during query processing, such as inserting shuffle stage between stages.
3. Intelligent IQRE. Leveraging deep learning techniques to enable Accordion to better understand
user preferences for query time and cost, allowing for more effective automatic selection and
adjustment of DOP.
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