
Rethinking The Compaction Policies in LSM-trees

HENGRUI WANG, Tsinghua University, China
JIANSHENG QIU, Tsinghua University, China
FANGZHOU YUAN, Tsinghua University, China
HUANCHEN ZHANG∗, Tsinghua University, China

Log-structured merge-trees (LSM-trees) are widely used to construct key-value stores. They periodically
compact overlapping sorted runs to reduce the read amplification. Prior research on compaction policies has
focused on the trade-off between write amplification (WA) and read amplification (RA). In this paper, we
propose to treat the compaction operation in LSM-trees as a computational and I/O-bandwidth investment for
improving the system’s future query throughput, and thus rethink the compaction policy designs. A typical
LSM-tree application handles a steady but moderate write stream and prioritizes resources for top-level flushes
of small sorted runs to avoid data loss due to write stalls. The goal of the compaction policy, therefore, is
to maintain an optimal number of sorted runs to maximize average query throughput. Because compaction
and read operations compete for the CPU and I/O resources from the same pool, we must perform a joint
optimization to determine the appropriate timing and aggressiveness of the compaction. We introduce a
three-level model of an LSM-tree and propose EcoTune, an algorithm based on dynamic programming to find
the optimal compaction policy according to workload characterizations. Our evaluation on RocksDB shows
that EcoTune improves the average query throughput by 1.5× to 3× over the leveling policy and by up to 1.8×
over the lazy-leveling policy on workloads with range/point query ratios.

CCS Concepts: • Information systems→ Data structures.

Additional Key Words and Phrases: LSM-Trees, Concurrency Control, Optimization, Dynamic Programming

ACM Reference Format:
Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, and Huanchen Zhang. 2025. Rethinking The Compaction
Policies in LSM-trees. Proc. ACM Manag. Data 3, 3 (SIGMOD), Article 207 (June 2025), 26 pages. https:
//doi.org/10.1145/3725344

1 Introduction
The Log-structured merge-tree (LSM-tree) is the foundation of many modern key-value stores [1–
4, 6, 9, 11, 41, 43, 73]. An LSM-tree buffers inserted keys in memory and then flushes them to disk in
batches as sorted runs. Each sorted run can contain multiple files, called SSTables. Because the key
ranges of these sorted runs overlap, a querymust probe each sorted run to find a particular key-value
pair, causing significant read amplification. As more runs accumulate on disk, they are sort-merged
to create fewer but larger sorted runs. This process is known as compaction. To further improve
read performance, LSM-trees typically equip each SSTable with a filter data structure (i.e., point
filter [20, 30, 34, 36, 39, 40, 42, 67, 89], range filter [29, 51, 61, 76, 78, 81, 87]) to reduce unnecessary
I/Os. LSM-trees are used in a wide range of real-world applications [16, 31, 37, 44, 52, 62, 68, 70].
∗Huanchen Zhang is also affiliated with the Shanghai Qi Zhi Institute. Corresponding author.

Authors’ Contact Information: Hengrui Wang, wang-hr21@mails.tsinghua.edu.cn, Tsinghua University, China; Jiansheng
Qiu, qjc21@mails.tsinghua.edu.cn, Tsinghua University, China; Fangzhou Yuan, yfz23@mails.tsinghua.edu.cn, Tsinghua
University, China; Huanchen Zhang, huanchen@tsinghua.edu.cn, Tsinghua University, China.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2836-6573/2025/6-ART207
https://doi.org/10.1145/3725344

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

https://doi.org/10.1145/3725344
https://doi.org/10.1145/3725344
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725344

207:2 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

Leveling Lazy Leveling EcoTune0

5

10

15

20

25

Th
ro

ug
hp

ut
 (K

OP
S)

Leveling Lazy Leveling EcoTune0.0

0.2

0.4

0.6

0.8

1.0

1.2

CP
U

Us
ag

e
Fig. 1. Average throughput and compaction overhead of different compaction policies. The shadow part
corresponds to the compaction’s CPU usage.

Compaction is the key operation of the LSM-tree. Compacting aggressively leads to higher write
amplification while reducing read amplification. Compacting lazily reduces write amplification but
can hurt query performance. The classic compaction policy is the leveling policy. In the leveling
policy, when a sorted run reaches a certain size capacity, it is merged with a larger sorted run. As a
result, the sizes of different sorted runs increase exponentially. Each sorted run is referred to as
a level, and the number of levels is determined by the size ratio (𝑇) between adjacent levels. As
the proportion of writes increases, the tiering policy was introduced to reduce write amplification.
The tiering policy allows each level to contain 𝑇 − 1 sorted runs. Researchers have explored more
flexible compaction policies. Examples include hybrid leveling and tiering policies [32], different
size ratios between levels [33], and allowing an arbitrary number of sorted runs in each level [56, 65].
Regardless of the compaction policy, the LSM-tree periodically undergoes a global compaction
that merges all sorted runs into one. We define the time between two global compactions as a
compaction round.

Prior works have primarily focused on the trade-off between write amplification (WA) and read
amplification (RA), assuming that higher WA would lead to lower write performance. However, an
LSM-tree application typically undergoes a steady and moderate write stream, and it only prioritizes
the top-level flushes to avoid data loss due to write stalls. For example, Meta has demonstrated that
the highest write speed in a real-world workload is around 45 MB/s [38]. Given that modern NVMe
SSDs provide more than 2 GB/s of write bandwidth [5, 10], the bandwidth consumption of the
prioritized I/Os is relatively small. We show experiments that the distribution of the remaining CPU
and I/Os resources between compaction and query does not affect the LSM-tree’s write performance.
Therefore, the goal of a compaction policy is to optimize the query (read) performance, and it
requires joint optimization because the compaction and read operations compete for the CPU and
I/O resources from the same remaining pool.

Meanwhile, previous studies model query performance using the worst-case read amplification
right after the compaction operations (we denote this as instantaneous query performance) [30, 32,
33, 56, 65]. However, the read amplification varies over time because the number of sorted runs
keeps changing within a compaction round. The average query throughput is more important
than instantaneous RA metrics for a long-running key-value service. Using the complexity upper
bound for instantaneous RA to model read performance leads to sub-optimal compaction policy
designs. While a compaction operation could immediately speed up certain queries, it may hurt
average query performance because compactions are not free: they compete for resources against

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:3

user queries. Compactions could temporarily occupy CPU threads or saturate SSD bandwidth,
thus preventing these resources from being used for queries. To show this, we evaluated different
compaction policies on Optane SSD with a fixed write speed. The query workload consists of 35%
Get, 35% Seek, and 30% long range scans. Figure 1 shows the average throughput and compaction
overhead for each policy in a compaction round. Although the classic leveling policy leads to a
smaller read amplification than lazy leveling [32, 33, 56, 65] in the traditional instantaneous query
performance analysis, the query throughput of leveling is only 64% of that of lazy leveling in the
experiment. This is because the compaction operations in leveling consumed more than half (62%)
of the CPU resources that could have been used for queries.
We propose to rethink the compaction policy design from the perspective of optimizing the

system’s average query throughput. We model the problem as follows: given a steady stream of
LSM-tree writes (at a constant flush speed), how can we design a compaction policy within a com-
paction round to maximize the average query throughput? The essence of compaction is investing
computations and I/Os to reduce the number of sorted runs, thereby enabling future queries to
probe fewer sorted runs. However, this effect is temporal, as new sorted runs are continuously
generated. The future gain of a compaction depends on both its impact on instantaneous query
throughput and the duration of that impact.
We find that the timing of compaction is crucial in determining the duration of its effects. Our

insight is that the earlier a compaction is performed before the next global compaction, the greater
the subsequent gain in average query throughput. This is because an earlier compaction can
reduce query overhead over a longer period, substantially increasing the number of future queries
benefiting from the compaction. Therefore, an ideal design should employ different compaction
policies at different times. This implies that sorted runs at the same physical level should have
different sizes because they are created at different times. Consequently, the concept of the physical
level becomes vague, as the LSM-tree no longer has groups of equal-sized sorted runs.

We propose to view an LSM-tree using a three-level model when pursuing an optimal compaction
policy. We then introduce EcoTune, an algorithm based on dynamic programming that can find
the optimal compaction policy quickly for a given query workload and write speed. We evaluate
the performance of EcoTune in RocksDB. We compare EcoTune to the Leveling and Lazy Leveling
compaction policies. Compared with the Leveling policy, our EcoTune achieves 1.5x to 3x average
query throughput under different workloads and up to five orders of magnitude lower latency.
Compared with the Lazy Leveling policy, our EcoTune achieves up to 2.5x average query throughput
under different workloads and up to four orders of magnitude lower latency.

EcoTune is the first work that focuses on designing compaction policies to optimize LSM-trees’
average query throughput. We make three primary contributions in this paper. First, we propose to
treat compaction in LSM-trees as a resource investment for improving the system’s average query
throughput. Second, we introduce a three-level model for LSM-trees conceptually and design a
dynamic programming algorithmEcoTune to find optimal compaction policies for different LSM-tree
instances. Finally, we integrate our EcoTune compaction policies into RocksDB. Experiments show
that EcoTune outperforms other solutions in improving RocksDB’s average query performance
across different workloads.

2 Background & Related Work
LSM-tree Overview. The LSM-tree maintains multiple sorted runs to store data, organized into
multiple levels with exponentially increasing capacities. The capacity of these levels is controlled
by a size ratio, often set to a fixed integer 𝑇 , which represents the capacity ratio between two
consecutive levels. The LSM-tree also maintains in-memory tables as write buffers. When an
in-memory table becomes full, a background thread flushes it to level 0 in the storage. Each

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:4 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

Leveling

Lazy Leveling (1L) 2L

3L (Rocksdb Default)

LSM-Bush

Fig. 2. An overview of different compaction policies.

Term Definition
𝑅 the number of TM compactions in a compaction round
𝑇 LSM-tree size ratio (if fixed)
𝐾 Long Range Scan length
𝑠 the number of small sorted runs
𝑆 the size of the small level
𝑁 total data size quantified by the number of entries
𝑀 the size of the whole LSM-tree
𝐿 total level number
𝐶 the capped size ratio between the main and the large levels
𝑇𝑤 time between two consecutive 𝑇𝑀 compactions
𝑇𝑐 time to rewrite 𝑆 data on SSD with𝑀𝐿𝐶 threads
𝑐 # incoming large sorted runs before global compaction
𝑒 existing number of large sorted runs

Table 1. Terms in this paper.

level is compacted to the next level when it reaches its capacity. The compaction process can
be triggered by different conditions and has varying compaction granularity. According to [72],
different compaction methods have different trade-offs. The LSM-tree has numerous variants
that optimize its various aspects [17, 23, 24, 32, 33, 45, 57, 66, 75]. Examples include optimizing
compaction policies [24, 25, 32, 33, 45, 46, 69], developing update-friendly compaction schemes
[15, 35, 71, 82, 84, 85], adopting unconventional hardware [14, 75, 77, 79, 88], narrowing the gap
between LSM-trees and update-in-place designs [86], separating keys and values [23, 58], keeping
hot entries in the buffer with selective flushing [17], reducing tail latency [18, 59], improving
memory management mechanisms [21, 50, 60], and exploiting data characteristics [13].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:5

Compaction Policies.When a level reaches its compaction conditions, the LSM-tree uses back-
ground threads to compact the data in that level into the next one. There are mainly two types of
compaction policies for the LSM-tree: the leveling policy, which greedily sorts all data in a level,
and the tiering policy, which allows each level to have multiple sorted runs. These two policies
balance write amplification and read amplification. The leveling policy allows each level to contain
only a single sorted run, with each level’s capacity being 𝑇 times that of the level above it. When a
level reaches its capacity, it is merged with the sorted run in the next level. During this process, all
data in these two levels is rewritten, resulting in high write amplification. Modern LSM-trees often
use a hybrid policy, employing the tiering policy in upper levels and the leveling policy in lower
levels [4, 32, 33]. A representative hybrid policy is the lazy leveling policy, which allows only one
sorted run in the last level and up to 𝑇 − 1 sorted runs in non-last levels. When a non-last level
reaches 𝑇 sorted runs, all sorted runs in that level are compacted together to create a new sorted
run in the next level. If the next level is not the last level, the compaction process does not access
the data in the next level. As a result, the compaction overhead is lower compared to the leveling
policy. We illustrate these hybrid policies in Figure 2.
Filters. LSM-trees leverage filters to reduce I/O operations for queries. Various filter data structures
[20, 36, 39, 40, 42, 51, 53, 61, 76, 87] are widely employed. Filters can quickly determine the presence
of keys within a dataset, though they introduce a false positive rate (FPR). In an LSM-tree, each
SSTable builds a Bloom filter to avoid unnecessary I/O. To further optimize range queries, range
filters have been proposed [27, 29, 51, 61, 76, 81, 87]. To reduce the overhead of probing filters,
some filters [28, 34, 78] are built globally to avoid probing each sorted run’s filter individually.
LSM-tree Structure Tuning. Recent studies on LSM-tree structure tuning focus on tuning the
compaction policy. Dostoevsky [32] explores the trade-off between tiering and leveling compaction.
Later, LSM-bush [33] introduces a more flexible structure by using different size ratios between
adjacent levels, significantly enhancing write performance. MOOSE [56] explores a more flexible
configuration space in LSM-tree designs, allowing distinct configurations to be assigned to individual
levels, including size ratio, number of runs, and Bloom filter bits. RUSKEY [65] makes the first
attempt at designing reinforcement learning models to optimize the performance of LSM-tree-based
key-value systems. Endure [45] attempts to find a robust structure for LSM-trees when the workload
is uncertain. Although these works use different methods, their high-level designs are similar. They
all try to minimize the average cost of the mixed read-write workload. Such designs imply the
assumption that read and write operations are serialized and equally treat compaction and flush.
However, on current high-bandwidth SSDs, read and write operations can be parallelized. We also
need to consider the higher priority of flush. Finally, since these designs assume serialized read and
write operations, they do not account for how query speed changes during the write process.

3 Rethinking the Compaction Design
In this section, we propose a new perspective on the compaction policy. For higher query perfor-
mance, we hope the LSM-tree to have as few sorted runs as possible. Unfortunately, keeping the
number of sorted runs moderate is not free. Compacting multiple sorted runs together consumes a
lot of CPU and I/O resources. Traditionally, compaction has been considered to degrade the write
performance and improve query performance. We argue that modern SSDs have changed this
situation. We should rethink the impact of compaction on both write and query performance.

3.1 Impact on Write Performance
There was a common belief that higher write amplification degrades write performance. However,
this argument was based on earlier HDDs. Flush and compactions could not be parallelized on
HDDs, meaning that compaction would inevitably block flush. Therefore, it was important to finish

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:6 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

Type Optane SSD NVMe SSD
Latency Average / 99th (𝜇𝑠) Average / 99th (𝜇𝑠)
Cores 4 8 16 4 8 16

1L 2.8/4.1 2.8/4.2 2.9/4.4 3.3/4.3 3.4/4.3 3.4/4.5
2L 2.8/4.2 2.8/3.9 2.9/4.3 3.4/4.2 3.4/4.5 3.5/4.8
3L 2.9/4.3 2.8/4.3 2.9/4.3 3.4/4.1 3.5/4.4 3.5/4.4

Table 2. Write Latency (𝜇𝑠) on Different SSDs.

compactions as soon as possible, before the in-memory table became full. Otherwise, writes would
be stalled, and some incoming data might be lost (especially if the write workload is a one-pass
data stream). To reduce such write stalls on HDDs, the write amplification caused by compaction
needed to be as low as possible.

Modern NVMe SSDs, with much higher write bandwidth [26], have changed this situation. Flush
and compactions can now be easily parallelized on modern SSDs. Meta has shown [38] that the
write throughput of MyRocks [64], ZippyDB [12], UDB [16], and UP2X [22] is typically not high.
The highest write speed in a real workload is around 45 MB/s [38]. Similarly, IoTDB reported
that its real workload’s highest write throughput is only about 500 KB/s [48]. These moderate
write streams are far from saturating modern NVMe SSDs’ bandwidth (which exceeds 2 GB/s). As
discussed above, flush should have the highest priority [18, 55].We should always reserve enough
bandwidth and CPUs for flush, using the remaining resources for both compactions and queries. On the
other hand, once flush stalls are avoided, we can freely design the compaction policy for higher query
performance without worrying about write performance.Modern SSDs provide a very large design
space for compaction, allowing approximately 50 WA for the highest write speed reported by Meta.
We conducted simple experiments to support our argument. We evaluated the average write

performance of a 4-level LSM-tree with different compaction policies. In our experiments, we varied
the number of leveling levels, as shown in Figure 2. 1𝐿 means only the last level uses the leveling
policy, and the other levels use the tiering policy, corresponding to the lazy leveling compaction
policy. 2𝐿 means the last two levels use the leveling policy, and other levels use the tiering policy.
3𝐿 means only the first level uses the tiering policy, while other levels use the leveling policy, which
is the default compaction policy of RocksDB and LevelDB. A compaction is triggered when the
number of sorted runs at level 0 reaches 10. We set the write throughput to 100 MB/s, which is
much higher than Meta’s reported maximum throughput. We measured the average and P99 tail
write latency of different compaction policies on two different SSDs (800GB Intel Optane SSD DC
P5800X and 3TB D7-P5620 NVMe SSD).
We aim to support two arguments: (1) The write speed (flush) can be guaranteed by reserving

enough bandwidth and CPUs. (2) The remaining bandwidth and CPUs can be freely used to support
a wide range of compaction policies without affecting the write speed. We used different numbers of
CPUs (4C, 8C, 16C) to conduct compactions under different policies. The number of CPUs controls
the bandwidth and parallelism available for compaction. The results are shown in Table 2, we
observe that on both SSDs, the average and tail latencies are not impacted by either the compaction
policy or the number of CPUs. These results support our arguments. In the rest of our paper, we
assume that the LSM-tree has a constant write speed that is not influenced by the compaction policy. As
a result, the design of the compaction policy should focus on how to use the remaining bandwidth
and CPUs to achieve the highest query performance. This simplifies the design compared to the
traditional WA-RA perspective.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:7

3.2 Impact onQuery Performance
As discussed above, the compaction policy should focus on how to use the remaining bandwidth
and CPUs to achieve the highest query performance. We should rethink how compaction influences
query performance. Previous works [30, 32, 33, 45, 56] typically measure query performance
by looking at the worst-case RA complexity (i.e., when the LSM-tree is just prior to a global
compaction). In these traditional measurements, compaction always appears to benefit query
performance. However, this measurement is unsuitable because the number of sorted runs in each
level is always dynamically changing. Although the upper bound of RA complexity always holds,
the concrete query performance is dynamically changing. We refer to this kind of temporal query
performance as instantaneous query performance. These states do not last for long. We argue that
the average query performance provides a better representation of the LSM-tree’s overall query
performance. Unlike instantaneous performance, compaction’s impact on average query performance
becomes double-edged. In the following sections, we first formulate the average query performance.
Then, we explain why compaction could also negatively impact the average query performance.
Average Query Performance. The average query performance is the aggregation of each in-
stantaneous query performance over a long period. A natural question is how to define such a
long period. We note that, regardless of the compaction policy, the LSM-tree always undergoes a
global compaction that merges all sorted runs into one. We define the time between two global
compactions as a compaction round. Each global compaction can be viewed as a checkpoint that
ensures future queries are not affected by the compaction policy used in the previous compaction
round. We use the average query throughput over a compaction round as the measure of average
query performance.
Compaction’s Double-Edged Effect on Queries. A more aggressive compaction policy, which
frequently merges different sorted runs, would benefit instantaneous query performance more, as
a query needs to probe fewer sorted runs immediately after a compaction. However, for average
query performance, the situation is different because compaction and queries are always competing
for CPU and I/O resources. In a compaction round, the CPU and I/O bandwidth might occasionally
be occupied by background threads for compaction, temporarily reducing the query speed or even
blocking queries (if no more threads or bandwidth are available). Aggressive compaction occupies
both CPU and I/O bandwidth for a longer period. If we avoid certain compactions, a single query
might incur slightly higher I/O costs, but we will have more time and resources available for queries
throughout the compaction round. This can potentially increase the average query throughput.
The InvestmentView.We view compaction as a form of investment. Compaction’s write amplification
is the cost of the investment, and the increased instantaneous query throughput is the immediate
return.Maximizing average query performance means maximizing the accumulated return from
each investment. A compaction’s accumulated return might be less than the opportunity cost.

4 The EcoTune Algorithm
In this section, we propose a method to find a compaction policy that optimizes the average
query throughput in a compaction round, given a client-determined constant write speed. The
average query performance should be modeled by both the costs and the accumulated returns of
compactions. The cost of a compaction can be easily modeled based on the amount of involved data,
and such cost for each compaction is independent. However, modeling the return of a compaction is
more complicated because we need to consider both its immediate improvement in query speed and
how long such improvement will last. We first analyze the compaction’s impact on instantaneous
query speed. Then, we note that the timing of a compaction bridges the gap between instantaneous
and average performance. It is the key to evaluating how long a compaction’s impact will last.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:8 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

Get Seek Short Scan Long Scan0

2

4

6

8

Th
ro
ug

hp
ut
 (K

OP
S)

Bush
1L
2L
3L

(a) Query Speed on NVMe SSD.

Get Seek Short Scan Long Scan0

5

10

15

20

Th
ro
ug

hp
ut
 (K

OP
S)

Bush
1L
2L
3L

(b) Query Speed on Optane.

Fig. 3. Speeds of Different Queries. xL means the last x levels are leveling levels.

Bush 1L 2L 3L
Get 1.06 1.009 1.007 1.003
Seek 1.08 1.03 1.02 1.01
Short Scan 1.11 1.07 1.07 1.07

Table 3. I/O Performance of Different Compaction Policies.

When incorporating timing information into the compaction policy, the concept of a physical level
becomes vague. Therefore, we describe the LSM-tree structure using a three-logical-level model.
We present a dynamic programming algorithm, namely EcoTune, to quickly determine the optimal
compaction policy for a given query workload and machine configuration.

4.1 Query Performance Analysis
We first analyze the impact of compaction on instantaneous query speed. The instantaneous speed
refers to the query speed that can be achieved immediately after compaction. In LSM-bush [33], the
author points out that merging small sorted runs is less impactful for point reads. We are interested
in whether this conclusion holds true for other types of queries. Therefore, we conducted a simple
experiment. We used the books dataset from SOSD [63] to build a 4-level LSM-tree. The block
cache size was set to 8MB. For each sorted run, we built a SNARF [76] to accelerate both point and
range queries. In our experiments, the target key for the Get operation exists in the last level of the
LSM-tree to simulate worst-case performance. The short scan operation scans a closed key range
of length 100. The short scan usually contains only 1 target key and always contains fewer than 5
keys. The long scan operation is an open range scan (Seek + 100Next). The workloads are read-only
to keep the LSM-tree static and test the instantaneous throughput after each compaction.

We show the single-thread query throughput of different compaction policies (Figure 2) in Figure 3.
We also present the corresponding I/O numbers in Table 3. The performance difference between
Bush and 1𝐿, 2𝐿, and 3𝐿 represents the impact of merging small sorted runs. The performance
difference between 1𝐿 and 2𝐿 represents the impact of merging large sorted runs. We found that
neither merging small sorted runs nor large sorted runs significantly improves I/O performance for
Get, Seek, and short closed scans. The reason is that SNARF has already reduced the unnecessary
I/O operations to nearly zero. LSM-bush has a much lower throughput due to its significant CPU
overhead. It has too many small sorted runs and needs to probe too many filters for each query.
Merging large sorted runs (from 1𝐿 to 2𝐿) greatly improves the throughput of long range scans
(Figure 3a), whereasmerging small sorted runs (from 2𝐿 to 3𝐿) provides onlymarginal improvements

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:9

(Figure 3a and Figure 3b). This is because most of the target keys for long range scans are located
in large sorted runs. The read amplification arises from the SSD’s block access granularity, and
compactions can reduce this read amplification. In contrast, few small sorted runs have target
keys. Therefore, range filters make merging small sorted runs less beneficial. Let 𝑑 and 𝑆 represent
the total number and total size of small sorted runs, respectively.𝑀 denotes the size of the entire
LSM-tree, and 𝑝𝑖 is the size proportion of the 𝑖𝑡ℎ small sorted run. We omit the range filter’s false
positive rate here due to its low value. As 𝑝𝑖 is low, the total number of I/Os for small sorted runs
during a long-range scan (Seek + 𝐾Next) is independent of 𝑑 :

𝑑∑︁
𝑖=1

(
1 − (1 − 𝑝𝑖)𝐾

)
≈

𝑑∑︁
𝑖=1

(1 − (1 − 𝐾𝑝𝑖)) =
𝑑∑︁
𝑖=1

𝐾𝑝𝑖 = 𝐾 · 𝑆
𝑀

We summarize our analysis as following: (1) The CPU overhead prevents the compaction policy
for small sorted runs from being overly lazy (LSM-bush). (2) The I/O overhead of long range scans is
highly affected by the number of large sorted runs. (3) The I/O overhead for other types of queries
is robust to the number of sorted runs, including both small and large sorted runs.

4.2 Three-Level Design
From Immediate Return to Accumulated Return. An optimal compaction policy aims to
maximize its accumulated return while minimizing its cost. We have analyzed the relationship
between a compaction’s immediate effect on query speed and its cost. In a compaction round,
the LSM-tree’s data layout and query throughput are dynamically changing, so a compaction’s
impact gradually diminishes over time. To analyze a compaction’s accumulated return, we must
also consider how long its impact will last.
The Importance of Compaction Timing. We propose an insight: The earlier a compaction is
conducted, the greater the cumulative future returns will be. Specifically, when the LSM-tree
is far from a global compaction, compacting multiple sorted runs into one improves query speed
for a longer period. When the LSM-tree is close to a global compaction, compacting sorted runs
yields less benefit since the newly created sorted runs will not be queried for long. Due to the
effect of timing, two compactions with the same cost could have very different cumulative returns.
Therefore, at the beginning of a compaction round, we should merge sorted runs more aggressively.
As the compaction round approaches its end, the compaction policy should become lazier.
Limitation of Previous Compaction Policies. All previous compaction policies [32, 33, 56, 65]
restricted sorted runs to certain allowed sizes and grouped equal-sized sorted runs together as
physical levels. For example, in a lazy leveling [32] policy, level 𝑙 contains sorted runs with size
𝑇 𝑙 · 𝐹 and 𝐹 is the size of the in-memory write buffer. Each physical level corresponds to an allowed
size of sorted runs. There are only 𝐿 allowed sizes. Previous works tuned the size ratio between
adjacent levels and the allowed number of sorted runs in each level. In other words, they focus
on how to choose these 𝐿 allowed sizes and the allowed number of sorted runs for each allowed
size. The allowed size and the allowed number determine the compaction aggressiveness of a level.
Therefore, all previous compaction policies have fixed aggressiveness at all times (although different
physical levels could have different aggressiveness). For example (Figure 4), in a traditional multi-level
LSM-tree, all sorted runs at the same level have the same size. When optimizing the average query
throughput, an ideal compaction policy that considers compaction timing is shown in Figure 4.
This is because different sorted runs in a level are created at different times (i.e. different distances
to the next global compaction). At the beginning of a compaction round, an aggressive compaction
policy will make those early-created sorted runs larger than those created later.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:10 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

1000

Level 0

Level 1

Level 2

Level 3

100 100 100

1000

140

20

All Previous Compaction Policies Ideal Compaction Policies

Three-Level Generalization

40 10

11 1 1 1

80 80

2020 10

11 1 1 1

Last Level

Top Level

Main Level

1000

140 80 80 40 10 10

11 1 1 1

Not Equal-Sized
Flatten to a Main Level

Fig. 4. Multi-Level LSM-tree vs Three-Level LSM-tree.

Three-Level Generalization. The aggressiveness of an optimal compaction policy should change
over time. In other words, the size of each sorted run depends on its creation time rather than
being restricted to 𝐿 allowed sizes. Therefore, there are no groups of equal-sized sorted runs. As the
concept of physical level comes from the 𝐿 allowed sizes, there isn’t a definition for such physical
levels any more, and there is also no need to have. Instead, we view the LSM-tree as a set of sorted
runs, similar to RocksDB’s universal compaction [8]. Since merging small sorted runs offers little
improvement, we redivide the sorted runs into three logical levels based on their impact on query
speed: the top level, the main level, and the last level (Figure 4). With the three-level model, there
are three kinds of background jobs: flush from memory to the top level, compaction from the top
level to the main level (TMC), and compaction within the main level (MLC). These three kinds of
background jobs could be conducted in parallel.
Top Level. The top level acts as a write buffer on the SSD, temporarily storing newly flushed
sorted runs. As the analysis in Section 4.1 suggests, the I/O count for each query is not affected by
the data layout (i.e. the number of sorted runs) in the top level. Therefore, we do not conduct any
compaction in the top level to save resources. This raises two problems: (1) How should the capacity
of the top level be set? (2) How can we handle the significant CPU overhead when probing the
top level? For the first problem, we set the top level’s capacity 𝑆 to𝑀/𝐾 , where 𝐾 is the average
number of keys involved in a long range scan. We will explain why we set 𝑆 to𝑀/𝐾 later. Since no
compaction happens in the top level, there will be many sorted runs, leading to significant CPU
overhead. Inspired by global filters [34, 78], we build a full index for keys in the top level. In this full
index, we record the full keys and their corresponding sorted run IDs. To limit memory overhead,
we set 𝑆 to𝑀/max(100, 𝐾). With this setting, the full index for all keys in the top level increases
the average bits per key by approximately 0.8.
Main Level. When the top level reaches its capacity, it is compacted into a sorted run in the main
level. The number of sorted runs in the main level affects the I/O performance of long range scans.
If the workload contains fewer long range scans, we can use a lazier policy, allowing more large
sorted runs on the SSD. Therefore, the main level compaction policy is central to the LSM-tree’s

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:11

compaction strategy [33, 65]. We propose a dynamic programming algorithm, EcoTune, to find
the optimal compaction policy for the main level. In the main level, we build a range filter for
each sorted run to accelerate all types of queries. The size limit of the main level is controlled by a
capped size ratio 𝐶 , which represents the size ratio between the main and the last level.
Last Level.We allow only one sorted run in the last level to limit space amplification, a design that
is widely used [32, 33, 56, 65]. When the main level reaches its capacity limit, the LSM-tree triggers
a global compaction, merging all sorted runs into the last level. The capacity of the main level is
determined by the size of the last level and the allowed space amplification (controlled by 𝐶).
Definition of Long Range Scan. Our definition of a long range scan involves 𝐾 keys. However, as
𝐾 decreases, the long range scan gradually becomes a short range scan, and the compaction policy
at the main level no longer significantly impacts its performance. A natural question is: what is the
boundary between long range and short range? We define a range scan as long if the number of
involved keys is larger than (𝐶 + 1). This is because the main level’s size proportion is 1

𝐶+1 . When
the main level is expected to contain more than one target key of a range scan, merging sorted
runs in the main level can be considered beneficial. Otherwise, the expected I/O count at the main
level is smaller than 1 and is not affected by the data layout in the main level. This is because at
least one I/O is required if a target key exists in the main level, and the existence of that key is
independent of the data layout.
The Choice of 𝑆 . We show why we set the top-level capacity 𝑆 to 𝑀

𝐾
. In the top level, there are 𝑑

sorted runs. The total number of I/Os for a long-range scan is:
∑𝑑
𝑖=1

[
1 −

(
1 − 𝑆

𝑑 ·𝑀
)𝐾]

= 𝑑 ·(1−𝑒− 𝑆 ·𝐾
𝑀 ·𝑑).

After being compacted into the main level, the long-range scan I/O count for the newly created
large sorted run is: 1 −

(
1 − 𝑆

𝑀

)𝐾
= 1 − 𝑒− 𝑆 ·𝐾𝑀 . When 𝑆 < 𝑀

𝐾
, merging these sorted runs in the

top level together cannot reduce the long-range scan I/O count. The expected long-range scan
I/O count in the top level is less than one. If there exists a key in the target range, at least one
I/O is required. The existence of such a key is independent of the data layout. On the other hand,
when 𝑆 > 𝑀

𝐾
, merging the first several sorted runs in the top level could always improve the query

speed during the time of writing these 𝑆 amounts of data. Therefore, when 𝑆 < 𝑀
𝐾
, we could delay

merging sorted runs in the top level. When 𝑆 > 𝑀
𝐾
, it would be better to reduce the number of

sorted runs. Thus, we set 𝑆 = 𝑀
𝐾
.

Data Size Scalability. As the data size grows, some designs [32, 33] typically result in more levels
and higher write amplification within a compaction round. This is because these designs use a
fixed size for the in-memory table. We believe that the size of the in-memory table should scale
proportionally with the size of the data. This is because hardware configurations for running
key-value stores are typically set with a fixed memory-to-SSD ratio, as reported by Facebook [49].
With this design, the LSM-tree will maintain a fixed number of physical levels. In our three-level
model, the number of sorted runs in both the top level and the main level are fixed, allowing
performance to scale effectively as the data size grows.
Threads Allocation. In LSM-tree, there are usually background threads for flush/compaction
and foreground threads for write/query. As the write speed is fixed, we also use a fixed number of
threads for writing the in-memory table and flush (1 thread according to RocksDB tuning guide [7]).
Within a compaction round, there are two types of compactions: compactions from the top level
to the main level (TM compaction) and compactions within the main level (ML compaction).
These two types of compactions can be conducted in parallel. An TM compaction creates a new
large sorted run in the main level and limits the size of the top level. The ML compaction manages
the large sorted runs in the main level according to a specific compaction policy. We allocate
two threads for the TM compaction (TMC threads) to keep up with the flush speed. When no

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:12 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

TM compaction is being processed, we keep TMC threads free in case a sudden write speed burst
happens. We use all other available threads for theML compaction (MLC threads) and query (query
threads). Different from traditional LSM-tree that totally separate the foreground and background
threads, we also use MLC threads for queries when they are free. We argue that given a fixed
number of threads, using background threads for queries when they are free could directly improve
the query throughput. So we use the terms MLC threads and query threads instead of the original
foreground threads and background threads. Such allocation is set by the user as RocksDB does.
Example. We use a simple example to illustrate the compaction process. We do not show the flush
and write process in the example because they are conducted in parallel with the compactions. As
shown in Figure 5, a global compaction will happen after 7 TM compactions. Table 4 shows the
compaction policy. The first two TM compactions create two sorted runs (𝑓 2 and 𝑓 3) in the main
level. An ML compaction aggressively merges 𝑓 2 and 𝑓 3 into 𝑓 5 to reduce the number of large
sorted runs. Meanwhile, a new sorted run 𝑓 4 is created by TM compaction. MLC threads conduct
queries during the time between 𝑓 5 and 𝑓 4’s creation. Then, an ML compaction merges 𝑓 4 and 𝑓 5
together into 𝑓 8 according to the policy. Meanwhile, a new sorted run 𝑓 6 is created as the time
for this ML compaction is relatively long. MLC threads also conduct queries before the creation
of 𝑓 7. After that, an ML compaction merges 𝑓 6 and 𝑓 7 together. The compaction policy becomes
lazier as the LSM-tree approaches the next global compaction. For the last two sorted runs, no ML
compaction will be involved.

4.3 Dynamic Programming Algorithm
We aim to determine the optimal compaction policy between two global compactions. For conve-
nience, we refer to the sorted run created by a TM compaction as a unit sorted run, whose size is 𝑆 .
In each compaction round, the main level starts as empty. A new unit sorted run is created every
𝑇𝑤 . The time required to useMLC threads to rewrite 𝑆 amount of data is𝑇𝑐 , a measured value based
on the hardware configuration. We first reserve sufficient bandwidth and CPU resources for flush
and TM compactions to ensure that write requests are not stalled. We then utilize the remaining
bandwidth and MLC threads to measure 𝑇𝑐 . After 𝑅 unit sorted runs are created (𝑅 · 𝑇𝑤 time), a
global compaction is triggered.
There are 𝑒 sorted runs in the main level and one sorted run in the last level. For a long-range

scan, the expected I/O count in the top level is 1. Assuming the proportion of long-range queries
is 𝑟 , the cost of long-range queries is proportional to (𝑒 + 2) · 𝑟 1. Assuming all point queries are
positive and the false positive rate is 𝑓 , the cost of point queries is proportional to (1 − 𝑟) · (1 + 𝑓).
Therefore, the total query cost is (𝑒 + 2) · 𝑟 + (1 − 𝑟) · (1 + 𝑓). We define the query speed as:

𝑞(𝑒) = 1
(𝑒 + 2) · 𝑟 + (1 − 𝑟) · (1 + 𝑓) .

We define the score as query speed× time. The score during a period of time is proportional to the
number of queries the system can handle during that time.

In the following section, we first propose a simplified algorithm based on two assumptions: (1)
We assume that no query can be processed during a ML compaction. (2) We assume that an 𝑀𝐿
compaction always takes less than 𝑇𝑤 time. This simplified algorithm helps readers understand the
key idea of our EcoTune. In reality, queries can be processed in parallel with MLC, and if an𝑀𝐿
compaction involves more than 𝑇𝑤

𝑇𝑐
· 𝑆 data, it will take more than 𝑇𝑤 time. We will later introduce

two additional parameters to modify the algorithm to handle this more complex scenario.
1Although we have range filters for large sorted runs, a long-range scan is still likely (at least 1 −

(
1 − 1

𝐾

)𝐾 ≈ 1 − 1
𝑒
) to

access a large sorted run. Incorporating this exact probability into the algorithm would result in high complexity. However,
our experiments demonstrate that modeling the cost of long-range scans as (𝑒 + 2) · 𝑟 is sufficiently accurate.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:13

TM Compactions 1 2 3 4 5 6 7
Main Level Layout 1 2 3 3 1 3 2 3 2 1 3 2 1 1

Table 4. Compaction Policy Example.

We start by considering a general case: given 𝑒 existing sorted runs in the main level, how do
we determine the optimal compaction policy for 𝑐 incoming unit sorted runs? These 𝑒 sorted runs
will not be involved in the compaction process of the 𝑐 incoming unit sorted runs. We call such a
problem an (𝑒, 𝑐) problem. Our root problem is a (0, 𝑅) problem. Some of the 𝑐 incoming unit sorted
runs will be merged together. We define a sorted run as a final sorted run of the (𝑒, 𝑐) problem if
its lifetime lasts until all 𝑐 unit sorted runs have been created. In Figure 5, 𝑓8 is the first final sorted
run of the root (0, 7) problem. Finding the compaction policy for 𝑓6, 𝑓7, 𝑓9, 𝑓11 is a (1, 4) problem,
and 𝑓10, 𝑓9, 𝑓11 are final sorted runs for this problem. Since our 𝑞(𝑒) does not consider the concrete
size of each main level sorted run, the optimal compaction policy for all (𝑒, 𝑐) problems is the same.

4.3.1 Dynamic Programming Overview. For an (𝑒, 𝑐) problem, once its first final sorted run (with
size 𝑥 · 𝑆) has been created, the remaining problem becomes an (𝑒 + 1, 𝑐 − 𝑥) problem. On the
other hand, the optimal policy to organize the first 𝑥 unit sorted runs, which form the first final
sorted run, is an (𝑒, 𝑥) problem. This optimal substructure property inspires us to use a dynamic
programming algorithm to solve an (𝑒, 𝑐) problem. As with standard dynamic programming, the
key idea of our EcoTune is to iterate over all possible sizes for the first final sorted run to reduce
the size of the problem.
The Score Function and The Recurrence Relation. We define 𝑓 (𝑒, 𝑐) as the best score of

compaction policies for an (𝑒, 𝑐) problem. An (𝑒, 𝑐) problem spans 𝑐 · 𝑇𝑤 time. However, 𝑓 (𝑒, 𝑐)
accounts for the number of queries conducted during the last (𝑐 − 1) ·𝑇𝑤 time and excludes the first
𝑇𝑤 time in the (𝑒, 𝑐) problem. The reason is that all compaction policies have the same behavior
during the first 𝑇𝑤 time. The first unit sorted run of the problem cannot be directly merged with
any other sorted runs. The recurrence formula is:

𝑓 (𝑒, 𝑐) = max
𝑥

(
𝑓 (𝑒, 𝑥) + (𝑇𝑤 − 𝑥 ·𝑇𝑐) · 𝑞(𝑒 + 1) + 𝑓 (𝑒 + 1, 𝑐 − 𝑥)

)
.

The term (𝑇𝑤 − 𝑥 ·𝑇𝑐) · 𝑞(𝑒 + 1) represents the number of queries conducted during the first 𝑇𝑤
time of the (𝑒 + 1, 𝑐 − 𝑥) problem. After managing the first 𝑥 sorted runs, the LSM-Tree requires an
𝑀𝐿𝐶 to merge them into a final sorted run. This process takes 𝑥 ·𝑇𝑐 time and overlaps with the
first 𝑇𝑤 time of the (𝑒 + 1, 𝑐 − 𝑥) problem. Based on our assumptions above, 𝑇𝑤 − 𝑥 ·𝑇𝑐 > 0, and
no query is conducted during the 𝑥 ·𝑇𝑐 time. The complexity of this algorithm is 𝑂 (𝑅3). The root
problem is a (0, 𝑅) problem.

4.3.2 Allowing Query During MLC. In this section, we relax assumption (1) because, in reality, we
cannot completely block queries during MLC. We define 𝑞′ (𝑒) = 𝛽 · 𝑞(𝑒) as the query speed during
MLC, where 𝛽 is a measured parameter. Here, 𝑞 represents the speed of queries when both MLC
threads and query threads are used, while 𝑞′ represents the speed when only query threads are used,
as MLC threads are conducting MLC. Compared to the simplified EcoTune above, during each 𝑥 ·𝑇𝑐
period and the time of global compaction, the LSM-Tree can still process queries. Unfortunately,
the query speed during 𝑥 ·𝑇𝑐 is difficult to determine because it depends on the layout of these 𝑥 · 𝑆
data right before they are merged into a single final sorted run.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:14 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

f2

f1

f3 f4

Top Level

MLC TMC
Main Level

Last Level

f5 f6f4 f7

TMC MLC

f8 f6 f7 f9 f8 f10 f9

f1 f1 f1

f11

Part 1 Part 2 Part 3 Part 4

TMC Threads

Create f4 Create f6 Wait Create f7 Wait Create f9 Wait Create f11 Wait

C f5 Create f8 Query Create f10 Query

MLC Threads Time Line

Time Line f5 = f2 + f3

Query

f8 = f4 + f5 f10 = f6 + f7

Fig. 5. An overview of our insight. C f5 is the short for Create f5.

(0, 7, 21)

(1, 4, 24) (0, 3, 0)

(0, 2, 0) (1 ,2, 0) (2, 2, 26) (1, 1, 2)

(0, 1, 0) (1, 1, 1) (1, 1, 0) (2, 1, 1) (3, 1, 27) (2, 1, 0)

f2, f3, f4, f6,

f7, f9, f11
f2, f3, f4 f6, f7, f9, f11

f4, f8
f2, f3 f6, f7 f9, f11

f2 f3, f5 f6 f7, f10 f9 f11, Global

Fig. 6. Problem Partition Example. Sub-problems marked blue are the right most sub-problems. The sorted
runs corresponding to each sub-problem are shown near the problem. For example, problem (1, 1, 1) calculates
the score during the creation of 𝑓3 and 𝑓5. The creation of 𝑓5 is anMLC. In this sub-problem, 𝑒 = 1 and the
existing sorted run is 𝑓2.

To address this challenge, we introduce an additional parameter 𝑚. The complexity of this
algorithm is 𝑂 (𝑅4). An (𝑒, 𝑐,𝑚) problem is defined as finding the optimal compaction policy for 𝑐
incoming unit sorted runs, where 𝑒 sorted runs currently exist, and an ML compaction involving
(𝑚 + 𝑐) · 𝑆 data will occur after the 𝑐 unit sorted runs are created. The root problem becomes a
(0, 𝑅,𝐶 · 𝑅) problem because a global compaction involves 𝐶 · 𝑅 · 𝑆 data in the last level and 𝑅 · 𝑆
data in non-last levels.
We divide an (𝑒, 𝑐,𝑚) problem into two sub-problems: (1) The left sub-problem: creating the

first final sorted run, and (2) The right sub-problem: managing the remaining incoming unit
sorted runs. Each sub-problem can be recursively divided. The 𝑀𝐿𝐶 involving (𝑚 + 𝑐) · 𝑆 data
happens when the right sub-problem is finished. The score during such compaction is calculated

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:15

Algorithm 1: Find the best score and compaction policy
1 ans = Empty map whose value is (score, 𝑥)
2 Procedure 𝑓 (𝑒, 𝑐,𝑚)
3 if 𝑐 == 1 then
4 ans[(𝑒, 𝑐,𝑚)] = {score: (𝑚 + 𝑐) ·𝑇𝑐 · 𝑞′ (𝑒), 𝑥 : 1}
5 return ans[(𝑒, 𝑐,𝑚)]
6 best = {score: 𝑇𝑤 · 𝑞(𝑒 + 1) + 𝑓 (𝑒 + 1, 𝑐 − 1,𝑚 + 1), 𝑥 : 1}
7 for 𝑥 from 2 to (𝑐 − 1) do
8 score = 𝑓 (𝑒, 𝑥, 0) + (𝑇𝑤 − 𝑥𝑇𝑐) · 𝑞(𝑒 + 1)
9 score = score + 𝑓 (𝑒 + 1, 𝑐 − 𝑥,𝑚 + 𝑥)

10 if best.score < score then
11 best = {score, 𝑥 }

12 ans[(𝑒, 𝑐,𝑚)] = best
13 return best.score
14 score = 𝑇𝑤 · 𝑞(0) + 𝑓 (0, 𝑅,𝐶 · 𝑅)
15 return (score, ans)

in its right-most sub-problem. As shown in Algorithm 1, we pass the parameter𝑚 to the right
sub-problem so that the algorithm can calculate the score during the𝑀𝐿𝐶 at the end of the right
sub-problem (Lines 3–5). In Figure 6, we illustrate the problem partition in the example from
Figure 5 (𝑅 = 7 and 𝐶 = 3). The left sub-problems are represented as left child nodes, while the
right sub-problems are represented as right child nodes. The right-most sub-problems are marked
in blue. For instance, when solving the (1, 1, 1) problem, we calculate the score during the MLC
creating 𝑓5. The (1, 1, 2) and (3, 1, 27) problems contain the scores during MLC creating 𝑓8 and the
global compaction, respectively.

4.3.3 Allowing Pending Sorted Runs. In this section, we further relax assumption (2). An MLC may
involve a large amount of data, 𝑥 · 𝑆 , causing 𝑥 ·𝑇𝑐 > 𝑇𝑤 . Under assumption (2), a left sub-problem
does not influence the compaction policy of the corresponding right sub-problem. Without this
assumption, during the creation of the first final sorted run, multiple new unit sorted runs may
be created (denoted as pending sorted runs). In part 2 of Figure 5, before an MLC completes the
creation of 𝑓8, 𝑓6 and 𝑓7 have already been created and are pending sorted runs. Therefore, at the
start of the corresponding right sub-problem, there will be 𝑏 pending unit sorted runs and 𝑐 − 𝑥 −𝑏
incoming sorted runs. Both the incoming sorted runs and the pending sorted runs will be involved
in the compaction process of the right sub-problem. These pending sorted runs not only affect
the compaction policy of the right sub-problem but also influence the score during the creation
of the first final sorted run. Consequently, we need to describe a problem using four parameters
(𝑒, 𝑏, 𝑐,𝑚), and the complexity of the algorithm becomes 𝑂 (𝑅5). Due to space limitations, we do
not delve deeply into this final version of EcoTune. The idea remains the same as the previous two
versions. The algorithm is shown in Algorithm 2.

The Additional Overhead: Our EcoTune algorithm requires tracking workload information
and calculating the optimal compaction policy. In practice, the workload information can either be
derived from prior knowledge of the workload or gathered from statistics based on previous queries,
similar to other workload-aware algorithms such as Cosine [24] and Limousine [25]. Specifically,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:16 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

Algorithm 2: Find the best score and compaction policy
1 ans = Empty map whose value is (score, 𝑥)
2 Procedure MergeScore(𝑒,𝑚)
3 Δ𝑏 = ⌈𝑚𝑇𝑐

𝑇𝑤
⌉ − 1

4 score =
∑Δ𝑏−1
𝑖=0 𝑇𝑤𝑞

′ (𝑒 + 𝑖)
5 score = score + 𝑞′ (𝑒 + Δ𝑏) (𝑚𝑇𝑐 − Δ𝑏𝑇𝑤)
6 return score
7 Procedure 𝑓 (𝑒, 𝑏, 𝑐,𝑚)
8 if 𝑐 == 0 then
9 ans[(𝑒, 𝑏, 𝑐,𝑚)] = {score: MergeScore(𝑒 + 𝑏,𝑚 + 𝑏), 𝑥 : 1}

10 return ans[(𝑒, 𝑏, 𝑐,𝑚)]
11 if 𝑏 > 0 then
12 score = 𝑓 (𝑒 + 1, 𝑏 − 1, 𝑐,𝑚 + 1)
13 else
14 score = 𝑇𝑤 · 𝑞(𝑒) + 𝑓 (𝑒 + 1, 0, 𝑐 − 1,𝑚 + 1)
15 best = {score, 𝑥 : 1}
16 for 𝑥 from 2 to (𝑏 + 𝑐 − 1) do
17 Δ𝑏 = ⌈𝑥𝑇𝑐

𝑇𝑤
⌉

18 if 𝑥 ≤ 𝑏 then
19 score = MergeScore(𝑒 + 𝑏, 𝑥)
20 𝑏′ = 𝑏 − 𝑥 + Δ𝑏

21 else
22 score = 𝑓 (𝑒, 𝑏, 𝑥 − 𝑏, 0)
23 𝑏′ = Δ𝑏

24 score = score + (Δ𝑏𝑇𝑤 − 𝑥𝑇𝑐) · 𝑞(𝑒 + 𝑏′)
25 available = 𝑏 + 𝑐 − 𝑥
26 if 𝑏′ > available then
27 continue

28 score = score + 𝑓 (𝑒 + 1, 𝑏′, available − 𝑏′,𝑚 + 𝑥)
29 if best.score < score then
30 best = {score, 𝑥 }

31 ans[(𝑒, 𝑏, 𝑐,𝑚)] = best
32 return best.score
33 score = 𝑓 (0, 0, 𝑅,𝐶 · 𝑅)
34 return (score, ans)

the algorithm requires three parameters: the long-range scan ratio 𝑟 , the write speed 𝑇𝑤 , and the
compaction speed 𝑇𝑐 . We only need a single if statement for each query to track the long-range
scan ratio and only need to measure the time of a previous compaction round to determine the
write speed. The other key parameter, the compaction speed, is workload-independent and can be
measured offline. Such statistics are straightforward to obtain. We solve the optimal policy during
the time of each global compaction. The dynamic programming algorithm takes less than 1 second,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:17

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(a) books + 6 cores.

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

4
6
8

10
12
14
16
18
20

Th
ro

ug
hp

ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(b) books + 10 cores.

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

2

4

6

8

Th
ro

ug
hp

ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(c) osm + 6 cores.

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(d) osm + 10 cores.

Fig. 7. Throughput vs Long Range Scan Ratio on NVMe SSD.

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

4
6
8

10
12
14
16
18
20

Th
ro

ug
hp

ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(a) books + 6 cores.

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

8
12
16
20
24
28
32
36
40

Th
ro
ug

hp
ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(b) books + 10 cores.

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

4
6
8

10
12
14
16
18

Th
ro

ug
hp

ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(c) osm + 6 cores.

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

8
12
16
20
24
28
32
36
40

Th
ro
ug

hp
ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(d) osm + 10 cores.

Fig. 8. Throughput vs Long Range Scan Ratio on Optane SSD.

while a global compaction takes approximately 160 seconds and a compaction round takes about
350 seconds in our experiments. As a result, the policy-solving overhead is negligible.

5 Evaluation
5.1 Experiments Setup
Baselines:We compare our EcoTune with three baselines: Leveling (RocksDB’s default compaction
policy), Lazy Leveling [32], and Moose [56]. Moose is a recently proposed compaction policy that
allows each level to have a completely different size ratio and a varying number of sorted runs. Since
we do not conduct any compactions at the top level, the data layout of the Lazy Leveling policy
closely resembles that of LSM-bush [33]. We implement our EcoTune and Moose using Dostoevsky,
a RocksDB-based LSM-tree that already integrates the leveling and lazy leveling policies. We use a
two-dimensional vector to represent the data layout after each TMC. The compaction picker in
Dostoevsky will determine how to merge sorted runs according to the vector.
Setup: Our experiments were conducted on a machine with the following specifications: an AMD
EPYC 7742 64-Core Processor, 512MB of L3 cache, and two SSDs (800GB Intel Optane SSD DC
P5800X and 3TB D7-P5620 NVMe SSD). The memory write buffer was set to 8MB. A SNARF range
filter was constructed for every file with a default memory allocation of 14 bpk. An 8MB block
cache was allocated for data blocks. We used 64-bit integer keys from the SOSD dataset [63] and
256 bytes of value for each key. We enabled direct I/Os for both read and write operations. The size
ratio for leveling and lazy leveling policy is set to 10. The LSM-tree for leveling and lazy leveling
consists of four levels. For Moose2, its LSM-tree consists of five levels. Moose allows 3 sorted runs
in each non-last level and one sorted run in the last level. The size ratio between level 3 and level 4
(the last level) is 6, while the size ratio between the other levels is 7. In all experiments, there is one
client thread to write the in-memory write buffer, one thread for flush, and two threads for TMC.
2Moose’s configuration was provided by its authors after we shared our experimental settings with them.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:18 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

50th 90th 99th
10−4

10−3

10−2

10−1

La
te
nc
y
(s
)

Q ery Threads: 4
EcoT ne
Lazy Leveling
Leveling
Moose

50th 90th 99th
10−4

10−3

10−2

10−1

Q ery Threads: 6

50th 90th 99th
10−4

10−3

10−2

10−1

Q ery Threads: 8

50th 90th 99th

10−3

10−2

10−1

Q ery Threads: 10

(a) 10K Throughput

50th 90th 99th
10−4

10−3

10−2

10−1

100

La
te
nc

y
(s
)

Query Threads: 4

50th 90th 99th

10−3

10−2

10−1

100

101
Query Threads: 6

50th 90th 99th

10−3

10−2

10−1

100

Query Threads: 8

50th 90th 99th

10−3

10−2

10−1

100

Query Threads: 10

(b) 30K Throughput

50th 90th 99th
10−4

10−3

10−2

10−1

100

101

La
te
nc

y
(s
)

Query Threads: 4

50th 90th 99th

10−3

10−2

10−1

100

101
Query Threads: 6

50th 90th 99th

10−3

10−2

10−1

100

101
Query Threads: 8

50th 90th 99th

10−3

10−2

10−1

100

101
Query Threads: 10

(c) 30K Throughput with workload spike

50th 90th 99th
10−4

10−3

10−2

10−1

100

La
te
nc

y
(s
)

Query Threads: 4

50th 90th 99th

10−3

10−2

10−1

100

101

Query Threads: 6

50th 90th 99th

10−3

10−2

10−1

100

101
Query Threads: 8

50th 90th 99th

10−3

10−2

10−1

100

101
Query Threads: 10

(d) 50K Throughput

Fig. 9. Latency under different query arrival speeds.

We provide two CPU cores for these threads and only vary the number of cores for MLC and query.

Workload: In our experiments, we varied the long range scan ratio in the workload from 0.1 to
1. The long range scan contains Seek + 100Next. The remaining part of the workload contains the
same number of Get and Seek operations. Assuming the long range scan ratio is 𝑟 , each operation

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:19

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(a) books + Optane.

0.2 0.4 0.6 0.8 1.0
Range Query Ratio

50

100

150

200

250

Th
ro
ug

hp
ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(b) osm + Optane.

20 40 60 80 100
Write Speed (MB / S)

10

20

30

40

50

60

70

Th
ro
ug

hp
ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(c) books + NVMe.

20 40 60 80 100
Write Speed (MB / S)

20

40

60

80

100

120

Th
ro
ug

hp
ut
 (K

OP
S)

Leveling
Lazy Leveling
EcoTune
Moose

(d) books + Optane.

Fig. 10. (a) and (b) are results of 64 threads (16MLC threads and 48 query threads) experiments on Optane
SSD. (c) and (d) shown query throughput under different write speed. We use 10 cores and the workload
contains 30% long range scan.

TMC Main Level Layout
7 7[1] -> 7
14 7 7[1] -> 7 7
21 7 7 7[1] -> 7 7 7
24 7 7 7 3[1] -> 7 7 7 3
29 7 7 7 3 5[1]

Table 5. 10 cores + 10% Long Range Scan

TMC Main Level Layout
3 3[1] -> 3
8 3 5[1] -> 8
11 8 3[1] -> 8 3
15 8 3 4[1] -> 8 7
18 8 7 3[1] -> 8 7 3
23 8 7 3 4[1] -> 8 7 7
25 8 7 7 4[1] -> 8 7 7 3
29 8 7 7 3 4[1]

Table 6. 10 cores + 20% Long Range Scan

TMC Main Level Layout
3 3[1] -> 3
7 3 4[1] -> 7
10 7 3[1] -> 7 3
14 7 3 4[1] -> 14
17 14 3[1] -> 14 3
21 14 3 4[1] -> 14 7
25 14 7 4[1] -> 14 7 4
29 14 7 4[1]

Table 7. 10 cores + 30% - 80% Long Range Scan

TMC Main Level Layout
3 3[1] -> 3
7 3 4[1] -> 7
10 7 3[1] -> 7 3
13 7 3 3[1] -> 13
16 13 3[1] -> 13 3
20 13 3 4[1] -> 13 7
23 13 7 3[1] -> 13 7 3
26 13 7 3 3[1] -> 13 7 3 3
29 13 7 3 3 3[1]

Table 8. 10 cores + 90% - 100% Long Range Scan

in the workload have 𝑟, 1−𝑟2 ,
1−𝑟
2 probabilities to be a long range scan, Seek operation and Get

operation respectively. The targe key is chosen randomly. Without further specification, we fix the
write speed to 100 MB/s, which is much higher than the real workload’s speed. This setting is to
verify our argument that LSM-tree’s performance is independent of the compaction policy. We use
half threads as MLC threads and the other half as query threads by default. A global compaction
is triggered when the large level’s size reaches 1/3 of the main level’s size. We use the average
throughput of a compaction round to measure the performance of each compaction policy.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:20 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

5.2 Experiments on AverageQuery Throughput
As discussed above, considering the overhead, there are two types of queries: long-range scans
and others. We vary the long-range scan ratio from 0.1 to 1. We find that our EcoTune consistently
achieves the highest throughput. EcoTune outperforms the Leveling policy by 30% to 150% because
EcoTune spends more time on queries rather than compaction while maintaining a moderate
number of sorted runs. EcoTune also outperforms the Lazy Leveling policy by 15% to 80% due
to having fewer sorted runs for workloads with a high ratio of long-range scans. Our solved
compaction policies are shown in Table 5 - Table 8. We found that our EcoTune is also robust to
workload shift. The solved policy is not sensitive to different workloads. For long range scan ratio
varies from 30% to 80%, the optimal compaction policy remains unchanged. Therefore, workload
shift can not easily violate the performance of EcoTune.
Impact of Long Range Scan Ratio. From Figure 7 to Figure 8, we measure the average throughput
of different compaction policies with varying long range scan ratios. Our EcoTune achieves up
to 1.8x the throughput compared to the second-best algorithm. As the long range scan ratio
increases, the throughput of all policies decreases. Previous research indicated that the leveling
compaction policy offers the best query performance. In our experiment, we find that the lazy
leveling compaction policy and Moose compaction policy outperform the leveling compaction
policy in most cases. This is because, during a compaction round, the leveling policy spends too
much time on compaction, leaving less time for queries. In contrast, the lazy leveling policy has a
slower query speed due to more large sorted runs. Our EcoTune achieves the best performance
because it can better balance the time for queries and compactions.
Impact of CPU Cores. We use 6 cores and 10 cores (including 2 cores for writing in-memory
buffer, flushing, and TMC) to conduct our experiments, respectively. The available cores are used
to run both query threads and compaction threads (MLC threads). The query threads are dedicated
to queries only. When there are no compaction tasks, the compaction threads also perform queries
to achieve higher throughput, as previously illustrated. With 6 cores, there are 5 query threads and
5 MLC threads. With 10 cores, there are 7 query threads and 7 MLC threads. In our experiments,
allocating more threads in each case degrades write speed, as excessive threads negatively impact
the flush thread. We observe that in all cases, Moose and the lazy leveling compaction policy exhibit
similar performance. Our EcoTune consistently achieves the best performance. Furthermore, we
find that EcoTune shows a greater advantage with 10 cores compared to 6 cores. This is because
EcoTune optimizes the assignment of compactions and queries to threads. However, CPU cores
have their own scheduling algorithms to execute different threads concurrently rather than in
parallel. This leads to additional CPU contention and context-switching overhead, which is not
accounted for in our EcoTune. Such unaccounted overhead is relatively significant with 6 cores.
Impact of SSD Bandwidth and Latency. We use an NVMe SSD and an Optane SSD in our
experiment. We find that our EcoTune has a greater advantage on the Optane SSD. The reasons are:
(1) The Optane SSD has a larger write bandwidth and similar sequential write latency compared to
the NVMe SSD. This enables the write speed to scale better, making compaction time relatively low,
while the flush time remains similar to that of the NVMe SSD. Since the time of a compaction round
is determined by flush time, the Optane SSD allows more time for queries during a compaction
round. (2) The random read latency is lower, allowing for more sorted runs on the SSD. This enlarges
the design space for the compaction policy.

5.3 Experiments on Latency
When discussing query latency, all previous works [19, 47, 54, 55, 74, 80] focused solely on execution
latency. However, we found that the primary contributor to query latency is queuing latency. In

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

Rethinking The Compaction Policies in LSM-trees 207:21

real applications, the query request arrival rate is also determined by clients. When the system is
temporarily unable to provide sufficient query throughput, incoming query requests will queue
up, leading to increased latency. Unfortunately, previous research has not considered this queuing
latency. This queuing phenomenon is common in all LSM-trees because compaction consumes
significant CPU and I/O resources, which greatly slows down (or even halts) queries during
compaction, causing requests to queue.

In this section, we demonstrate how EcoTune reduces query latency (including queuing latency)
compared to other compaction policies by achieving higher average query throughput. Under a
100 MB/s write speed, we vary the query arrival speed from 10K/s to 50K/s. As shown in Figure 9,
our EcoTune reduces latency by up to 4 and 3 orders of magnitude compared to Leveling and
Lazy Leveling, respectively. This is because we spend much less time on compactions compared
to the leveling policy, so the average number of accumulated query requests during compactions
is relatively low. Our policy also maintains fewer sorted runs, resulting in faster query execution
compared to Lazy Leveling. As a result, EcoTune allows most of the accumulated query requests
during compaction to be processed quickly. With a query arrival rate of 30K/s, we conducted two
experiments. In Figure 9b, queries arrive uniformly, while in Figure 9c, the query arrival rate is
set to 15K/s, with each query having a 5% probability of triggering 20 queries simultaneously. Our
results show that all algorithms experience increased latency under the workload spike. However,
the latency of our EcoTune remains relatively stable, increasing by less than 2 times compared to
the uniform case.

We also find that the allocation of threads between MLC threads and query threads significantly
impacts query latency. Although allocating all available threads to MLC threads results in higher
average query throughput, it is suboptimal for query latency. With more MLC threads, the LSM-
tree completes compaction faster, but the query speed during compaction decreases. Conversely,
reserving more query threads leads to longer compaction times but higher query speed during
compaction. This trade-off is complex, and we are the first to experimentally study this issue.
Given 14 available threads, we vary the number of query threads from 4 to 10. The results are

shown in Figure 9. Although our EcoTune is not particularly designed for latency, we find that
EcoTune consistently exhibits the lowest latency regardless of thread allocation as it has higher
average query throughput3. Each policy experiences relatively high tail latency due to queuing
caused by compaction even under a low query arrival rate. In Figure 8, all algorithms achieve a
query throughput of more than 10 KOPS. However, in Figure 9a, all algorithms still exhibit a high
tail latency of several milliseconds. The reason for this is that when queries arrive as a stream, there
are moments when neither queries nor compaction tasks are present, leaving the CPU cores free.
At other times, compaction tasks may cause query requests to queue, resulting in higher latency.
In other words, the CPU cores for all algorithms are under-utilized. A potential solution to this
problem is to adjust the compaction policy based on the query arrival rate to ensure that the CPU
cores remain fully utilized. For example, if there are no incoming queries, all available threads
can be used to greedily compact sorted runs into the last level. In this scenario, there is no need
to reserve CPU or I/O resources for query processing. We propose this query-stream-dependent
compaction strategy as an interesting direction for future work.

5.4 Performance under Skewed YCSB workload
Our previous experiments were conducted with a uniform workload, where nearly all queries
required SSD I/Os. In this experiment, we use the YCSB benchmark to generate a skewed workload

3In fact, the queuing latency will finally become infinite if the query arrival speed is higher than the average query
throughput. We only measure the tail latency within a compaction round.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

207:22 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

Optane (KOPS) NVMe (KOPS)
EcoTune 174.80 122.86
Lazy Leveling 157.85 109.90
Leveling 29.52 23.09
Moose 142.11 104.07

Table 9. Average query throughput on different SSDs with YCSB workload.

consisting of 30% long-range scans and 70% point reads. The write speed is set to 100 MB/s. The
results, shown in Table 9, demonstrate that EcoTune outperforms lazy leveling by approximately 15%,
though this advantage is less pronounced compared to the uniformworkload. Conversely, EcoTune’s
advantage over the leveling policy is significantly greater, achieving 6× average throughput. The
reason is that aggressive compaction frequently invalidates cached data blocks, as reported by [83].
EcoTune uses an aggressive compaction policy at the beginning of a compaction round and the
leveling policy is aggressive all the time, which lower the cache hit rate for each algorithm.

5.5 Performance under High Parallelism and Different Write Speed
When sufficient CPU resources are available, the average query throughput is bottlenecked by
SSD bandwidth. In fact, our model does not differentiate between CPU or I/O bottlenecks. We also
conduct experiments at lower write speeds to demonstrate that our EcoTune performs well under
various settings.
High Parallelism Performance. In Figure 10a and Figure 10b, we use 64 threads to evaluate the
performance of different policies under high parallelism. The experiment targets the I/O bottleneck
cases, so we assign each thread its own CPU core to avoid any contention on CPU cores. Our
EcoTune outperforms all baselines.
The Impact of Write Speed. In previous experiments, we fixed the write speed at 100 MB/s,
which is significantly higher than most real-world workloads. We are also interested in examining
each compaction policy’s query performance when the write speed is lower. We vary the write
speed from 20 MB/s to 100 MB/s, with the long-range scan ratio set to 30%. The experimental
results are shown in Figure 10c anc Figure 10d. When the write speed is low, the leveling policy
achieves higher query throughput than the lazy leveling policy and Moose. A lower write speed
means a longer compaction round. For each compaction policy, the compaction time occupies a
small portion of the overall compaction round, and the leveling policy has fewer sorted runs and
faster query execution. Our EcoTune still identifies the optimal policy and achieves higher query
throughput than the leveling policy.

6 Conclusion
We have introduced a novel perspective on the compaction process in LSM-trees. Given a specific
write speed, our compaction policy aims to maximize average query throughput. We have observed
the competitive relationship between compaction and query operations. To address this, we propose
a DP algorithm that optimally balances the competition between compaction and queries.

Acknowledgement
This work was supported (in part) by the Shanghai Qi Zhi Institute Innovation Program SQZ202406.

References
[1] [n. d.]. Apache. Cassandra. http://cassandra.apache.org.
[2] [n. d.]. Apache. HBase. http://hbase.apache.org/.
[3] [n. d.]. CockroachDB. https://github.com/cockroachdb/cockroach.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

http://cassandra.apache.org
http://hbase.apache.org/

Rethinking The Compaction Policies in LSM-trees 207:23

[4] [n. d.]. Facebook. RocksDB. https://github.com/facebook/rocksdb.
[5] [n. d.]. Intel Optane SSD DC P5800X Series 800GB. https://www.intel.com/content/www/us/en/products/sku/201860/

intel-optane-ssd-dc-p5800x-series-800gb-2-5in-pcie-x4-3d-xpoint/specifications.html.
[6] [n. d.]. LinkedIn. Voldemort. http://www.project-voldemort.com.
[7] [n. d.]. Rocksdb Tuning Guide. https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide.
[8] [n. d.]. RocksDB. Universal Compaction. https://github.com/facebook/rocksdb/wiki/universal-compaction.
[9] [n. d.]. Sanjay Ghemawat and Jeff Dean. LevelDB. https://github.com/google/leveldb.
[10] [n. d.]. Solidigm D7-P5620 SSD. https://www.solidigm.com/products/data-center/d7/p5620.html.
[11] [n. d.]. WiredTiger. https://github.com/wiredtiger/wiredtiger.
[12] 2015. M. Annamalai. Zippydb: a modern, distributed keyvalue data store. https://www.youtube.com/watch?v=

DfiN7pG0D0k.
[13] Ildar Absalyamov, Michael J. Carey, and Vassilis J. Tsotras. 2018. Lightweight Cardinality Estimation in LSM-based

Systems. Proceedings of the 2018 International Conference on Management of Data (2018). https://api.semanticscholar.
org/CorpusID:4851108

[14] Muhammad Yousuf Ahmad and Bettina Kemme. 2015. Compaction Management in Distributed Key-Value Datastores.
Proc. VLDB Endow. 8 (2015), 850–861. https://api.semanticscholar.org/CorpusID:14622760

[15] Wail Y. Alkowaileet, Sattam Alsubaiee, and Michael J. Carey. 2019. An LSM-based tuple compaction framework for
Apache AsterixDB. Proceedings of the VLDB Endowment 13 (2019), 1388 – 1400. https://api.semanticscholar.org/
CorpusID:204788800

[16] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark D. Callaghan. 2013. LinkBench: a database
benchmark based on the Facebook social graph. InACM SIGMODConference. https://api.semanticscholar.org/CorpusID:
11759711

[17] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan Gupta, and
Pavan Konka. 2017. TRIAD: Creating Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores.
In USENIX Annual Technical Conference. https://api.semanticscholar.org/CorpusID:22824631

[18] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chandhiramoorthi, and Diego Didona. 2019.
SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. In USENIX Annual Technical Conference.
https://api.semanticscholar.org/CorpusID:196810469

[19] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chandhiramoorthi, and Diego Didona.
2019. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA, 753–766. https://www.usenix.org/conference/atc19/
presentation/balmau

[20] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13 (1970), 422–426.
[21] Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and Gali Sheffi. 2018. Accordion: Better Memory

Organization for LSM Key-Value Stores. Proc. VLDB Endow. 11 (2018), 1863–1875. https://api.semanticscholar.org/
CorpusID:49572006

[22] Zhichao Cao, Siying Dong, Sagar Vemuri, and David Hung-Chang Du. 2020. Characterizing, Modeling, and
Benchmarking RocksDB Key-Value Workloads at Facebook. In USENIX Conference on File and Storage Technologies.
https://api.semanticscholar.org/CorpusID:211137004

[23] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018. HashKV: Enabling Efficient Updates in KV
Storage via Hashing. In USENIX Annual Technical Conference. https://api.semanticscholar.org/CorpusID:260548458

[24] Subarna Chatterjee, Meena Jagadeesan, Wilson Qin, and Stratos Idreos. 2021. Cosine: A Cloud-Cost Optimized Self-
Designing Key-Value Storage Engine. Proc. VLDB Endow. 15 (2021), 112–126. https://api.semanticscholar.org/CorpusID:
245811523

[25] Subarna Chatterjee, Mark F. Pekala, Lev Kruglyak, and Stratos Idreos. 2024. Limousine: Blending Learned and Classical
Indexes to Self-Design Larger-than-Memory Cloud Storage Engines. Proc. ACM Manag. Data 2, 1, Article 47 (mar
2024), 28 pages. doi:10.1145/3639302

[26] Feng Chen, Rubao Lee, and Xiaodong Zhang. 2011. Essential roles of exploiting internal parallelism of flash memory
based solid state drives in high-speed data processing. 2011 IEEE 17th International Symposium on High Performance
Computer Architecture (2011), 266–277. https://api.semanticscholar.org/CorpusID:41957

[27] Guanduo Chen, Zhenying He, Meng Li, and Siqiang Luo. 2024. Oasis: An Optimal Disjoint Segmented Learned Range
Filter. Proc. VLDB Endow. 17, 8 (may 2024), 1911–1924. doi:10.14778/3659437.3659447

[28] Alex Conway, Martín Farach-Colton, and Rob Johnson. 2023. SplinterDB and Maplets: Improving the Tradeoffs in
Key-Value Store Compaction Policy. Proc. ACM Manag. Data 1, 1, Article 46 (may 2023), 27 pages. doi:10.1145/3588726

[29] Marco Costa, Paolo Ferragina, and Giorgio Vinciguerra. 2024. Grafite: Taming Adversarial Queries with Optimal
Range Filters. Proc. ACM Manag. Data 2, 1, Article 3 (mar 2024), 23 pages. doi:10.1145/3639258

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

https://github.com/facebook/rocksdb.
https://www.intel.com/content/www/us/en/products/sku/201860/intel-optane-ssd-dc-p5800x-series-800gb-2-5in-pcie-x4-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/201860/intel-optane-ssd-dc-p5800x-series-800gb-2-5in-pcie-x4-3d-xpoint/specifications.html
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide.
https://github.com/facebook/rocksdb/wiki/universal-compaction
https://github.com/google/leveldb
https://www.solidigm.com/products/data-center/d7/p5620.html
 https://www.youtube.com/watch? v=DfiN7pG0D0k
 https://www.youtube.com/watch? v=DfiN7pG0D0k
https://api.semanticscholar.org/CorpusID:4851108
https://api.semanticscholar.org/CorpusID:4851108
https://api.semanticscholar.org/CorpusID:14622760
https://api.semanticscholar.org/CorpusID:204788800
https://api.semanticscholar.org/CorpusID:204788800
https://api.semanticscholar.org/CorpusID:11759711
https://api.semanticscholar.org/CorpusID:11759711
https://api.semanticscholar.org/CorpusID:22824631
https://api.semanticscholar.org/CorpusID:196810469
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://api.semanticscholar.org/CorpusID:49572006
https://api.semanticscholar.org/CorpusID:49572006
https://api.semanticscholar.org/CorpusID:211137004
https://api.semanticscholar.org/CorpusID:260548458
https://api.semanticscholar.org/CorpusID:245811523
https://api.semanticscholar.org/CorpusID:245811523
https://doi.org/10.1145/3639302
https://api.semanticscholar.org/CorpusID:41957
https://doi.org/10.14778/3659437.3659447
https://doi.org/10.1145/3588726
https://doi.org/10.1145/3639258

207:24 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

[30] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings
of the 2017 ACM International Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association
for Computing Machinery, New York, NY, USA, 79–94. doi:10.1145/3035918.3064054

[31] Niv Dayan, Philippe Bonnet, and Stratos Idreos. 2016. GeckoFTL: Scalable Flash Translation Techniques For Very
Large Flash Devices. Proceedings of the 2016 International Conference on Management of Data (2016).

[32] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores
via Adaptive Removal of Superfluous Merging. Proceedings of the 2018 International Conference on Management of Data
(2018).

[33] Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the Wacky Continuum. Proceedings of the 2019
International Conference on Management of Data (2019).

[34] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-Tree. In Proceedings of the 2021
International Conference on Management of Data (Virtual Event, China) (SIGMOD ’21). Association for Computing
Machinery, New York, NY, USA, 365–378. doi:10.1145/3448016.3457273

[35] Niv Dayan, Tamar Weiss, Shmuel Dashevsky, Michael Pan, Edward Bortnikov, and Moshe Twitto. 2022. Spooky:
Granulating LSM-Tree Compactions Correctly. Proc. VLDB Endow. 15 (2022), 3071–3084.

[36] Peter C. Dillinger and Stefan Walzer. 2021. Ribbon filter: practically smaller than Bloom and Xor. ArXiv abs/2103.02515
(2021).

[37] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee Tan. 2017. BLOCKBENCH: A
Framework for Analyzing Private Blockchains. Proceedings of the 2017 ACM International Conference on Management
of Data (2017).

[38] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. Evolution of Development Priorities in Key-value
Stores Serving Large-scale Applications: The RocksDB Experience. In 19th USENIX Conference on File and Storage
Technologies (FAST 21). USENIX Association, 33–49. https://www.usenix.org/conference/fast21/presentation/dong

[39] Tomer Even, Guy Even, and Adam Morrison. 2022. Prefix Filter: Practically and Theoretically Better Than Bloom.
ArXiv abs/2203.17139 (2022).

[40] Bin Fan, David G. Andersen, Michael Kaminsky, and Michael Mitzenmacher. 2014. Cuckoo Filter: Practically Better
Than Bloom. Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and
Technologies (2014).

[41] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar. 2015. Scaling concurrent log-structured data stores.
In Proceedings of the Tenth European Conference on Computer Systems (Bordeaux, France) (EuroSys ’15). Association for
Computing Machinery, New York, NY, USA, Article 32, 14 pages. doi:10.1145/2741948.2741973

[42] Thomas Mueller Graf and Daniel Lemire. 2019. Xor Filters: Faster and Smaller Than Bloom and Cuckoo Filters. arXiv:
Data Structures and Algorithms (2019).

[43] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei
Cao, and Qiang Li. 2019. X-Engine: An Optimized Storage Engine for Large-scale E-commerce Transaction Processing.
In Proceedings of the 2019 International Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19).
Association for Computing Machinery, New York, NY, USA, 651–665. doi:10.1145/3299869.3314041

[44] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei
Cao, and Qiang Li. 2019. X-Engine: An Optimized Storage Engine for Large-scale E-commerce Transaction Processing.
Proceedings of the 2019 International Conference on Management of Data (2019).

[45] Andrew Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis. 2021. Endure: A Robust Tuning
Paradigm for LSM Trees Under Workload Uncertainty. Proc. VLDB Endow. 15 (2021), 1605–1618.

[46] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew Slavin Ross, James Lennon, Varun Jain,
Harshita Gupta, David Li, and Zichen Zhu. 2019. Design Continuums and the Path Toward Self-Designing Key-Value
Stores that Know and Learn. In Conference on Innovative Data Systems Research. https://api.semanticscholar.org/
CorpusID:58013807

[47] IM Junsu, Jinwook Bae, Daegu Gyeongbuk, Chanwoo Chung, Sungjin Lee, Junsu Im, Jinwook Bae, and Chanwoo
Chung. 2021. Design of LSM-tree-based Key-value SSDs with Bounded Tails. ACM Transactions on Storage (TOS) 17
(2021), 1 – 27. https://api.semanticscholar.org/CorpusID:235441154

[48] Yuyuan Kang, Xiangdong Huang, Shaoxu Song, Lingzhe Zhang, Jialin Qiao, Chen Wang, Jianmin Wang, and Julian
Feinauer. 2022. Separation or Not: On Handing Out-of-Order Time-Series Data in Leveled LSM-Tree. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). 3340–3352. doi:10.1109/ICDE53745.2022.00315

[49] Hiwot Tadese Kassa, JasonAkers, MrinmoyGhosh, Zhichao Cao, VaibhavGogte, and Ronald Dreslinski. 2021. Improving
Performance of Flash Based Key-Value Stores Using Storage Class Memory as a Volatile Memory Extension. In 2021
USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association, 821–837. https://www.usenix.org/
conference/atc21/presentation/kassa

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3448016.3457273
https://www.usenix.org/conference/fast21/presentation/dong
https://doi.org/10.1145/2741948.2741973
https://doi.org/10.1145/3299869.3314041
https://api.semanticscholar.org/CorpusID:58013807
https://api.semanticscholar.org/CorpusID:58013807
https://api.semanticscholar.org/CorpusID:235441154
https://doi.org/10.1109/ICDE53745.2022.00315
https://www.usenix.org/conference/atc21/presentation/kassa
https://www.usenix.org/conference/atc21/presentation/kassa

Rethinking The Compaction Policies in LSM-trees 207:25

[50] Taewoo Kim, Alexander Behm, Michael Blow, Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Murtadha Ai Hubail,
Shiva Jahangiri, Jianfeng Jia, Chen Li, Chen Luo, Ian Maxon, and Pouria Pirzadeh. 2020. Robust and efficient memory
management in Apache AsterixDB. Software: Practice and Experience 50 (2020), 1114 – 1151. https://api.semanticscholar.
org/CorpusID:214469621

[51] Eric Knorr, Baptiste Lemaire, Andrew Lim, Siqiang Luo, Huanchen Zhang, Stratos Idreos, and Michael Mitzenmacher.
2022. Proteus: A Self-Designing Range Filter. Proceedings of the 2022 International Conference on Management of Data
(2022).

[52] Haridimos Kondylakis, Niv Dayan, Konstantinos Zoumpatianos, and Themis Palpanas. 2018. Coconut: A Scal-
able Bottom-Up Approach for Building Data Series Indexes. Proc. VLDB Endow. 11 (2018), 677–690. https:
//api.semanticscholar.org/CorpusID:3569962

[53] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter A. Boncz. 2019. Performance-Optimal Filtering: Bloom
overtakes Cuckoo at High-Throughput. Proc. VLDB Endow. 12 (2019), 502–515. https://api.semanticscholar.org/
CorpusID:85529414

[54] Haoyu Li, LiuhuiWang, Qizhi Chen, Jianan Ji, YuhanWu, Yikai Zhao, Tong Yang, and Aditya Akella. 2023. ChainedFilter:
Combining Membership Filters by Chain Rule. Proceedings of the ACM on Management of Data 1 (2023), 1 – 27.
https://api.semanticscholar.org/CorpusID:261242942

[55] Junkai Liang and Yunpeng Chai. 2021. CruiseDB: An LSM-Tree Key-Value Store with Both Better Tail Throughput and
Tail Latency. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). 1032–1043. doi:10.1109/ICDE51399.
2021.00094

[56] Junfeng Liu, FanWang, Dingheng Mo, and Siqiang Luo. 2024. Structural Designs Meet Optimality: Exploring Optimized
LSM-tree Structures in a Colossal Configuration Space. Proc. ACM Manag. Data 2, 3, Article 175 (may 2024), 26 pages.
doi:10.1145/3654978

[57] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016.
WiscKey: Separating Keys from Values in SSD-conscious Storage. In USENIX Conference on File and Storage Technologies.
https://api.semanticscholar.org/CorpusID:11367463

[58] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016.
WiscKey: Separating Keys from Values in SSD-conscious Storage. In USENIX Conference on File and Storage Technologies.

[59] Chen Luo and Michael J. Carey. 2019. On Performance Stability in LSM-based Storage Systems. ArXiv abs/1906.09667
(2019). https://api.semanticscholar.org/CorpusID:195345039

[60] Chen Luo and Michael J. Carey. 2020. Breaking Down Memory Walls: Adaptive Memory Management in LSM-based
Storage Systems. Proc. VLDB Endow. 14 (2020), 241–254. https://api.semanticscholar.org/CorpusID:236120784

[61] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and Stratos Idreos. 2020. Rosetta: A
Robust Space-Time Optimized Range Filter for Key-Value Stores. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 2071–2086. doi:10.1145/3318464.3389731

[62] Siqiang Luo, Ben Kao, Guoliang Li, Jiafeng Hu, Reynold Cheng, and Yudian Zheng. 2018. TOAIN: A Throughput
Optimizing Adaptive Index for Answering Dynamic kNN Queries on Road Networks. Proc. VLDB Endow. 11 (2018),
594–606. https://api.semanticscholar.org/CorpusID:5595327

[63] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons Kemper, Thomas Neumann,
and Tim Kraska. 2020. Benchmarking learned indexes. Proceedings of the VLDB Endowment 14 (2020), 1 – 13.

[64] Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks. Proceedings of the VLDB Endowment 13 (2020),
3217 – 3230. https://api.semanticscholar.org/CorpusID:221539348

[65] Dingheng Mo, Fanchao Chen, Siqiang Luo, and Caihua Shan. 2023. Learning to Optimize LSM-trees: Towards A
Reinforcement Learning based Key-Value Store for Dynamic Workloads. Proc. ACM Manag. Data 1, 3, Article 213 (nov
2023), 25 pages. doi:10.1145/3617333

[66] Dingheng Mo, Fanchao Chen, Siqiang Luo, and Caihua Shan. 2023. Learning to Optimize LSM-trees: Towards
A Reinforcement Learning based Key-Value Store for Dynamic Workloads. ArXiv abs/2308.07013 (2023). https:
//api.semanticscholar.org/CorpusID:260886977

[67] Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martín Farach-Colton, and Rob Johnson. 2021. Vector
Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. Proceedings of the 2021 International Conference
on Management of Data (2021). https://api.semanticscholar.org/CorpusID:233238457

[68] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gilad Oved, Zachary Keener, Vijay Chidambaram, and Ittai
Abraham. 2018. mLSM: Making Authenticated Storage Faster in Ethereum. In USENIX Workshop on Hot Topics in
Storage and File Systems. https://api.semanticscholar.org/CorpusID:46996220

[69] Kai Ren, Qing Zheng, Joy Arulraj, and Garth A. Gibson. 2017. SlimDB: A Space-Efficient Key-Value Storage Engine For
Semi-Sorted Data. Proc. VLDB Endow. 10 (2017), 2037–2048. https://api.semanticscholar.org/CorpusID:3625489

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

https://api.semanticscholar.org/CorpusID:214469621
https://api.semanticscholar.org/CorpusID:214469621
https://api.semanticscholar.org/CorpusID:3569962
https://api.semanticscholar.org/CorpusID:3569962
https://api.semanticscholar.org/CorpusID:85529414
https://api.semanticscholar.org/CorpusID:85529414
https://api.semanticscholar.org/CorpusID:261242942
https://doi.org/10.1109/ICDE51399.2021.00094
https://doi.org/10.1109/ICDE51399.2021.00094
https://doi.org/10.1145/3654978
https://api.semanticscholar.org/CorpusID:11367463
https://api.semanticscholar.org/CorpusID:195345039
https://api.semanticscholar.org/CorpusID:236120784
https://doi.org/10.1145/3318464.3389731
https://api.semanticscholar.org/CorpusID:5595327
https://api.semanticscholar.org/CorpusID:221539348
https://doi.org/10.1145/3617333
https://api.semanticscholar.org/CorpusID:260886977
https://api.semanticscholar.org/CorpusID:260886977
https://api.semanticscholar.org/CorpusID:233238457
https://api.semanticscholar.org/CorpusID:46996220
https://api.semanticscholar.org/CorpusID:3625489

207:26 Hengrui Wang, Jiansheng Qiu, Fangzhou Yuan, & Huanchen Zhang

[70] Sean C. Rhea, EricWang, EdmundWong, Ethan Atkins, and Nat Storer. 2017. LittleTable: A Time-Series Database and Its
Uses. Proceedings of the 2017 ACM International Conference on Management of Data (2017). https://api.semanticscholar.
org/CorpusID:28501514

[71] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanassoulis. 2020. Lethe: A Tunable Delete-
Aware LSM Engine. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (2020).
https://api.semanticscholar.org/CorpusID:216034805

[72] Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis. 2021. Constructing and Analyzing the
LSM Compaction Design Space. Proc. VLDB Endow. 14 (2021), 2216–2229.

[73] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: a general purpose log structured merge tree. Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data (2012). https://api.semanticscholar.org/CorpusID:
207194816

[74] Hui Sun, Guanzhong Chen, Yinliang Yue, and Xiao Qin. 2023. Improving LSM-Tree Based Key-Value Stores With
Fine-Grained Compaction Mechanism. IEEE Transactions on Cloud Computing 11 (2023), 3778–3796. https://api.
semanticscholar.org/CorpusID:264981626

[75] Risi Thonangi and Jun Yang. 2017. On Log-Structured Merge for Solid-State Drives. 2017 IEEE 33rd International
Conference on Data Engineering (ICDE) (2017), 683–694. https://api.semanticscholar.org/CorpusID:852089

[76] Kapil Vaidya, Subarna Chatterjee, Eric Knorr, Michael Mitzenmacher, Stratos Idreos, and Tim Kraska. 2022. SNARF: A
Learning-Enhanced Range Filter. Proc. VLDB Endow. 15, 8 (jun 2022), 1632–1644. doi:10.14778/3529337.3529347

[77] Tobias Vinçon, Sergey Hardock, Christian Riegger, Julian Oppermann, Andreas Koch, and Ilia Petrov. 2018. NoFTL-KV:
TacklingWrite-Amplification on KV-Stores with Native Storage Management. In International Conference on Extending
Database Technology. https://api.semanticscholar.org/CorpusID:266407

[78] Hengrui Wang, Te Guo, Junzhao Yang, and Huanchen Zhang. 2024. GRF: A Global Range Filter for LSM-Trees with
Shape Encoding. Proc. ACM Manag. Data 2, 3, Article 141 (may 2024), 27 pages. doi:10.1145/3654944

[79] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang, and Jason Cong. 2014. An efficient
design and implementation of LSM-tree based key-value store on open-channel SSD. In European Conference on
Computer Systems. https://api.semanticscholar.org/CorpusID:3339913

[80] Zepeng Wang and Shu Yin. 2023. RBC: A bandwidth controller to reduce write-stalls and tail latency. 213–222.
doi:10.1145/3605573.3605601

[81] Ziwei Wang, Zheng Zhong, Jiarui Guo, Yuhan Wu, Haoyu Li, Tong Yang, Yaofeng Tu, Huanchen Zhang, and Bin Cui.
2023. REncoder: A Space-Time Efficient Range Filter with Local Encoder. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE). 2036–2049. doi:10.1109/ICDE55515.2023.00158

[82] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-based Ultra-Large Key-Value Store for
Small Data Items. In USENIX Annual Technical Conference. https://api.semanticscholar.org/CorpusID:13430182

[83] Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng, Feifei Li, Lei Zou, Yujie Wang, Rong yao Chen, Jianying Wang,
and Gui Huang. 2020. Leaper. Proceedings of the VLDB Endowment 13 (2020), 1976 – 1989. https://api.semanticscholar.
org/CorpusID:221082134

[84] Ting Yao, Ji guang Wan, Ping Huang, Xubin He, Qingxin Gui, Fei Wu, and Changsheng Xie. 2017. A Light-weight
Compaction Tree to Reduce I / O Amplification toward Efficient Key-Value Stores. https://api.semanticscholar.org/
CorpusID:13577976

[85] Ting Yao, Ji guang Wan, Ping Huang, Xubin He, Fei Wu, and Changsheng Xie. 2017. Building Efficient Key-Value Stores
via a Lightweight Compaction Tree. ACM Transactions on Storage (TOS) 13 (2017), 1 – 28. https://api.semanticscholar.
org/CorpusID:25350030

[86] Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Åke Larson, Umar Farooq Minhas, and Tim Kraska. 2022.
TreeLine: An Update-In-Place Key-Value Store for Modern Storage. Proc. VLDB Endow. 16 (2022), 99–112. https:
//api.semanticscholar.org/CorpusID:252924530

[87] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael Kaminsky, Kimberly Keeton, and Andrew
Pavlo. 2018. SuRF: Practical Range Query Filtering with Fast Succinct Tries. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New
York, NY, USA, 323–336. doi:10.1145/3183713.3196931

[88] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu, Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng He, Feifei
Li, Wei Cao, Zhongdong Huang, and Jianling Sun. 2020. FPGA-Accelerated Compactions for LSM-based Key-Value
Store. In USENIX Conference on File and Storage Technologies. https://api.semanticscholar.org/CorpusID:211567164

[89] Zichen Zhu. 2023. SHaMBa: Reducing Bloom Filter Overhead in LSM Trees. In PhD@VLDB. https://api.semanticscholar.
org/CorpusID:259848936

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 207. Publication date: June 2025.

https://api.semanticscholar.org/CorpusID:28501514
https://api.semanticscholar.org/CorpusID:28501514
https://api.semanticscholar.org/CorpusID:216034805
https://api.semanticscholar.org/CorpusID:207194816
https://api.semanticscholar.org/CorpusID:207194816
https://api.semanticscholar.org/CorpusID:264981626
https://api.semanticscholar.org/CorpusID:264981626
https://api.semanticscholar.org/CorpusID:852089
https://doi.org/10.14778/3529337.3529347
https://api.semanticscholar.org/CorpusID:266407
https://doi.org/10.1145/3654944
https://api.semanticscholar.org/CorpusID:3339913
https://doi.org/10.1145/3605573.3605601
https://doi.org/10.1109/ICDE55515.2023.00158
https://api.semanticscholar.org/CorpusID:13430182
https://api.semanticscholar.org/CorpusID:221082134
https://api.semanticscholar.org/CorpusID:221082134
https://api.semanticscholar.org/CorpusID:13577976
https://api.semanticscholar.org/CorpusID:13577976
https://api.semanticscholar.org/CorpusID:25350030
https://api.semanticscholar.org/CorpusID:25350030
https://api.semanticscholar.org/CorpusID:252924530
https://api.semanticscholar.org/CorpusID:252924530
https://doi.org/10.1145/3183713.3196931
https://api.semanticscholar.org/CorpusID:211567164
https://api.semanticscholar.org/CorpusID:259848936
https://api.semanticscholar.org/CorpusID:259848936

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Rethinking the Compaction Design
	3.1 Impact on Write Performance
	3.2 Impact on Query Performance

	4 The EcoTune Algorithm
	4.1 Query Performance Analysis
	4.2 Three-Level Design
	4.3 Dynamic Programming Algorithm

	5 Evaluation
	5.1 Experiments Setup
	5.2 Experiments on Average Query Throughput
	5.3 Experiments on Latency
	5.4 Performance under Skewed YCSB workload
	5.5 Performance under High Parallelism and Different Write Speed

	6 Conclusion
	References

