
Data Chunk Compaction in Vectorized Execution
YIMING QIAO, Institute for Interdisciplinary Information Sciences, Tsinghua University, China
HUANCHEN ZHANG∗, Institute for Interdisciplinary Information Sciences, Tsinghua University, China

Modern analytical database management systems often adopt vectorized query execution engines that process
columnar data in batches (i.e., data chunks) to minimize the interpretation overhead and improve CPU
parallelism. However, certain database operators, especially hash joins, can drastically reduce the number of
valid entries in a data chunk, resulting in numerous small chunks in an execution pipeline. These small chunks
cannot fully enjoy the benefits of vectorized query execution, causing significant performance degradation.
The key research question is when and how to compact these small data chunks during query execution. In this
paper, we first model the chunk compaction problem and analyze the trade-offs between different compaction
strategies. We then propose a learning-based algorithm that can adjust the compaction threshold dynamically
at run time. To answer the “how” question, we propose a compaction method for the hash join operator, called
logical compaction, that minimizes data movements when compacting data chunks. We implemented the
proposed techniques in the state-of-the-art DuckDB and observed up to 63% speedup when evaluated using
the Join Order Benchmark, TPC-H, and TPC-DS.

CCS Concepts: • Information systems→ Database query processing.

Additional Key Words and Phrases: Vectorized Query Execution

ACM Reference Format:
Yiming Qiao and Huanchen Zhang. 2025. Data Chunk Compaction in Vectorized Execution. Proc. ACM Manag.
Data 3, 1 (SIGMOD), Article 26 (February 2025), 25 pages. https://doi.org/10.1145/3709676

1 Introduction
Vectorized execution refers to the query processing model where each database operator computes
on a vector of tuples (i.e., a data chunk) rather than a single tuple at a time. Many modern analytical
databases [10, 11, 31, 46, 50] adopt vectorized execution to accelerate query processing because it
reduces the interpretation overhead and improves CPU parallelism [5]. The vector size is critical
to the overall query performance. If the vector is too large to fit in the CPU cache, performance
will suffer from cache misses. On the other hand, if the vector contains too few tuples, vectorized
execution will degenerate into the classic volcano model [12], losing the aforementioned advantages.
Boncz et al. [5] showed empirically that the optimal size of a data chunk is in a few thousand

tuples (e.g., 2048). Although we can initialize the input data chunks to this optimal size, the number
of valid tuples within each chunk can be reduced by certain operators during query execution [21].
We call these operators Chunk-Reducing Operators (CROs). The most common CROs are filters
and hash joins. After a data chunk goes through a filter operator, it updates its selection vector or
bitmap and thus reduces its size effectively [29]. A vectorized hash join implementation takes a
data chunk to probe hash table buckets in parallel [32]. Because each bucket can contain many
∗Huanchen Zhang is also affiliated with the Shanghai Qi Zhi Institute. Corresponding author.

Authors’ Contact Information: Yiming Qiao, Institute for Interdisciplinary Information Sciences, Tsinghua University,
Beijing, China, qiaoym21@mails.tsinghua.edu.cn; Huanchen Zhang, Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China, huanchen@tsinghua.edu.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
ACM 2836-6573/2025/2-ART26
https://doi.org/10.1145/3709676

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.

https://doi.org/10.1145/3709676
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3709676


26:2 Yiming Qiao and Huanchen Zhang

250 500 750 1000 1250 1500 1750 20001
Chunk-reducing Factor

0%

2%

4%

6%

8%

10%

Pe
rc

en
ta

ge
39%

Fig. 1. Distribution of the Chunk-Reducing Factor (CRF) - We executed the JOB on DuckDB and collected the
CRF for every data chunk that goes through a hash join operator. The default chunk size is 2048. It shows that
39% of all the data chunks have a CRF of 2048, which means each of them contains only one record.

items due to repeated values and hash collisions [45], an input data chunk often generates multiple
(smaller) output chunks with unmatched tuples invalidated after the hash join.

We define the Chunk-Reducing Factor (CRF) as the chunk size entering the operator divided by the
chunk size exiting the operator. We executed the Join Order Benchmark (JOB) [26] on DuckDB [37]
and collected the CRF for every data chunk that goes through a hash join operator. Figure 1 shows
the statistics for CRF. We observe that a majority of the data chunks become significantly smaller
after a hash join, and these smaller chunks lead to increased interpretation overhead and decreased
CPU parallelism for the downstream operators.
Therefore, compacting small chunks during execution is essential for the vectorized execution

model to achieve superior performance. However, compacting data chunks involves memory copies,
and such costs may outweigh the benefits of having proper-sized vectors. DuckDB handles this
trade-off by predefining a size threshold 𝛼 = 128. When an output chunk contains ≤ 𝛼 valid tuples,
it is copied to a buffer chunk, and the buffer chunk is sent to the next operator when it accumulates
enough tuples close to its capacity (i.e., 2048 tuples). This fixed-threshold approach can be inefficient
because the trade-off between interpretation overhead and memory movement is different for each
chunk-reducing operator and is dependent on the number of subsequent operators in the execution
pipeline. For example, there is no need to perform chunk compaction if the operator is at the end
of a pipeline (i.e., a sink operator).

In this paper, we investigate when and how to compact small data chunks efficiently during query
execution. We first define the chunk compaction problem and model the operator’s interpretation
cost and the chunk’s compaction cost. We then answer the “when” question by introducing a
lightweight learning-based algorithm (based on the Multi-Armed Bandit problem) to determine
the compaction threshold dynamically for each CRO at run time. To approach the “how” question,
we propose logical compaction that avoids unnecessary data movement when compacting small
chunks for vectorized hash join probes. The key idea is to have separate selection vectors for
the columns from both sides of the join operator within a chunk. We implemented the proposed
techniques including learning-based dynamic compaction and logical compaction in DuckDB, a
state-of-the-art analytical database, and achieved an end-to-end speedup of 11.8%, 6.1%, and 4.6%
for all the queries in Join Order Benchmark (JOB) [26], TPC-DS [8], and TPC-H [9], respectively.
For queries where hash joins have high CRFs, the performance improvement can be up to 63%
compared to the DuckDB default.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:3

Input Chunk

Columns SV

0

1

2

3

4

5

6

7

Columns SV
Columns SV

① ② 

Columns SV

RHS Columns

③ Hash Table Buckets

① ② ③ 

Jo
in

 K
ey

s

ProbeProbe NextNext

Result Chunk Result Chunk Result Chunk

RHS Columns RHS Columns
13

42

21

34

07

89

68

22

0
1
2
7
/
/
/
/

0
1
2
7
/
/
/
/

1

3

/

/

/

/

/

/

0

1

2

3

4

6

7

/

0

1

2

3

4

6

7

/

Valid Tuples: Tuples marked by the SV

Referencing Vector: A vector that holds a reference to data stored in another vector

Real Vector: A vector that directly allocates and manages its own memory

Fig. 2. Vectorized Hash Join - Hashes join keys, finds matched tuples, and gathers payloads. LHS columns are
zero-copy, while RHS columns require copying. We call Next() three times to generate three chunks, because
the buckets have chains up to length three.

We make four primary contributions in this paper. First, we define and provide a performance
analysis of the chunk compaction problem. Second, we propose an online learning-based algorithm
for adjusting the compaction threshold of each chunk-reducing operator. Third, we introduce logical
compaction that can minimize data movement for chunks output by hash join probes. Finally, we
verify in DuckDB that the proposed solutions improve end-to-end query performance, especially
for queries with multiple joins.

2 Background and Related Work
In this section, we offer the essential background on the vectorized query execution [5, 36] and the
vectorized hash join operator [32].

2.1 Vectorized Model
Vectorized execution, typically implemented with the morsel-driven parallelism [25], has been
widely adopted in modern analytical databases [4, 7, 10, 27, 37, 41]. The classic Volcano model [12]
executes queries by calling the Next() interface implemented by each relational algebra operator
to pull one result tuple at a time [36]. However, the fixed overhead of repeatedly invoking the
Next() function is noticeable [17, 28]. The computational primitives in the operators must support
a wide range of data types through programming techniques such as late-binding methods, function
pointers, or extensive case switches, thereby introducing interpretation overhead [21, 29].
To amortize the interpretation overhead, the vectorized execution model processes a batch of

tuples (e.g., 2048 tuples) for each call of Next(). The computational primitives are put in a tight for
loop for the tuple batch to fully leverage the parallelism in modern super-scalar and out-of-order
CPUs[13, 15]. Specifically, each execution pipeline processes a vector (i.e., data chunk) at a time
without the need to materialize the intermediate results. The vector size greatly impacts query
performance: too small vectors cause the engine to degenerate to the classic Volcano model, while
too large vectors cause excessive cache misses. Prior studies showed that the optimal vector size is
in a few thousand tuples [5].
Each data chunk uses a selection vector or bitmap to identify the valid tuples [29, 33]. For

example, DuckDB [37] and Vectorwise [50] use a selection vector, while DB2 with BLU [39]
employs a selection bitmap. As shown in Figure 2, the selection vector (1, 3) indicates that the
first and the third tuples are still valid in the data chunk. Applying a selection vector can avoid

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:4 Yiming Qiao and Huanchen Zhang

unnecessary data copy between input and output chunks, but the number of valid tuples within a
chunk (i.e., the chunk size) can keep decreasing during execution.

2.2 Vectorized Hash Join
A scalar lookup in a chaining hash table involves three steps: (1) hash the tuple’s join key 𝑘1 to
find the bucket; (2) compare 𝑘1 to the first key 𝑘2 in the bucket; (3) if 𝑘1 = 𝑘2, copy the payload to
the result tuple and continue to compare 𝑘1 to the next key in that bucket. During this processing,
if the hash table does not fit in the CPU cache, accessing 𝑘2 from the bucket will cause a cache
miss [43]. Such random memory accesses can easily become the performance bottleneck of a scalar
hash table [21, 45]. One solution is to radix partition the table according to the join keys so that
the hash table for each partition fits in cache [2, 3, 22, 40]. Although this approach reduces cache
misses for hash table probes, it introduces the additional partitioning step that often dominates the
join performance [2].

A vectorized hash join [25] addresses the above problems by issuing a batch of hash table probes
at once to better utilize the memory bandwidth [6, 32]. Figure 2 shows an example. A chaining
hash table is constructed for the right-hand-side (RHS) table. To perform a vectorized hash join,
we first hash all the join keys in the input chunk from the left-hand-side (LHS) table and obtain a
vector of bucket numbers (13, 42, 21, 34, 07, 68, 22). We then issue a batch of memory reads to load
the first item in each of the selected buckets and compare it to the corresponding input join key(s).
The output is a bitmap (1, 1, 1, 1, 1, 0, 1, 1) indicating if each input join key finds a match. Finally, we
construct the result chunk 1○ by referencing the input chunk for the LHS columns (zero-copy) and
gathering the payloads from the matching tuples for the RHS columns [20]. The selection vector in
this result chunk is SV = (0, 1, 2, 3, 4, 6, 7) because the 5th input tuple did not find a match.
We repeat the above process for the second item in each selected bucket. Again, the memory

probes are issued in parallel, and the key comparison result is (0, 1, 0, 1, 0, 0, 0, 0). Consequently,
the next result chunk 2○ contains an SV = (1, 3). This batch-probing process continues until we
reach the end of the bucket with the longest chain. A key characteristic of the vectorized hash
join, therefore, is that an input/probing chunk can generate multiple smaller output chunks. This
issue is mainly unavoidable due to data skew (i.e., repeated join keys) and remains independent of
hashing schemes.

Trade-off: Chunk Size vs. Zero-copy Benefit. To avoid small chunks, many databases, such
as Apache DataFusion [23] and CockroachDB [46], sacrifice the zero-copy benefit. They copy both
the LHS and RHS columns to produce full output data chunks [18, 19]. On the other hand, DuckDB
and Velox prefer the zero-copy approach. The trade-off of this approach is that it can generate
under-full chunks. DuckDB then predefines a size threshold and only compacts chunks with the
number of tuples smaller than the threshold. In the next section, we analyze the inefficiency of
current approaches.

3 The Chunk Compaction Problem
In this section, we formalize the compaction problem by analyzing the trade-off between the
interpretation overhead and the data-copying cost.

3.1 Motivation
A Chunk-Reducing Operator (CRO) refers to an operator that can reduce the number of valid entries
in a data chunk. The most common CROs are filters and hash joins. A query pipeline consisting
of CROs can reduce the chunk sizes progressively while generating more chunks. For example,
Figure 3 shows a query plan of joining four tables 𝑅, 𝑆,𝑇 ,𝑈 on columns 𝐴, 𝐵, and 𝐶 . This plan
comprises four pipelines: three building pipelines 1○- 3○ and one probing pipeline 4○. As shown in

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:5

R S

T

U

σ

⋈A

⋈B

⋈C

σ

σ

σ

① 

② 

③ 

④          10              20,000

         10              15,000

        400             30,000

       8000            10,000

# of Chunks    # of Tuples
1.25 tuples/chunk!

Fig. 3. Pipelines of a Joining Query - The chunk becomes smaller and smaller in the probe pipeline as shown
on the left.

the example, pipeline 4○ receives 10 input chunks, each of 2000 tuples. The filter operator makes
the data chunks 3/4 full on average. At the first hash join, the operator produces 400 chunks out of
the 10 input chunks with each containing 75 tuples on average. The next join uses these 400 chunks
to probe the hash table and generates 8000 chunks with a total of only 10,000 tuples, averaging 1.25
tuples per chunk. Such small data chunks, therefore, cause significant interpretation overhead for
the final hash join.
Compacting smaller chunks into larger ones can reduce the interpretation overhead for subse-

quent operators but it involves allocating new data chunks and copying tuples from the smaller
chunks into them. The decision of when to perform the compaction depends on balancing the
overhead of interpretation and tuple copying. In general, the smaller the chunk, the greater the
benefit from such compaction.

3.2 Problem Formulation
Consider 𝑛 data chunks with sizes 𝑆 = {𝑑1, · · · , 𝑑𝑛}, where 𝑑𝑖 is an integer. A chunk can contain a
maximum of 𝐷 (𝐷 = 2048 by default) tuples, i.e., 1 ≤ 𝑑𝑖 ≤ 𝐷 for all 𝑖 . These chunks are processed
by a pipeline with 𝑘 chunk-reducing operators. The pipeline needs time F𝑘 (𝑑) to process a chunk
of size 𝑑 . Let𝑀 denote a compaction on chunk set 𝑆

𝑀 : 𝑆 → 𝑅 ≜ {𝑑 ′1, · · · , 𝑑 ′𝑚}
that produces chunk set 𝑅 with a reduced number of chunks (1 ≤ 𝑚 ≤ 𝑛) while preserving the
total tuple count. Let G(𝑀, 𝑆) denote the time required for applying the compaction𝑀 on 𝑆 . The
goal is to minimize the total execution time

∑︁
𝑑 ′∈𝑅 F𝑘 (𝑑 ′) + G(𝑀, 𝑆). Each operator in a pipeline

encounters such a compaction challenge and must decide when to perform a compaction locally
and collectively establish a globally optimal compaction policy.

Compaction Cost. Let 𝑔(𝑑) denote the time cost of a particular compaction in𝑀 where chunks
𝑑𝑖 , · · · , 𝑑 𝑗 are compacted into a chunk of size 𝑑 ≤ 𝐷 . We model 𝑔(𝑑) in two parts. First, 𝑔 scales
linearly with the total number of tuples in the compacted chunks because of the per-tuple memory
copy cost𝐶2. Additionally, the compaction incurs a fixed cost𝐶1, which is independent of the chunk
size. Therefore,

𝑔(𝑑) = 𝐶1 + 𝑑 ·𝐶2

For example, as shown in Figure 4, we profiled the compaction operation in DuckDB and obtained
𝐶1 = 0.25𝜇𝑠 and 𝐶2 = 0.04𝜇𝑠 .

Compute Cost. Let 𝑓 (𝑑) denote the time needed to process a data chunk of size 𝑑 by a CRO:

𝑓 (𝑑) = 𝐶3 + 𝑑 ·𝐶4

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:6 Yiming Qiao and Huanchen Zhang

0 256 512 768 1024
Chunk Size

0

20

40

60
Co

m
pa

ct
io

n 
Co

st
 (u

s)
g(d)=C1 +d⋅C2

0 256 512 768 1024
Chunk Size

0

25

50

75

100

125

Pr
ob

in
g 

Co
st

 (u
s)

f(d)=C3 +d⋅C4

40 80
0
4
8

Zoom on Y-Intercept

10 20 30
0.0
0.5
1.0
Zoom on Y-Intercept

Fig. 4. Parameter Profiling - We measure the fixed and per-tuple cost of chunk compaction and hash-table
probing in DuckDB, getting 𝐶1 = 0.25𝜇𝑠 , 𝐶2 = 0.04𝜇𝑠 and 𝐶3 = 2.4𝜇𝑠 , 𝐶4 = 0.08𝜇𝑠 .

where𝐶3 represents the interpretation overhead, and𝐶4 is the per-tuple computational cost. Figure 4
gives an example of 𝐶3 = 2.4𝜇𝑠 and 𝐶4 = 0.08𝜇𝑠 via profiling the hash-table probes in DuckDB.

Suppose that the number of tuples produced by each operator is 𝑣 > 0 times the number of input
tuples with a Chunk-Reducing Factor (CRF, defined in Section 1) of 𝑟 ≥ 1. For example, if 𝑣 = 2
and 𝑟 = 4 for an operator, then an input chunk containing 16 valid tuples will produce 16 × 2 = 32
tuples with each output chunk consisting of 16/4 = 4 tuples. The total number of output chunks is
thus 𝑣 · 𝑟 = 8. Both filters and hash join probes are CROs. A filter operator typically generates one
output chunk (𝑣 · 𝑟 = 1) for each input chunk, where 1/𝑟 represents the filter selectivity. On the
other hand, a hash join probe can produce multiple result chunks (𝑣 · 𝑟 ≥ 1) out of an input chunk,
as described in Section 2.2.

The time for a 𝑘-CRO pipeline to process an input chunk of size 𝑑 , therefore, is

F𝑘 (𝑑) = 𝐶3 ·
𝑘∑︂
𝑗=1

min{𝑟 𝑗−1, 𝑑} · 𝑣 𝑗−1 +𝐶4 · 𝑑 · 𝑘 (1)

The last term is the per-tuple computing cost, which scales linearly with the number of tuples and
CROs. The first term represents the interpretation cost. It is calculated based on the number of
small chunks generated by the 𝑗-th operator. The 𝑗-th operator generates a total of 𝑑 · 𝑣 𝑗−1 tuples,
distributed across at most (𝑣 · 𝑟 ) 𝑗−1 chunks. Because the number of chunks cannot exceed the
number of available tuples, the 𝑗-th operator outputs at most min{𝑟 𝑗−1, 𝑑} · 𝑣 𝑗−1 small chunks.

3.3 A Near-optimal Greedy Strategy
In this section, we introduce a near-optimal greedy strategy, called Sort Compaction, that compacts
small chunks aggressively whenever it is beneficial according to the models in Section 3.2. For
an operator’s output chunk set 𝑆 , we first sort the chunks by size in ascending order (i.e., {𝑑1 ≤
, · · · , ≤ 𝑑𝑛}) and create a buffer chunk 𝐵 = {𝑑1} with an initial size 𝑑𝐵 = 𝑑1. We then iterate the
chunk list and try to decide for each chunk 𝑑𝑖 whether to copy it into the buffer. Note that if the
current buffer chunk 𝐵 does not have enough capacity to hold 𝑑𝑖 (𝑑𝐵 + 𝑑𝑖 > 𝐷), we create a new
buffer chunk that contains 𝑑𝑖 and send the current 𝐵 to the next operator as input. We define the
benefit of compacting 𝑑𝑖 into 𝐵 as

Gains(𝑑𝐵, 𝑑𝑖 ) ≜ F𝑘 (𝑑𝐵) + F𝑘 (𝑑𝑖 ) − F𝑘 (𝑑𝐵 + 𝑑𝑖 ) − 𝑔(𝑑𝑖 )

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:7

No Full Binary Dynamic Sort
0

50

100

150

200

250

Es
tim

at
ed

 C
os

t

0.0

60.2

20.1
0.0 0.0

132.3

181.9
152.4

132.3 132.3

r=4, k= 3,C1 = 6,C2 = 1,C3 = 60,C4 = 2
Compaction Cost
Compute Cost

No Full Binary Dynamic Sort
0

100

200

300

Es
tim

at
ed

 C
os

t

0.0

60.2
40.1

20.1 20.1

279.9

181.9 170.7 158.4 150.6

r=16, k= 3,C1 = 6,C2 = 1,C3 = 60,C4 = 2
Compaction Cost
Compute Cost

No Full Binary Dynamic Sort
0

100

200

300

Es
tim

at
ed

 C
os

t

0.0

60.2 60.2
40.2 40.1

181.9 182.0
162.5 161.9

1470

r=256, k= 3,C1 = 6,C2 = 1,C3 = 60,C4 = 2
Compaction Cost
Compute Cost

Case 1: Low CRF Case 2:Medium CRF Case 3: High CRF

No Full Binary Dynamic Sort
0

200

400

600

800

Es
tim

at
ed

 C
os

t

0.0

600.1

400.1

0.0 0.0

279.9

721.9

530.7

279.9 279.9

r= 16, k=3,C1 = 6,C2 =10,C3 = 60,C4 = 2
Compaction Cost
Compute Cost

No Full Binary Dynamic Sort
0

250

500

750

1000

1250

Es
tim

at
ed

 C
os

t

0.0

800.2

600.1

400.2

200.0

962.5

771.3

572.2 520.6

1520

r= 16, k=4,C1 = 6,C2 =10,C3 = 60,C4 = 2
Compaction Cost
Compute Cost

No Full Binary Dynamic Sort
0

500

1000

1500

Es
tim

at
ed

 C
os

t

0.0

999.8
800.2

600.3

200.0

1202.7
1012.0

813.5

569.9

2760

r= 16, k=5,C1 = 6,C2 =10,C3 = 60,C4 = 2
Compaction Cost
Compute Cost

Case 4:
Large Tuple & Shallow Pipeline

Case 5:
Large Tuple & Medium Pipeline

Case 6:
Large Tuple & Deep Pipeline

Fig. 5. Compaction Simulation - Comparing compaction strategies by varying the CRF and the number of
join operators.

where𝑘 denotes the number of subsequent operators in this pipeline. F𝑘 (𝑑𝐵)+F𝑘 (𝑑𝑖 ) and F𝑘 (𝑑𝐵+𝑑𝑖 )
represent the time cost without and with this particular compaction, respectively. 𝑔(𝑑𝑖 ) is the time
cost for this compaction.

If Gains(𝑑𝐵, 𝑑𝑖 ) ≥ 0, we add 𝑑𝑖 to 𝐵 and update 𝑑𝐵 = 𝑑𝐵 +𝑑𝑖 . Otherwise, we finish the compaction
as the remaining chunks are all larger than 𝑑𝑖 , therefore, leading to lower gains. We simplify the
Gains function by substituting Equation (1):

Gains(𝑑𝐵, 𝑑𝑖 ) = (𝐶3 − 𝑔(𝑑𝑖 ))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Direct Gain

+
(︂
𝐶3 ·

∑︁𝑘−1
𝑗=1 𝐴 𝑗

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Pipeline-level Gain

(2)

where 𝐴 𝑗 = 𝑣 𝑗 ·
{︁
min(𝑟 𝑗 , 𝑑𝐵) + min(𝑟 𝑗 , 𝑑𝑖 ) − min(𝑟 𝑗 , 𝑑𝐵 + 𝑑𝑖 )

}︁
. The Gains function consists of two

terms: 1) theDirect Gain, representing the immediate benefit to the current operator from reducing
its output chunks by one, and 2) the Pipeline-level Gain, reflecting the benefit for the subsequent
operators. The term 𝐴 𝑗 quantifies the reduction in output chunks produced by the 𝑗-th operator in
the pipeline when 𝑑𝑖 is compacted with 𝑑𝐵 .
Because of the pipeline-level gain, the position of an operator within the pipeline affects its

compaction policy: the preceding operators should adopt an aggressive policy, while the subsequent
operators should apply a conservative policy. Specifically, even if the direct gain for the current
operator is negative, compacting 𝑑𝑖 may still be beneficial. This is because it reduces the number of
chunks that subsequent operators must process. For example, consider a pipeline with two joins
(𝑘 = 2) where 𝑆 = {100, 400}, 𝑟 = 110, and 𝑣 = 1. Despite a negative direct gain in Gains(100, 400)
(𝐶3−𝑔(400) = −13.85), compaction reduces the interpretation overhead for the subsequent operators:
without compaction, the 2nd join processes 210 chunks; with compaction, this number drops to
110. This reduction of 𝐴1 = 100 chunks leads to a pipeline-level gain of 𝐶3 ·𝐴1 = 240, resulting in a
positive total gain.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:8 Yiming Qiao and Huanchen Zhang

3.4 Simulation-Based Analysis
In this section, we introduce three practical compaction strategies. By simulating different scenarios,
we assess the performance of each strategy, providing insights into their strengths and weaknesses.
We consider the following strategies:

• NoCompaction&Full Compaction.NoCompactionmethod is the simplest approachwhere no
chunk is compacted, while Full Compaction, on the contrary, compacts all chunks containing less
than 𝐷 tuples. Apache Data Fusion takes Full Compaction, which they call batch coalescence [23].

• Binary Compaction. DuckDB employs a compaction strategy where all chunks smaller than a
predefined threshold 𝛼̂ are compacted. Given a chunk set 𝑆 , DuckDB initializes an empty buffer
chunk 𝐵, with size 𝑑𝐵 = 0. As we iterate over each chunk 𝑑𝑖 ∈ 𝑆 , if 𝑑𝑖 ≤ 𝛼̂ , we add 𝑑𝑖 to 𝐵. When
chunk 𝐵 is near-full (i.e., 𝑑𝐵 ≥ 𝐷 − 𝛼̂), it is sent to the next operator, and 𝐵 is then reset.

• Dynamic Compaction.We assign each operator its own compaction threshold, computed based
on Section 3.3. We assume any chunk with more than 𝐷/2 tuples does not require compaction.
Initially, we calculate the optimal threshold 𝛼 ∈ [0, 𝐷/2) such that Gains(𝐷/2, 𝛼) ≥ 0 and
Gains(𝐷/2, 𝛼 + 1) < 0. Chunks containing ≤ 𝛼 valid tuples are then pushed into the buffer chunk,
following the same procedure as the Binary Compaction.

We simulate the chunk compaction problem described in Section 3.2 by constructing a pipeline
consisting of CROs, each with a fixed CRF.We set the chunk capacity to𝐷 = 2048 and the predefined
threshold for Binary Compaction to 𝛼̂ = 128. The intermediate relation produced by each operator
contains the same number of tuples as the input table (𝑣 = 1), which contains 20 million tuples.
We vary the CRF (𝑟 = 2, 16, 256) and the operator number (𝑘 = 3, 4, 5) to analyze the trade-offs
between these strategies. We set parameters 𝐶1−4 based on the proportional relationship obtained
from Figure 4. We also consider the case that a table has large tuples, leading to the increased
compaction cost (𝐶2 = 10 instead of 𝐶2 = 1).

In Figure 5, the first row shows that a higher CRF increases the benefit of compaction. The second
row highlights the significant impact of pipeline depth on the compaction problem. Comparing
Case 2 to Case 4, it is evident that for large tuples, chunk compaction hurts the overall performance
because of the high costs of data copying. Figure 5 yields three conclusions. First, compaction
strategies can affect query execution time significantly. Second, Binary Compaction struggles
to handle diverse workloads adaptively because it relies on a predefined threshold for all CROs.
Third, Dynamic Compaction, which assigns specific thresholds for each operator, demonstrates
near-optimal performance. For example, in Case 1, thresholds 𝛼 = {293, 53, 0} are assigned to the
pipeline’s three operators, while in Case 3, 𝛼 = {1024, 53, 0} are used. It agrees with our analysis in
Section 3.3: the earlier the operator is in the pipeline, the more aggressive its strategy is.
Dynamic Compaction is hardly applicable to real databases as it relies on the function Gains

to compute thresholds 𝛼 , which are affected by both database design (𝐶1−4) and workload char-
acteristics (𝑘 , 𝑟 ). In Section 4, we propose a learning-based approach to approximate Dynamic
Compaction, estimating 𝛼 without depending on these parameters. Furthermore, to minimize the
substantial costs of data copying shown in Figure 5, we focus on how to compact chunks efficiently
in Section 5 and introduce logical compaction, which can compact small chunks from hash joins
without requiring data copying.

4 Learning Compaction
This section introduces a learning module designed to address the compaction problem. Although
Dynamic Compaction, as previously discussed, is not feasible for real databases, this learning
module serves as an approximation.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:9

Learning-based Solution. The learning module directly estimates 𝛼 from the feedback of
execution (i.e., the latency). In morsel-driven parallelism, data is divided into chunks, with each
thread responsible for fetching and processing a chunk through the entire pipeline before moving
on to the next. Consequently, each chunk can serve as a sample for a learning algorithm [38]. Our
objective is to determine the optimal threshold 𝛼 ∈ [0, 1024) for each CRO. In this module, we cast
the optimization of selecting the best 𝛼 at runtime as a multi-armed bandit (MAB) problem [44].

4.1 Multi-Armed Bandits
The MAB problem involves a decision-maker with 𝑟 options, or “arms,” each with uncertain reward
probabilities with an expectation 𝜇𝑖 . At each time step, the decision-maker selects an arm and
receives a reward sampled from the associated probability distribution. The objective is to maximize
cumulative reward over time. This requires the decision-maker to balance the trade-off between
exploring arms to learn their rewards and exploiting arms to get high rewards.
In the pipeline context, each operator faces its own MAB problem. It selects a compaction

threshold𝛼 ∈ [0, 2048) to compact its output small chunks. These chunks are then sent to subsequent
operators. The reward for each arm is related to the execution latency of the pipeline and the
compaction cost. Operators try different thresholds to select the optimal one, with their decisions
collectively contributing to a global compaction policy.

A probing table may hold up to 20 million tuples, allowing the operator to explore arms across as
many as 20,000 iterations to gather corresponding rewards. This ample sample size is adequate for
fine-tuning a single parameter, 𝛼 . Additionally, if operators fail to identify the optimal threshold,
they can revert to Binary Compaction, using a pre-defined threshold. The performance of Binary
Compaction is the lower bound of the learning approach. Lastly, the module incurs low overhead,
as it merely requires statistics on the execution times of operators within a pipeline – data that
modern databases already collect when profiling is enabled [37].

4.2 Online Compaction Learning
The Compaction Learner, depicted in Figure 6, optimizes the compaction trade-off during query
execution. We place one compactor after each filter and hash join operator, each designated by a
threshold 𝛼𝑖 , where 1 ≤ 𝑖 ≤ 3. Before fetching a chunk from table 𝑅, the executor sets the thresholds
for the compactors by invoking 𝛼𝑖 = SelectArm(𝑖). In response, the compaction learner provides a
threshold. After processing the chunk, we measure the pipeline’s latency to update the compaction
learner. Specifically, the 𝑖-th compactor calls UpdateArm(𝑖, 𝛼𝑖 , 𝑡𝑖 + · · · + 𝑡3), where 𝛼𝑖 is the arm used
in the last execution, and 𝑡𝑖 + · · · + 𝑡3 represents the processing latency of all subsequent operators
in the pipeline. This process is repeated for each chunk until all are processed.

The compaction learner maintains a statistical model for each compactor. This statistical model
consists of three vectors: the candidate thresholds {𝑥1, · · · , 𝑥𝑎} (Arm), the estimated rewards
{𝜇̂1, · · · , 𝜇̂𝑎} (Reward), and the frequency with which each threshold is selected {𝑛1, · · · , 𝑛𝑎} (Confi-
dence). For instance, as illustrated in Figure 6, the model of the first compactor includes candidates:
{0, 128, 1024}. Through processing chunks many times, it estimates that arm 1024 yields the highest
reward. Also, the confidences of arms 0 and 128 are both 3, indicating that they have been selected
only three times. This limited selection frequency may suggest a higher estimation error.

SelectArm: Exploration-exploitation Dilemma. Each model within the compaction learner
confronts a dual challenge. On one hand, it seeks to select the arm with the highest reward,
emphasizing exploitation. On the other hand, it must explore other arms to potentially discover
more optimal solutions or to enhance the confidence in its reward estimations, particularly when
the initial confidence is zero. Therefore, a well-designed policy is crucial to manage this dilemma.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:10 Yiming Qiao and Huanchen Zhang

Rchunk ⋈A σ ⋈Bα1 α2 ⋈Cα3 

t3t2

For each chunk from R: 

    For each threshold αi: αi = SelectArm(i);                      // before execution

    For each threshold αi: UpdateArm(i, αi, ti + ... + t3)     // after execution

Pipeline Executor

Compaction Learner has interfaces: SelectArm and UpdateArm. 

Model 1

Arm Reward Confidence

0 1.2 3

128 1.3 3

1024 2.4 97

 

Model 2

Arm Reward Confidence

0 1.5 3

128 3.4 123

1024 2.1 13

 

Model 3

Arm Reward Confidence

0 5.5 879

128 4.8 78

1024 4.1 9

 SelectArm(i): returns the arm with highest reward from the Model i.

UpdateArm(i, αi, latency): updates the arm αi for the Model i.

t1 (Processing Latency)

Fig. 6. Learning Module Overview - Each 𝛼 is a dynamic compactor, fetching the threshold from the Com-
paction Learner, and then updating the learner with the execution latency.

The Upper Confidence Bound (UCB) algorithm is a classic approach to the multi-armed bandit
problem. It selects arm 𝑥 𝑗 based on the highest value of 𝜇̂ 𝑗 +

√︁
(2 ln𝑛)/𝑛 𝑗 , where 𝑛 =

∑︁𝑎
𝑗=1 𝑛 𝑗

and 1 ≤ 𝑗 ≤ 𝑎. As the number of processing times 𝑛 increases, the second term
√︁
(2 ln𝑛)/𝑛 𝑗

provides less-explored arms with a boost, even if their estimated reward is low. This property
proves beneficial for balancing exploration and exploitation. A fine-tuned version of UCB takes the
measured variance of rewards into account. It selects arm 𝑗 based on the highest value of√︁

(ln𝑛/𝑛 𝑗 ) · min(0.25,𝑉𝑗 (𝑛 𝑗 )),
where

𝑉𝑗 (𝑑) ≜
(︄

1
𝑑

𝑑∑︂
𝜏=1

𝑋 2
𝑗,𝜏

)︄
− 𝑋̄

2
𝑗,𝑑 +

√︁
(2 ln𝑛)/𝑑,

and 𝑋 𝑗,𝜏 represents the reward of the 𝜏-th attempt of trying arm 𝑗 . This version places more trials
on arms with unstable rewards.
The compactor threshold 𝛼𝑖 lies in [0, 1024]. We discretize this interval and set the candidates

as {0, 32, 64, 128, 256, 384, 512, 768, 1024}. This simplification reduces the parameter space without
affecting overall performance because similar threshold values yield comparable compaction
performance. We employ the fine-tuned version of UCB for the SelectArm function because of the
high noise level in the pipeline execution. Additionally, at the beginning of query execution, the
compaction learner attempts each arm several (e.g., 8) times to initialize their statistics. Despite
resulting in a fixed overhead, this mechanism enhances the stability of the learner.
UpdateArm: Taking the Moving Average. The compaction learner receives the execution

latency of each chunk, measured in milliseconds, as feedback. In addressing the Multi-Armed Bandit
(MAB) problem within compaction, we define the reward as the reciprocal of the latency. Initially,
the rewards for all arms/thresholds are set to zero. To update the reward for each arm, we employ
a moving average approach. Specifically, this involves calculating the average of the most recent 16
reward values for each arm.

One concern is that processing latency may vary greatly, while the UCB algorithm assumes that
the reward should lie in a limited range. However, this is not problematic for the compaction learner

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:11

Three Marked Tuples

Col1 Col2

5 a

4 b

3 c

2 d

Col3

@

#

&

%

Col1 Col2 Col3

4 b @

3 c #

4 b &

A Data Chunk with Two SVs

1

2

1

/

1

2

1

/

SV1

1

2

1

/

SV1

0

1

2

/

0

1

2

/

SV2

0

1

2

/

SV2

Fig. 7. A Data Chunk Example with Multiple SVs - SV1 marks the first two vectors, and SV2 marks the third.

focusing on the pipeline level. Typically, pipelines in most analytical queries involve less than four
joins. As a result, the latencies – and consequently the rewards – received by the learner usually
range from 50𝜇𝑠 to 500𝜇𝑠 . This translates to reward values between 2 and 20, a range well-suited
for effective handling by the UCB algorithm.
Additionally, to manage complex queries with potentially unstable latencies, we have imple-

mented a robust monitoring mechanism capable of handling skewed workloads. The compaction
learner periodically captures a snapshot of the estimated rewards for every 𝜂 chunk (𝜂 = 1024 by
default). The snapshot is denoted by 𝜇 = {𝜇̂1, · · · , 𝜇̂𝑎}. After updating an arm 𝑥𝑖 and obtaining a
new snapshot 𝜇′, we check for anomalies by comparing the ratios 𝜇̂′𝑖/𝜇̂𝑖 and 𝜇̂𝑖/𝜇̂′𝑖 . If either ratio
equals or exceeds 2, we identify an anomaly and reset the UCB algorithm. This reset involves
clearing existing rewards and confidence levels, and each arm is tested multiple times (e.g., 8) to
reestablish baseline statistics.

4.3 Multi-threading in Learning
The compaction module is designed to be compatible with morsel-driven parallelism [25]. First, a
thread must acquire a lock each time it accesses the statistics from a compactor model. Second, we
increment the confidence level by one, rather than in the UpdateArm function. This differentiation
is crucial to ensure that when multiple threads (e.g., 96) simultaneously invoke the SelectArm
function, they do not all select the same arm.

In themulti-threading environment, an interesting phenomenon occurs. Evenwhen the SelectArm
function chooses an arm, say 𝑗 , based on the highest confidence 𝑛 𝑗 – rather than rewards – the
compaction learner is still capable of providing the near-optimal arm. This happens because threads
that select the optimal arm can process chunks more rapidly, leading to more frequent updates
and, consequently, increased confidence in that arm. This dynamic, where each thread’s update
frequency effectively feeds back into the learning algorithm, is unique to morsel-driven parallelism.

5 Logical Compaction
In this section, we introduce an operator called compacted vectorized compacted hash join. Figure 5
shows that the compaction cost constitutes a large portion of the overall estimated cost. To address
this, we redesign the data chunk and the hash join operator. The core idea is that small chunks
generated from the same probing chunk can be compacted logically without actual data copying.

5.1 Data Chunk Design
The current design of a data chunk comprises several data vectors and a selection vector (or bitmap),
where a selection vector (SV) is a dense, sorted list of row identifiers (RIDs) indicating which tuples
in the batch are valid. The DBMS marks tuples as invalid by modifying the SV alone, without
copying data [29]. Figure 8 provides an example of this chunk design.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:12 Yiming Qiao and Huanchen Zhang

Input Chunk

Columns SV

0
1
2
3
4
5
6
7

RHS Columns

Hash Table Buckets

① ② ③ 

Jo
in

 K
ey

s

ProbeProbe

RHS Columns RHS Columns

13

42

21

34

07

89

68

22

1
3
0
1
2
7
/
/

1
3
0
1
2
7
/
/

1
3
/
/
/
/
/
/

1
3
/
/
/
/
/
/

0
1
2
3
4
5
6
/

0
1
2
3
4
5
6
/

0
1
2
3
4
6
7
/

0
1
2
3
4
6
7
/

0
1
/
/
/
/
/
/

0
1
/
/
/
/
/
/

0
1
2
3
4
5
/
/

0
1
2
3
4
5
/
/

LHS Columns Directly write the data of Chunk ③ into the Chunk ② vectors 

② ② & ③

Columns SV Columns SV

① ② 

Columns SV

RHS Columns

③ Old Result Chunk Old Result Chunk Old Result Chunk

RHS Columns RHS Columns

0
1
2
7
/
/
/
/

0
1
2
7
/
/
/
/

1
3
/
/
/
/
/
/

0
1
2
3
4
6
7
/

0
1
2
3
4
6
7
/

Valid Tuples: 

Tuples marked by the SV

Referencing Vector: 

A vector that holds a reference 

to data stored in another vector

Real Vector: 

A vector that directly allocates 

and manages its own memory

New Result Chunk With compacted hash join, ② and ③ share the same Result Chunk① 

NextNext

Fig. 8. Compacted Vectorized Hash Join - Within each chunk, we use multiple extended SVs to manage
columns from various sources. This approach enables the hash join to compact chunks without any additional
cost, thus producing fewer yet larger chunks.

A hash join operator must modify the SV and gather the payload, to generate the result chunks.
One idea is to compact chunks during the chunk generation process. Since all result chunks
reference the same LHS data, we can concatenate their SVs directly. For example, we concatenate
the SVs of the 2nd and 3rd old result chunks in Figure 8, setting SV = (1, 3, 0, 1, 2, 7). However, this
concatenation leads to RID conflicts in the SV: the term RID = 1 appears twice. The current chunk
design requires that the 1st and 4th tuples are both placed in the row indexed by RID = 1. For the
RHS vectors, however, placing two different values in the same place is impossible.
We propose a new data chunk design consisting of several data vectors and multiple extended

SVs. Unlike traditional SVs, the extended SV differs in two ways: (1) it is a dense, unsorted list, and
(2) it can have repeated IDs. Each SV manages a group of vectors in this data chunk. Figure 7 gives
an example of a data chunk with two SVs. It uses SV1 to mark the first two vectors and uses SV2 to
mark the third vector. Then, for the 𝑖-th valid tuple, its values in the first two columns are placed
in the row indexed by SV1 [𝑖], and its value in the third column is placed in the row indexed by
SV2 [𝑖]. Thus, the chunk represents three valid tuples.

5.2 Compacted Vectorized Hash Join
Figure 8 illustrates the compacted hash join using extended SVs. Upon receiving a full data chunk
from the LHS table, we probe its join keys, resulting in 8 hash table buckets. Subsequently, we
invoke Next() to retrieve the output chunks.
The first output chunk contains 7 valid tuples. It uses two extended SVs: one for the LHS

vectors/columns and the other for the RHS vectors. For the LHS vectors, we employ the zero-copy
technique, referencing the data in the probing chunk. For the RHS vectors, payloads must be copied
sequentially from the hash table, and these do not necessarily align with those in the LHS vectors
of the same row. Since a chunk can hold up to 8 tuples, the 2nd result chunk, containing 2 tuples,
cannot be compacted with the 1st chunk. Therefore, we directly output the first chunk as-is.
The 2nd and 3rd chunks have 2 and 4 tuples, respectively. We can compact them into a larger

chunk. The second chunk follows the same format as the first, as shown by the transparent part in
Figure 8. It has 2 valid tuples, with separate SVs for the LHS and RHS vectors. As for the 3rd chunk,

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:13

D
ict. C

o
d

es / S
V

0
1
2
3
4
5
6
7

0
1
3
3
2
2
1
2

0
1
3
3
2
2
1
2

D
ictio

n
ary

Dictionary VectorFlat Vectors

Data Chunk with Dictionary EncodingData Chunk

Columns SV

0
1
2
3
4
5
6
7

Fig. 9. Compressed Vector in the Chunk - The chunk design can seamlessly integrate with column compression.

instead of allocating new memory for it, we directly write its data into the 2nd data chunk. This
decision is motivated by the fact that they hold the reference to the same vector. We can directly
concatenate their SVs for the LHS columns without data copying. In Figure 8, the tuples indexed by
(0, 1, 2, 3, 7) are selected at least once in the SV of the 1st or 2nd chunks.
For the RHS columns, we gather the 3rd chunk’s payload from the hash table and append it to the

RHS vectors of the 2nd chunk, starting at index 2. We add a fully dense SV for the RHS columns in
the result chunk; the shared result chunk has an SV = (0, 1, 2, 3, 4, 5) for the RHS columns because
there are six valid records in total in this chunk: two entries from the 2nd chunk and four entries
from the 3rd chunk. Consequently, these two chunks share the same physical memory, as shown
in the rightmost, solid part of Figure 8. If more result chunks are available, we continue writing
their data into the memory of the current chunk, compacting as much as possible until it can no
longer hold the next chunk. Once capacity is reached, we output the current chunk and allocate a
new one. Finally, the proposed compacted hash join yields two result chunks with sizes 7 and 6,
resulting in a lower CRF than the original hash join. This approach utilizes zero-copy techniques
for the LHS vectors and a single gathering operation for the RHS vectors, enhancing efficiency.

Additionally, the result chunks, with multiple SVs, can be processed by the remaining operators in
the pipeline. For example, consider a filter operator applied to a chunkwith two SVs, sel1 = (1, 3, 1, 2)
and sel2 = (0, 1, 2, 2), encompassing four tuples. Suppose the tuples at indices 0, 2, and 3 satisfy
the filter criteria and are retained. This yields a result vector res = (0, 2, 3). To derive the selection
vectors (SVs) for the result chunk, we update SVs using sel′1 [𝑖] = sel1 [res[𝑖]] for 𝑖 = 0, 1, 2, producing
sel′1 = (1, 1, 2) and sel′2 = (0, 2, 2).

5.3 Overhead of Extended SVs
The compacted hash join benefits from the representation flexibility provided by the extended
SVs. These extended SVs bring minimal overhead for two reasons. First, the data chunk adds only
one additional extended SV when it undergoes a hash join probing. At the sink operator [25] of
a pipeline, the data chunk is materialized, resetting the number of SVs to one. Since a pipeline
typically has few joins, the number of SVs is not likely to become a performance bottleneck. Second,
the data chunk with extended SVs maintains the same interface as the original design, avoiding the
need to redesign other database components. The only change lies in determining which SV to use
when accessing the column values. An optimization is that we can omit the SV from the build side
after the hash join (because it is always fully dense). However, we must bring back this omitted SV
if there are subsequent hash joins in the pipeline because the columns associated with the omitted
SV will be on the probe side for the next join.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:14 Yiming Qiao and Huanchen Zhang

5.4 Column Compression
Compression is a crucial technique for reducing database size and enhancing query performance [35,
47]. The data chunk design, consisting of several data vectors and a variable number of extended
SVs, seamlessly integrates with the in-memory compressed data format during execution [1, 24].
Column compression is widely used and effective for data storage as it reduces storage size and
accelerates I/O when loading data into memory. When loading the compressed data into memory,
modern databases generate an in-memory data format during execution. This allows for a more
compressed representation and potentially enables compressed execution throughout the system.
For example, consider a table where one of its columns is encoded using a dictionary. As we

load this table into memory chunk by chunk, the vector representing the compressed column
adopts dictionary encoding, referred to as a dictionary vector. In this scenario, the extended SV
can function as the dictionary codes for this vector, with the dictionary serving as the vector data.
Figure 9 illustrates the differences between two chunks: one without dictionary encoding (left) and
the other with (right). The chunk on the left contains three uncompressed columns, while the one
on the right encodes one column using a dictionary. As a result, the chunk on the right consists
of two flat vectors and one dictionary vector. Note that the dictionary vector cannot logically
represent elements exceeding the chunk size, aiming at enhancing cache efficiency.

5.5 Logical and Learning Compaction
The proposed hash join method is specifically designed to compact small result chunks originating
from the same probing chunk, as it requires the chunks to be compacted to share identical LHS
vectors. The proposed hash join and the traditional hash join are both chunk-reducing operators,
but the former has a lower CRF. The performance of the compacted hash join is significantly
influenced by the chain lengths in the hash table buckets.
In a Join-style Case, where the operator outputs many reduced chunks from a single probing

chunk, these small chunks become a performance bottleneck. The proposed hash join effectively
addresses this by “compacting” the small chunks without actually performing data copying. For
this reason, this method is termed logical compaction. Conversely, in a Filter-style Case, where
the operator outputs only one reduced chunk from a probing chunk, the proposed hash join does
not offer an advantage over the traditional method and still outputs small chunks. In such cases,
we rely on the learning module described in Section 4 to tackle the issue.

Importantly, the learning module is agnostic to the specific implementation of the hash join
operator; it focuses solely on compacting small chunks produced by the hash join and other chunk-
reducing operators. The integration of the compacted vectorized hash join with the learning module
provides a comprehensive solution to the compaction problem.

6 Microbenchmark Evaluation
We now evaluate the proposed compaction learning module, referred to as Learning Compaction,
and the compacted vectorized hash join, referred to as Logical Compaction.

For the evaluation, we implement a vectorized execution engine supporting scan, filter, and hash
join operators. The default size of a full chunk is set to 2048. During execution, this engine retrieves
a data chunk from an in-memory data collection and processes it through a pipeline of operators.
For filtering, we utilize a selection vector to mark valid tuples, and for hash joins, we implement a
vectorized version similar to that in DuckDB. This hash join utilizes a chaining hash table with a
load factor of 0.5. The load factor is defined as the ratio of the number of tuples to the number of
buckets in the hash table. This vectorized execution engine is implemented in C++ without any
explicit SIMD instructions.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:15

5 10 15 20 25 30
Chunk-reducing Factor

0

2

4

6

8

10

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

# of Join: 2, Tuple Length: 100 bytes

5 10 15 20 25 30
Chunk-reducing Factor

0.0

2.5

5.0

7.5

10.0

12.5

15.0

# of Join: 3, Tuple Length: 100 bytes

5 10 15 20 25 30
Chunk-reducing Factor

0

5

10

15

20

# of Join: 4, Tuple Length: 100 bytes

No Cpt. Full Cpt. Binary Cpt. Learning Cpt. Logical Cpt.

Fig. 10. Execution Time vs. Chunk-Reducing Factor - This figure shows the execution times for various
compaction methods across different CRFs with join numbers 2, 3, and 4. The tuple length of the probing table
is fixed at 100 bytes by adjusting its string column 𝑠𝑡𝑟 .

Baselines.We compare our solutions to three other compaction methods: (1) No Compaction; (2)
Apache Data Fusion’s Full Compaction [23]; and (3) DuckDB’s Binary Compaction. No Compaction
is the simplest approach, where no chunk undergoes compaction. Full Compaction maintains a
tuple buffer after each filter and hash join operator. It pushes any non-full chunk into this buffer
and outputs a full chunk if there are enough tuples in the buffer. Binary Compaction also utilizes a
tuple buffer but only compacts chunks containing ≤ 128 tuples, and it outputs a near-full chunk if
there are ≥ 1920 tuples in the buffer.
Experimental Setup. We run experiments using our in-house server with 512 GB of DDR5

main memory at 4800 MHz and a 1 TB Intel® SSD D5-P5530. The server is equipped with two
sockets of Intel® Xeon® 8474C 2.1 GHz processors (48 cores), each capable of supporting 96 threads.
We use Debian GNU/Linux 12 and GCC 12.2 with -O3 enabled. Experiments are conducted with a
single thread unless stated otherwise.

6.1 Synthetic Experiment
We first evaluate these compaction methods using a left-deep join query comprising a probing side
table 𝑅 and 𝑘 building side tables 𝑆1, . . . , 𝑆𝑘 . The table 𝑅 includes the columns (𝑖𝑑1, . . . , 𝑖𝑑𝑘 , 𝑠𝑡𝑟 ),
while each table 𝑆𝑖 includes the columns (𝑖𝑑𝑖 ,𝑚𝑖𝑠𝑐). The data type of column 𝑖𝑑𝑖 is a 64-bit integer,
and the data types of 𝑠𝑡𝑟 and𝑚𝑖𝑠𝑐 are strings. By default, values in the column𝑚𝑖𝑠𝑐 are fixed at 8
bytes, making each tuple in 𝑆𝑖 16 bytes in length. The table 𝑅 has 20 million tuples, while each table
𝑆𝑖 has 2 million tuples. The query plan performs a natural join of 𝑅 with 𝑆1 through 𝑆𝑘 . For each
join, the resulting output relation has the same cardinality as the probing relation, neutralizing the
impact of intermediate result sizes. We vary the join number 𝑘 from 2 to 4 and the chunk-reducing
factor 𝑟 from 2 to 32 in this experiment. We record the time of query execution, excluding the time
spent building the hash table.

Figure 10 shows the results. First, Logical Compaction is the most efficient among these methods,
providing a speedup of up to 3× compared to Binary Compaction. This can be attributed to its
ability to compact most chunks without incurring data-copying costs, thereby adopting a more
aggressive compaction policy. Second, when the join number is two, Learning Compaction exhibits
significantly lower execution latency (by 2×) compared to Binary Compaction. This is because
Learning Compaction adopts a more conservative compaction policy in this scenario. Although
Binary Compaction compacts more chunks, it does not yield substantial benefits. However, for
deeper pipelines or higher CRFs, the performance of Learning Compaction and Binary Compaction

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:16 Yiming Qiao and Huanchen Zhang

32 200 400 600 800 1000
Tuple Length (bytes)

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

 
No Cpt.
Full Cpt.
Binary Cpt.

Learning Cpt.
Logical Cpt.

Fig. 11. Execution Time vs. Tuple Length - With a
join number of 4 and a CRF of 8, we vary the tuple
length of the table 𝑅 to demonstrate the robustness
of Learning Compaction.

0.0

0.2

0.4

α1 α2

Case 1

0.85
α3

0 32 64 12
8

25
6

38
4

51
2

76
8

10
24

0.0

0.2

0.4

0 32 64 12
8

25
6

38
4

51
2

76
8

10
24 0 32 64 12

8
25

6
38

4
51

2
76

8
10

24

Case 2

0.99

Threshold Values

Pe
rc

en
ta

ge
s

Fig. 12. Distribution of Learned Thresholds - We ex-
ecute a left-deep query of joining tables 𝑅, 𝑆1, 𝑆2, and
𝑆3. In case 1, the tuple length of table 𝑆2 is 16 bytes,
and in case 2, it is 1000 bytes.

tends to converge. This is because deeper pipelines or higher CRFs necessitate a more aggressive
compaction policy, which is precisely what Binary Compaction offers. Finally, Full Compaction
proves to be more stable than the no-compaction policy. This is because the cost of compaction
is generally much lower than the interpretation cost. Consequently, in scenarios involving deep
pipelines and high CRFs, No Compaction suffers from higher interpretation costs.

6.2 The Compaction Trade-off
We then explore the trade-off between compaction cost and interpretation cost by varying the tuple
length. We considered the following pipeline of joining five tables: Scan(𝑅) –> Join(𝑅, 𝑆1) –>
Join(𝑅, 𝑆2) –> Join(𝑅, 𝑆3) –> Join(𝑅, 𝑆4) with 𝑅 having 20 million tuples and each of 𝑆𝑖
having 2 million tuples. Each tuple in 𝑆𝑖 has a fixed length of 16 bytes. We vary the tuple length in
𝑅 from 32 bytes to 1000 bytes to show the performance impact of different compaction costs. We
set the CRF to 8 in this experiment.
Figure 11 demonstrates the impact of tuple length on compaction strategies. For tuples under

600 bytes, Full Compaction is more effective than No Compaction. However, for tuples over 600
bytes, No Compaction performs better because of the high costs of copying long tuples. While the
benefits of compaction remain consistent across different tuple lengths, the cost of compaction
becomes higher. Additionally, Learning Compaction consistently shows lower latency than Binary
Compaction for longer tuples. This is because Binary Compaction, which excels when interpretation
costs dominate, applies aggressive strategies even when compaction costs are high, leading to
suboptimal performance. In contrast, Learning Compaction effectively balances the compaction
trade-offs, resulting in superior performance. Furthermore, as expected, tuple length has little effect
on Logical Compaction.

6.3 Distribution of Learned Thresholds
We then show that Learning Compaction indeed learns something useful across diverse workloads.
Using the same left-deep query as described in Section 6.1 with 𝑘 = 3 and a CRF of 𝑟 = 8, we
join four tables 𝑅, 𝑆1, 𝑆2, and 𝑆3. Comparing two scenarios, in the first case, tuple lengths for 𝑅,
𝑆1, 𝑆2, and 𝑆3 are 32, 16, 16, and 16 bytes, respectively. In the second case, tuple lengths are 32, 16,
1000, and 16 bytes. Both cases involve three hash join operators, with the 𝑖-th operator joining its
probing table with the building table 𝑆𝑖 and employing a threshold 𝛼𝑖 for compaction. We execute
the queries with Learning Compaction and record the chosen arms for each 𝛼𝑖 .

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:17

1 2 4 8 16 32 64
Number of Columns

0.00

0.25

0.50

0.75

1.00

Ex
ec

ut
io

n 
Ti

m
e 

(s
) Single Selection Vector

Evaluate Expression
Update Sel Vectors

1 2 4 8 16 32 64
Number of Columns

Multiple Selection Vector
Evaluate Expression
Update Sel Vectors

Fig. 13. Overhead of Updating Additional SVs - We provide
a breakdown of the filter execution. The left figure represents
the single SV chunk, while the right figure represents the
chunk where each column has its own SV.

2−3 2−1 21 23

Load Factor

10

20

30

40

Ex
ec

ut
io

n 
Ti

m
e 

(s
) Join Number: 4, Payload Length: 100 bytes

No Cpt.
Full Cpt.
Binary Cpt.
Learning Cpt.
Logical Cpt.

Fig. 14. Load Factor vs. Execution Time - A
large hash table can reduce the effect of hash
collisions. With chaining hash tables, load fac-
tor = # of inserted tuples / # of buckets.

Figure 12 shows the learned distribution for the two scenarios. First, both cases prioritize
selecting 𝛼3 = 0 because it is for the last join with no subsequent operators. Second, we observe
the trend 𝛼1 ≥ 𝛼2 ≥ 𝛼3, where 𝛼𝑖 is the most frequent chosen value for 𝛼𝑖 . The trend aligns with
the conclusions drawn from our simulations in Section 3.4: the position of an operator within a
pipeline influences its compaction policy because of the pipeline-level gain. Third, in case 2, the
compaction learner adapts by employing a more aggressive compaction policy for the first join,
thereby alleviating compaction pressure for the subsequent join. Specifically, its 𝛼1 is larger, and 𝛼2
is smaller compared to Case 1. This adjustment is prompted by the presence of longer tuples in table
𝑆2, which leads to increased compaction costs for the 2nd and 3rd joins. This comparison shows
how each operator can collaborate to establish a globally optimal compaction policy. Consequently,
in case 2, Learning Compaction is 1.76× faster than Binary Compaction.

6.4 Overhead of Selection Vectors
We then show that even though the compacted vectorized hash join introduces additional SVs, they
bring minimal overhead. We execute a filter on a table 𝑅 with 𝑘 columns (𝑖𝑑1, · · · , 𝑖𝑑𝑘 ), where the
data type of each column is a 64-bit integer. The column 𝑖𝑑1 contains uniformly distributed values
between 0 and 100. The filter query is SELECT * FROM 𝑅 WHERE 𝑖𝑑1/100 < 0.3, with a selectivity of
0.3. We consider two chunk formats, both containing 𝑘 vectors for data. The first format holds one
SV for all columns, while in the second format, each column holds an SV. Thus, the filter operator
needs to update all SVs for the second chunk format. Since a filter is a very lightweight operator in
databases, this experiment can effectively reflect the overhead of multiple SVs.
Figure 13 shows that updating SVs becomes a bottleneck when their number exceeds eight.

Therefore, it is safe to have ≤ 8 SVs in a chunk. Since the number of SVs increases by one only
when passing through a hash join operator, and queries with numerous joins are rare, the time cost
of updating SVs will not be a performance bottleneck.

6.5 The Chain in Hash Table Buckets
A hash table bucket may have a chain of length > 1 either due to hash collisions or multiple tuples
in the build table with the same key. We show that the impact of hash collisions decreases with
increasing hash table size. Following the setup described in Section 6.1, we set the join number
𝑘 = 4 and the length of each tuple in 𝑆𝑖 to 100 bytes. We ensure that each building side table 𝑆𝑖
has 2 million tuples. And vary the number of buckets in each hash table, such that the load factor
ranges from 2−4 to 23. Figure 14 shows that we can reduce the effect of hash collisions by setting a

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:18 Yiming Qiao and Huanchen Zhang

8 256 8K 256K 8M
Block Size

0

10

20

30

40

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

# of Join: 3, CRF = 8
No Cpt.
Full Cpt.
Logical Cpt.

8 256 8K 256K 8M
Block Size

# of Join: 3, CRF = 16
No Cpt.
Full Cpt.
Logical Cpt.

Fig. 15. Varying the Data Chunk Sizes - We show the robust-
ness of Logical Compaction by varying the data chunk sizes.

5% 10% 15%
Filter Selectivity

1.0

1.2

1.4

1.6

1.8

No
rm

. E
xe

cu
tio

n 
Ti

m
e Mixed Filter & Join Compaction Cases

Binary Cpt.
Learning Cpt.
Logical Cpt.
Smart Cpt.

Fig. 16. Filter & Join-style Cases - We adjust
the filter selectivity to transition from a Filter
& Join-style case to a purely Join-style case.

load factor of less than 1 for the hash table. Therefore, the load factor of the hash table is set to 0.5
in our experiments.

6.6 Block Sizes
We then show the effectiveness of Logical Compaction over different data chunk sizes. We consider
the same pipeline as in Section 6.1 by setting join number 𝑘 = 3, i.e., Scan(𝑅) –> Join(𝑅, 𝑆1)
–> Join(𝑅, 𝑆2) –> Join(𝑅, 𝑆3) with 𝑅 having 20 million tuples and each of 𝑆𝑖 having 2 million
tuples. The tuple lengths of 𝑅, 𝑆1, 𝑆2, 𝑆3 are 32, 16, 16 and 16 bytes, respectively. We vary the chunk
sizes to measure the execution time. We consider No Compaction, Full Compaction, and Logical
Compaction in this experiment because they do not have pre-defined parameters that depend on
the block size. Figure 15 shows the result, which agrees with the conclusion that the optimal data
chunk size is in a few thousand tuples [5]. It also shows that Logical Compaction reduces the
performance degradation caused by small data chunks, i.e., it flattens the curve.

6.7 Mixed Filter & Join Compaction Cases
Logical Compaction is designed for joins while Learning Compaction is mostly effective on filters.
We combine them and refer to this combination approach as Smart Compaction. We create a
pipeline containing both filters and joins and then vary the filter selectivities to show their relative
significance. We first apply a filter on table 𝑅’s column 𝑖𝑑1, and then join the filtered results with
table 𝑆1, 𝑆2, and 𝑆3. The tuple length of 𝑅, 𝑆1, 𝑆2 and 𝑆3 are 32, 2000, 16, and 16 bytes, respectively.
The query pipeline is Scan(𝑅) –> Filter(𝑅) –> Join(𝑅, 𝑆1) –> Join(𝑅, 𝑆2) –> Join(𝑅,
𝑆3). The CRF of each join is set to 5. Table 𝑅 has 200 million tuples, and each 𝑆𝑖 has 2 million tuples.

Figure 16 shows the execution time of each method normalized by that of Smart Compaction.
When the filter selectivity is low, the pipeline presents a Filter & Join-style compaction case.
Both Logical Compaction and the Learning Compaction can only handle this case partially. But
their combination, Smart Compaction, can tackle the mixed-style case effectively. When the filter
selectivity is high, the pipeline presents a pure Join-style case. Thus, Smart Compaction has the
same performance as Logical Compaction. We conclude that Logical Cpt. is effective only for
Join-style cases; therefore, Learning Cpt. is necessary to handle Filter-style compaction cases.

7 Full DBMS Evaluation
In this section, we integrated our solutions into DuckDB (v0.8.1) [37] and measured the end-to-
end performance using three benchmarks: the Join Order Benchmark (JOB) [26], TPC-H [9] and

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:19

TPC-H (SF= 10)25

30

35

40

45

50
To

ta
l T

im
e 

(s
) 44.5

41.7 41.2
39.2

TPC-DS (SF= 10)100

120

140

160

180

To
ta

l T
im

e 
(s

)

174.4

159.4
153.4

143.6

JOB60

80

100

120

140

To
ta

l T
im

e 
(s

)

140.2

120.9 117.7
105.8

No Cpt. Full Cpt. Binary Cpt. Smart Cpt.

Fig. 17. Benchmarks Overview - We compare the total execution times of all compaction methods across
three benchmarks.

TPC-DS [8]. DuckDB is a state-of-the-art, in-process OLAP database system. It contains a columnar-
vectorized query execution engine that is specifically designed to handle OLAP workloads. We
integrated the compaction learning module (Learning Cpt.) into the system and replaced the default
hash join operator with our compacted version (Logical Cpt.) 1. We refer to this integrated approach
as Smart Cpt.
The JOB benchmark is based on real data, specifically the IMDB dataset [42], comprising 113

multi-join queries that offer a challenging, varied, and authentic workload. In contrast, TPC-H is
based on synthetic data, where the benchmark requires that data for database columns be generated
from a uniform distribution. Although some columns in TPC-DS are generated using skewed
distributions, the dataset still does not utilize real data.

7.1 Performance Overview
We present a performance overview of all compaction methods across three benchmarks in DuckDB,
with the scale factors for TPC-H and TPC-DS set to 10. Each benchmark is run on a single thread
using DuckDB’s internal benchmark tools. Given the extensive number of queries in each bench-
mark, we measure and sum the total execution times. Figure 17 illustrates that our proposed Smart
Compaction consistently and significantly outperforms both the No Compaction and DuckDB’s
default method, Binary Compaction, across all benchmarks. Specifically, in the JOB benchmark,
Smart Compaction boosts DuckDB’s performance by up to 10%.
Additionally, No Compaction performs the worst. Full Compaction and Binary Compaction

methods have similar performance. This indicates that the compaction trade-off is predominantly
influenced by interpretation costs, similar to Case 3 in Figure 5. We note that standard benchmarks
may not accurately represent real-world workloads [14, 48]. For example, none of them include
tables with large tuples, which leads to high compaction costs. Despite these considerations, the
Smart Compaction performs well. We then explore the underlying reasons in the following sections.

7.2 Benchmark Analysis
We perform an in-depth analysis across three benchmarks to identify the queries that benefit most
from compaction strategies. By profiling each hash join operator, we evaluate two key metrics
for every benchmark: (1) the average chunk size at runtime, derived from the size of all result
chunks generated by hash joins, indicating the degree of chunk reduction; and (2) the average
result chunk number, computed as the ratio of result chunk number to input chunk number for
each hash join operator, illustrating the number of child chunks generated per probing chunk. As

1Our patch [34], introducing Logical Compaction to DuckDB, was merged in DuckDB v1.1.3.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:20 Yiming Qiao and Huanchen Zhang

JOB-08c JOB-08d JOB-19d JOB-16b JOB-09d JOB-17f JOB-17d JOB-17b JOB-17c JOB-17e JOB-11d
0

2

4

6

8

10

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 9.

26

7.
23

5.
39

4.
47

4.
14

3.
38

3.
20

3.
14

3.
12

1.
91

1.
10

7.
64

5.
87

3.
86

3.
57

2.
68

1.
85

1.
74

1.
69

1.
69

1.
41

0.
77

7.
22

5.
29

3.
76

3.
53

2.
64

1.
86

1.
71

1.
66

1.
65

1.
37

0.
71

5.
23

4.
36

2.
30 2.
47

1.
90

1.
38

1.
34

1.
27

1.
28

1.
05

0.
47

No Cpt. Full Cpt. Binary Cpt. Smart Cpt.

Fig. 18. Execution Time for JOB Queries with Hash Join Bottlenecks - This figure illustrates the impact of
different compaction methods on the performance of selected JOB queries, all of which feature hash join
bottlenecks that require compaction.

Table 1. Profile of Hash Join Operators - We collect the runtime statistics for all three benchmarks executed
by DuckDB default.

Avg. Chunk Size Avg. # of Chunks Smart Cpt. Speedup

TPC-H 125.58 3.16 1.13×
TPC-DS 219.58 397.4 1.21×
JOB 54.05 689.6 1.32×

shown in Table 1, the speedup provided by Smart Compaction is closely correlated with these two
metrics. Smaller chunk sizes and larger chunk numbers correspond to greater advantages offered
by Smart Compaction. For instance, in the JOB benchmark, the average chunk size is only 54, and
long bucket chains result in the generation of ≥ 600 child chunks from a single input chunk.
Therefore, we conclude that a query benefits from chunk compaction if it includes at least one

hash join operator that: (1) constitutes a major bottleneck in the query execution, accounting for at
least 10% of the total execution time; and (2) on average, generates many (≥ 50) result chunks from
a single input chunk. After identifying all such hash join operators across benchmarks, we select
queries containing at least one qualifying operator. This process identifies 12 queries: 11 from JOB,
1 from TPC-DS, and none from TPC-H, reflecting the performance improvements seen in each
benchmark. Among these, Smart Compaction offers a geometric mean performance enhancement
of 34% over the standard DuckDB that employs Binary Compaction.
Figure 18 displays the selected queries from the JOB benchmark. Notably, query 19d achieves

the highest speedup in our experiments, reaching up to 2.34× – a 63% improvement over Binary
Compaction. Additionally, Full Compaction approaches the performance of Binary Compaction,
because these queries have high CRFs, resulting in interpretation costs dominating the compaction
trade-off. Smart Compaction provides distinct advantages over other methods because 1) it greatly
reduces the compaction cost, and 2) estimates a specified compaction threshold for each CRO.

7.3 Case Study
We then conduct a detailed analysis of two queries, JOB 19d and TPC-H Q9, to understand the
source of benefits, focusing on both the compute cost and the compaction cost.

For each hash join operator, Figure 19 displays the average number of child chunks, along with
the average size of these child chunks. These child chunks are then compacted through physical

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:21

1 2 3 4 5 6 7 8 9
Hash Join Operator

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
g.

 C
hi

ld
 C

hu
nk

 S
ize

×103

1.
4 84

.8

19
.4

1.
2

4.
6

34
9.

1

11
.3 40
.8

29
2.

7

83
7.

6

26
6.

0

95
4.

9

50
7.

2

54
1.

1

25
2.

8 34
9.

9

37
9.

6

90
4.

2

JO
B 

19
d

1 2 3 4 5 6 7 8 9
Hash Join Operator

0.0

0.5

1.0

1.5

2.0

Av
g.

 #
 o

f C
hi

ld
 C

hu
nk

s ×102

81
2.

8
1.

0

79
.3

49
9.

5
13

5.
9

1.
0 18

.1

9.
3

3.
1

1.
4

1.
0

1.
6

1.
2

1.
2

1.
0

1.
0

1.
0

1.
0

1 2 3 4 5 6 7 8 9
Hash Join Operator

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Jo
in

 E
xe

cu
te

 T
im

e 
(s

)

1.
24

0.
05

0.
84

0.
26

0.
07

0.
00 0.

14

0.
06

0.
04

0.
35

0.
03

0.
48

0.
15

0.
03

0.
00 0.

11

0.
06

0.
04

Binary Cpt. Smart Cpt.

1 2 3 4 5
Hash Join Operator

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g.

 C
hi

ld
 C

hu
nk

 S
ize

×103

14
.5 98
.2

44
.8 30

9.
5

20
40

.8

11
1.

4 44
5.

3

11
1.

4 41
0.

1

20
40

.8

TP
C-

H
 Q

9

1 2 3 4 5
Hash Join Operator

0

2

4

6

8

10

Av
g.

 #
 o

f C
hi

ld
 C

hu
nk

s

7.
7

4.
5

2.
5

3.
8

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1 2 3 4 5
Hash Join Operator

0

1

2

3

4

5

Jo
in

 E
xe

cu
te

 T
im

e 
(s

)

3.
48

0.
72

0.
08

0.
02

0.
00

2.
95

0.
73

0.
07

0.
02

0.
00

Fig. 19. Case Study – A Profile of Joins - For each hash join operator, we measure the average size of output
chunks, the average number of child chunks generated by a single input chunk, and the execution time. We
select two representative queries from a real-data benchmark (JOB) and a synthetic benchmark (TPC-H).

memory copying before being passed to the next operator. We also record the total time spent on
probing and chunk compaction.

7.3.1 JOB 19d. Query 19d from the JOB benchmark involves joining 10 tables, resulting in 9 hash
join operators. DuckDB optimizes this query into a right-deep query plan, where most pipelines
consist of only one join operator. This is reasonable because the JOB benchmark follows a well-
defined relational schema, resulting in a joined result table smaller than other base tables. Typically,
hash tables are built on the smaller tables, and since the build side is on the right, the entire plan
adopts a right-deep style [26].
In this query, the hash join operators exhibit a high CRF and long bucket chains. Traditional

hash join operators, in Binary Compaction, produce many small result chunks. The compacted
hash join, utilized in Smart Compaction, effectively decreases the number of result chunks and
increases their sizes, offering significant improvements over traditional hash joins.
The 6th hash join operator is the only one whose average chunk size decreases when using

Smart Compaction, compared to the default Binary Compaction. This anomaly occurs because: 1)
this hash join operator has a bucket chain length of one, presenting a filter-style compaction case,
as introduced in Section 5.5; and 2) the input chunks to the 6th operator are smaller when Smart
Compaction is employed, as the preceding operator compacts fewer chunks before the 6th hash
join compared to Binary Compaction.

7.3.2 TPC-H Q9. Most queries in the TPC-H benchmark have joins with relatively short chains.
Among these, Query 9 exhibits the longest chain. Query 9 comprises five hash join operators,
with only one of them benefiting from Smart Compaction, achieving a speedup of 1.18×. For

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



26:22 Yiming Qiao and Huanchen Zhang

JOB-2c TPCH-Q3 TPCH-Q19
0.6
0.8
1.0
1.2

No
rm

. T
im

e

Filter-style Compaction Case

JOB-17b JOB-17c TPCH-Q9
0.6
0.8
1.0
1.2 2.

48

2.
44

Mixed-style Compaction Case

TPCH-Q4 TPCH-Q13 TPCH-Q20
0.6
0.8
1.0
1.2

No
rm

. T
im

e

Compaction Not Beneficial

JOB-9d JOB-11d JOB-19d
0.6

1.0

1.4

1.8

2.
18

2.
33

2.
34

Join-style Compaction Case

No Cpt. Learning Cpt. Logical Cpt. Smart Cpt.

Fig. 20. Relative Significance of Learning and Logical Compaction - We select queries to show various
compaction cases. The execution time of each query is normalized by that of Smart Cpt.

the remaining joins, both Smart and Binary Compaction exhibit similar performance. This result
is expected because the TPC-H benchmark’s average chain length is only 3.16. Notably, Smart
Compaction reduces the number of results chunks to one for all hash joins, demonstrating its
effectiveness. Our experiment reveals a significant gap in data distributions between synthetic
benchmarks (TPC-H, TPC-DS) and real-data benchmarks (JOB), which substantially impacts the
compaction problem.

Summary. This case study yields three key conclusions. First, Real-data workloads (JOB) have
significantly smaller average chunk sizes than synthetic benchmarks (TPC-H). Second, small chunks
are a major latency bottleneck, especially for hash join operations. Third, Smart Compaction
outperforms Binary Compaction by reducing data-copying overhead, using adaptive compaction
thresholds at runtime, and the compacted vectorized hash join.

7.4 Relative Significance
We then show the relative significance of proposed techniques by categorizing queries into four
groups: 1) benefiting only from Logical Compaction; 2) benefiting only from Learning Compaction; 3)
benefiting from both, and 4) benefiting from neither. As described in Section 6.7, Logical Compaction
is designed for joins while Learning Compaction is mostly effective on filters.
Figure 20 shows the results. For example, TPC-H Q19, a filter-style query, has two filters (with

selectivities of 0.05% and 14%). Its join operators produce near-full chunks, and thus Logical
Compaction is ineffective. In join-style queries, Smart Compaction performs similarly to Logical
Compaction, as the selective joins, not filters, present a performance bottleneck. In mixed-style
queries, Smart Compaction significantly outperforms both individual techniques, confirming the
need to combine them to handle this case effectively, consistent with our analysis in Section 6.7.
Some queries gain no benefit from compaction, due to the absence of selective filters and joins.

8 Discussion
Most modern analytical database engines today adopt the vectorized execution model (e.g., Click-
House [41], DataFusion [23], Photon [4], SnowFlake [10], and Velox [31]). Data chunk compaction

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.



Data Chunk Compaction in Vectorized Execution 26:23

is a general problem for these engines. For example, Velox has an open issue on optimizing the per-
formance with small chunks [16]. DataFusion handles this problem by introducing a pre-configured
switch to select between Full and No Compaction [30].
The vectorized hash join algorithms in many systems [23, 31, 46] were derived from Mon-

etDB/X100 [5, 49]. Therefore, our proposed Logical Compaction also applies to these implementa-
tion variants. Systems such as DataFusion and CockroachDB copy both the probe- and build-side
columns from the input chunks to the result chunks when performing the hash join [18, 19]. This
is equivalent to the Full Compaction strategy in our paper. On the other hand, DuckDB avoids
copying the probe-side columns by including references to the input chunks [20]. Although this
approach significantly reduces the memory copy cost, the side-effect (identified in this paper) is that
it can easily generate under-full chunks. Logical Compaction solves the chunk compaction prob-
lem for vectorized hash joins so that the “zero-copy” approach consistently exhibits performance
advantages over Full Compaction.
The applicability of Logical Compaction is independent of whether the table is partitioned

because partitioning (e.g. radix partitioning) happens before executing the vectorized hash join.
It is also independent of the hash table types (e.g., chaining vs. open-addressing) because Logical
Compaction is carried out on the already gathered matched tuples. Note that if the data chunk
implementation uses bitmaps instead of selection vectors (SVs), Logical Compaction must convert
the bitmaps to SVs (this can be done efficiently using vectorized instructions) before the compaction.

9 Conclusion
In this paper, we formalized the chunk compaction problem, which involves balancing data copying
costs and interpretation costs in vectorized query execution. We proposed learning compaction,
which enables the dynamic adjustment of compaction policies during runtime. Additionally, we
introduced logical compaction that can compact data chunks without actual data copying for
vectorized hash joins. Our investigation reveals that learning compaction effectively addresses the
when to compact challenge, while logical compaction improves how to compact. We integrated
both methods into DuckDB and evaluated their performance against JOB, TPC-H, and TPC-DS.
The results show that our proposed techniques achieve up to 63% performance improvement over
the default DuckDB.

Acknowledgements
This work was supported (in part) by the Shanghai Qi Zhi Institute Innovation Program SQZ202406.

References
[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compression and execution in column-oriented

database systems. In Proceedings of SIGMOD’16. ACM, 671–682.
[2] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition, or Not to Partition, That is the Join

Question in a Real System. In Proceedings of SIGMOD’21. ACM, 168–180.
[3] Claude Barthels, Gustavo Alonso, Torsten Hoefler, Timo Schneider, and Ingo Müller. 2017. Distributed Join Algorithms

on Thousands of Cores. Proceedings of VLDB’17 10, 5 (2017), 517–528. https://doi.org/10.14778/3055540.3055545
[4] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman, Ankur Dave, Todd Green-

stein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa
Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bussel, Herman Van Hovell, Maryann
Xue, Reynold Xin, and Matei Zaharia. 2022. Photon: A Fast Query Engine for Lakehouse Systems. In Proceedings of
SIGMOD’22. ACM, 2326–2339.

[5] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-Pipelining Query Execution. In
Proceedings of CIDR’05. www.cidrdb.org, 225–237.

[6] Maximilian Böther, Lawrence Benson, Ana Klimovic, and Tilmann Rabl. 2023. Analyzing Vectorized Hash Tables
Across CPU Architectures. Proceedings of VLDB’23 16, 11 (2023), 2755–2768.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.

https://doi.org/10.14778/3055540.3055545


26:24 Yiming Qiao and Huanchen Zhang

[7] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew McCormick, Aniket Mokashi, Paul Harvey,
Hector Gonzalez, David Lomax, Sagar Mittal, Roee Ebenstein, Nikita Mikhaylin, Hung-Ching Lee, Xiaoyan Zhao, Tony
Xu, Luis Perez, Farhad Shahmohammadi, Tran Bui, Neil Mckay, Selcuk Aya, Vera Lychagina, and Brett Elliott. 2019.
Procella: Unifying serving and analytical data at YouTube. Proceedings of VLDB’19 12, 12 (2019), 2022–2034.

[8] The Transaction Processing Council. 2021. TPC-DS Benchmark (Version 3.2.0).
[9] The Transaction Processing Council. 2022. TPC-H Benchmark (Version 3.0.1).
[10] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon Bock, Jonathan Claybaugh,

Daniel Engovatov, Martin Hentschel, Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven
Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016. The Snowflake Elastic Data
Warehouse. In Proceedings of SIGMOD’16. ACM, 215–226.

[11] Haowen Dong, Chao Zhang, Guoliang Li, and Huanchen Zhang. 2024. Cloud-Native Databases: A Survey. IEEE Trans.
Knowl. Data Eng. 36, 12 (2024), 7772–7791.

[12] Goetz Graefe. 1994. Volcano - An Extensible and Parallel Query Evaluation System. IEEE Trans. Knowl. Data Eng. 6, 1
(1994), 120–135.

[13] Philipp M. Grulich, Aljoscha P. Lepping, Dwi Prasetyo Adi Nugroho, Varun Pandey, Bonaventura Del Monte, Steffen
Zeuch, and Volker Markl. 2023. Towards Unifying Query Interpretation and Compilation. In Proceedings of CIDR’23.

[14] Andrey Gubichev and Peter A. Boncz. 2014. Parameter Curation for Benchmark Queries. In Proceedings of TPCTC’14
Performance Characterization and Benchmarking. Traditional to Big Data - 6th TPC Technology Conference (Lecture Notes
in Computer Science, Vol. 8904). Springer, 113–129.

[15] Tim Gubner and Peter A. Boncz. 2021. Charting the Design Space of Query Execution using VOILA. Proceedings of
VLDB’21 14, 6 (2021), 1067–1079.

[16] Optimize Operator’s Performance When Vector has Low Selectivity. 2023. https://github.com/facebookincubator/
velox/issues/7801

[17] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, and Martin L. Kersten. 2012. MonetDB:
Two Decades of Research in Column-oriented Database Architectures. IEEE Data Eng. Bull. 35, 1 (2012), 40–45.

[18] Apache DataFusion Hash Join Implementation. 2024. https://github.com/apache/datafusion/blob/
f7efd2d31adb51a67dc6bfb6d6eae6a525d60482/datafusion/physical-plan/src/joins/utils.rs#L1223

[19] CockroachDB Hash Join Implementation. 2024. https://github.com/cockroachdb/cockroach/blob/
67e99ebec74c1f6a6dfbf1cc0bca2d255a55f867/pkg/sql/colexec/colexecjoin/hashjoiner.go#L631C3-L631C16

[20] DuckDB Hash Join Implementation. 2024. https://github.com/duckdb/duckdb/blob/
e2b177b759dbb7cabae0c0afd041bb7de2a9e698/src/execution/join_hashtable.cpp#L928

[21] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and Peter A. Boncz. 2018. Everything
You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask. Proceedings of VLDB’18
11, 13 (2018), 2209–2222.

[22] Changkyu Kim, Eric Sedlar, Jatin Chhugani, Tim Kaldewey, Anthony D. Nguyen, Andrea Di Blas, Victor W. Lee,
Nadathur Satish, and Pradeep Dubey. 2009. Sort vs. Hash Revisited: Fast Join Implementation on Modern Multi-Core
CPUs. Proceedings of VLDB’09 2, 2 (2009), 1378–1389.

[23] Andrew Lamb, Yijie Shen, Daniël Heres, Jayjeet Chakraborty, Mehmet Ozan Kabak, Liang-Chi Hsieh, and Chao Sun.
2024. Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic Query Engine. In Proceedings of SIGMOD’24.
ACM, 5–17.

[24] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann, and Alfons Kemper. 2016. Data
Blocks: Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation. In Proceedings of
SIGMOD’16. ACM, 311–326.

[25] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-driven parallelism: a NUMA-aware
query evaluation framework for the many-core age. In Proceedings of SIGMOD’14. ACM, 743–754.

[26] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2015. How
Good Are Query Optimizers, Really? Proceedings of VLDB’15 9, 3 (2015), 204–215.

[27] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis,
Hossein Ahmadi, Dan Delorey, Slava Min, Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive
SQL Analysis at Web Scale. Proceedings of VLDBV’20 13, 12 (2020), 3461–3472.

[28] Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. 2017. Relaxed Operator Fusion for In-Memory Databases:
Making Compilation, Vectorization, and Prefetching Work Together At Last. Proceedings of VLDB’17 11, 1 (2017), 1–13.

[29] Amadou Ngom, Prashanth Menon, Matthew Butrovich, Lin Ma, Wan Shen Lim, Todd C. Mowry, and Andrew Pavlo.
2021. Filter Representation in Vectorized Query Execution. In Proceedings of DaMoN@SIGMOD’21. ACM, 6:1–6:7.

[30] Configuration Settings of DataFusion. 2024. https://datafusion.apache.org/user-guide/configs.html
[31] Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith S. Sakka, Krishna Pai, Wei He, and Biswapesh

Chattopadhyay. 2022. Velox: Meta’s Unified Execution Engine. Proceedings of VLDB’22 15, 12 (2022), 3372–3384.

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.

https://github.com/facebookincubator/velox/issues/7801
https://github.com/facebookincubator/velox/issues/7801
https://github.com/apache/datafusion/blob/f7efd2d31adb51a67dc6bfb6d6eae6a525d60482/datafusion/physical-plan/src/joins/utils.rs#L1223
https://github.com/apache/datafusion/blob/f7efd2d31adb51a67dc6bfb6d6eae6a525d60482/datafusion/physical-plan/src/joins/utils.rs#L1223
https://github.com/cockroachdb/cockroach/blob/67e99ebec74c1f6a6dfbf1cc0bca2d255a55f867/pkg/sql/colexec/colexecjoin/hashjoiner.go#L631C3-L631C16
https://github.com/cockroachdb/cockroach/blob/67e99ebec74c1f6a6dfbf1cc0bca2d255a55f867/pkg/sql/colexec/colexecjoin/hashjoiner.go#L631C3-L631C16
https://github.com/duckdb/duckdb/blob/e2b177b759dbb7cabae0c0afd041bb7de2a9e698/src/execution/join_hashtable.cpp#L928
https://github.com/duckdb/duckdb/blob/e2b177b759dbb7cabae0c0afd041bb7de2a9e698/src/execution/join_hashtable.cpp#L928
https://datafusion.apache.org/user-guide/configs.html


Data Chunk Compaction in Vectorized Execution 26:25

[32] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking SIMD Vectorization for In-Memory
Databases. In Proceedings of SIGMOD’15. ACM, 1493–1508.

[33] Orestis Polychroniou and Kenneth A. Ross. 2019. Towards Practical Vectorized Analytical Query Engines. In Proceedings
of DaMoN@SIGMOD’19. ACM, 10:1–10:7.

[34] Yiming Qiao. 2024. Implement Logical Compaction in Hash Join Operator. https://github.com/duckdb/duckdb/pull/
14956

[35] Yiming Qiao, Yihan Gao, and Huanchen Zhang. 2024. Blitzcrank: Fast Semantic Compression for In-memory Online
Transaction Processing. Proceedings of VLDB’24 17, 10 (2024), 2528–2540.

[36] Mark Raasveldt and Hannes Mühleisen. 2016. Vectorized UDFs in Column-Stores. In Proceedings of SSDBM’16. ACM,
16:1–16:12.

[37] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analytical Database. In Proceedings of
SIGMOD’19. ACM, 1981–1984.

[38] Bogdan Raducanu, Peter A. Boncz, and Marcin Zukowski. 2013. Micro adaptivity in Vectorwise. In Proceedings of
SIGMOD’13. ACM, 1231–1242.

[39] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk, Vincent KulandaiSamy, Jens
Leenstra, Sam Lightstone, Shaorong Liu, Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis Pandis, Berni
Schiefer, David Sharpe, Richard Sidle, Adam J. Storm, and Liping Zhang. 2013. DB2 with BLU Acceleration: So Much
More than Just a Column Store. Proceedings of VLDB’13 6, 11 (2013), 1080–1091.

[40] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison of Thirteen Relational Equi-Joins in
Main Memory. In Proceedings of SIGMOD’16. ACM, 1961–1976.

[41] Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh Dahimene, and Alexey Milovidov. 2024. ClickHouse - Lightning
Fast Analytics for Everyone. Proceedings of VLDB’24 17, 12 (2024), 3731–3744.

[42] IMDb Data Set. 2024. https://www.imdb.com
[43] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. 1994. Cache Conscious Algorithms for Relational Query

Processing. In Proceedings of VLDB’94. Morgan Kaufmann, 510–521.
[44] Aleksandrs Slivkins. 2019. Introduction to Multi-Armed Bandits. Found. Trends Mach. Learn. 12, 1-2 (2019), 1–286.
[45] Juliusz Sompolski, Marcin Zukowski, and Peter A. Boncz. 2011. Vectorization vs. compilation in query execution. In

Proceedings of DaMoN@SIGMOD’11. ACM, 33–40.
[46] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis, Tobias Grieger, Kai Niemi, AndyWoods,

Anne Birzin, Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and
Peter Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In Proceedings of SIGMOD’20. ACM,
1493–1509.

[47] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and Huanchen Zhang. 2023. An Empirical
Evaluation of Columnar Storage Formats. Proceedings of VLDB’24 17, 2 (2023), 148–161.

[48] Junyi Zhao, Huanchen Zhang, and Yihan Gao. 2023. Efficient Query Re-optimization with Judicious Subquery Selections.
Proceedings of SIGMOD’23 1, 2 (2023), 185:1–185:26.

[49] Marcin Żukowski et al. 2009. Balancing vectorized query execution with bandwidth-optimized storage. SIKS.
[50] Marcin Zukowski and Peter A. Boncz. 2012. From x100 to Vectorwise Opportunities, challenges and things most

researchers do not think about. In Proceedings of SIGMOD’12. ACM, 861–862.

Received July 2024; revised September 2024; accepted November 2024

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 26. Publication date: February 2025.

https://github.com/duckdb/duckdb/pull/14956
https://github.com/duckdb/duckdb/pull/14956
https://www.imdb.com

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Vectorized Model
	2.2 Vectorized Hash Join

	3 The Chunk Compaction Problem
	3.1 Motivation
	3.2 Problem Formulation
	3.3 A Near-optimal Greedy Strategy
	3.4 Simulation-Based Analysis

	4 Learning Compaction
	4.1 Multi-Armed Bandits
	4.2 Online Compaction Learning
	4.3 Multi-threading in Learning

	5 Logical Compaction
	5.1 Data Chunk Design
	5.2 Compacted Vectorized Hash Join
	5.3 Overhead of Extended SVs
	5.4 Column Compression
	5.5 Logical and Learning Compaction

	6 Microbenchmark Evaluation
	6.1 Synthetic Experiment
	6.2 The Compaction Trade-off
	6.3 Distribution of Learned Thresholds
	6.4 Overhead of Selection Vectors
	6.5 The Chain in Hash Table Buckets
	6.6 Block Sizes
	6.7 Mixed Filter & Join Compaction Cases

	7 Full DBMS Evaluation
	7.1 Performance Overview
	7.2 Benchmark Analysis
	7.3 Case Study
	7.4 Relative Significance

	8 Discussion
	9 Conclusion
	References

