An Empirical Evaluation of Columnar Storage Formats

Xinyu Zeng
Tsinghua University
zeng-xy21@mails.tsinghua.edu.cn

Andrew Pavlo
Carnegie Mellon University
pavlo@cs.cmu.edu

ABSTRACT

Columnar storage is a core component of a modern data analytics
system. Although many database management systems (DBMSs)
have proprietary storage formats, most provide extensive support to
open-source storage formats such as Parquet and ORC to facilitate
cross-platform data sharing. But these formats were developed over
a decade ago, in the early 2010s, for the Hadoop ecosystem. Since
then, both the hardware and workload landscapes have changed.
In this paper, we revisit the most widely adopted open-source
columnar storage formats (Parquet and ORC) with a deep dive into
their internals. We designed a benchmark to stress-test the formats’
performance and space efficiency under different workload config-
urations. From our comprehensive evaluation of Parquet and ORC,
we identify design decisions advantageous with modern hardware
and real-world data distributions. These include using dictionary
encoding by default, favoring decoding speed over compression
ratio for integer encoding algorithms, making block compression
optional, and embedding finer-grained auxiliary data structures.
We also point out the inefficiencies in the format designs when
handling common machine learning workloads and using GPUs
for decoding. Our analysis identified important considerations that
may guide future formats to better fit modern technology trends.

PVLDB Reference Format:

Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney,
Huanchen Zhang. An Empirical Evaluation of Columnar Storage Formats.
PVLDB, 17(2): 148 - 161, 2023.

doi:10.14778/3626292.3626298

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/XinyuZeng/EvaluationOfColumnarFormats.

1 INTRODUCTION

Columnar storage has been widely adopted for data analytics be-
cause of its advantages, such as irrelevant attribute skipping, effi-
cient data compression, and vectorized query processing [55, 59, 68].
In the early 2010s, organizations developed data processing engines
for the open-source big data ecosystem [12], including Hive [13,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 2 ISSN 2150-8097.
doi:10.14778/3626292.3626298

Yulong Hui
Tsinghua University
huiyl22@mails.tsinghua.edu.cn

Wes McKinney
Voltron Data
wes@voltrondata.com

148

Jiahong Shen
Tsinghua University
shen-jh20@mails.tsinghua.edu.cn

Huanchen Zhang”
Tsinghua University
huanchen@tsinghua.edu.cn

105], Impala [16], Spark [20, 113], and Presto [19, 98], to respond to
the petabytes of data generated per day and the growing demand for
large-scale data analytics. To facilitate data sharing across the vari-
ous Hadoop-based query engines, vendors proposed open-source
columnar storage formats [11, 17, 18, 76], represented by Parquet
and ORC, that have become the de facto standard for data storage in
today’s data warehouses and data lakes [14, 15, 19, 20, 29, 38, 61].

These formats, however, were developed more than a decade ago.
The hardware landscape has changed since then: persistent stor-
age performance has improved by orders of magnitude, achieving
gigabytes per second [48]. Meanwhile, the rise of data lakes means
more column-oriented files reside in cheap cloud storage (e.g., AWS
S3 [7], Azure Blob Storage [24], Google Cloud Storage [33]), which
exhibits both high bandwidth and high latency. On the software side,
anumber of new lightweight compression schemes [57, 65, 87, 116],
as well as indexing and filtering techniques [77, 86, 101, 115], have
been proposed in academia, while existing open columnar formats
are based on DBMS methods from the 2000s [56].

Prior studies on storage formats focus on measuring the end-
to-end performance of Hadoop-based query engines [72, 80]. They
fail to analyze the design decisions and their trade-offs. Moreover,
they use synthetic workloads that do not consider skewed data
distributions observed in the real world [109]. Such data sets are
less suitable for storage format benchmarking.

The goal of this paper is to analyze common columnar file for-
mats and to identify design considerations to provide insights for
developing next-generation column-oriented storage formats. We
created a benchmark with predefined workloads whose configura-
tions were extracted from a collection of real-world data sets. We
then performed a comprehensive analysis for the major compo-
nents in Parquet and ORC, including encodings, block compression,
metadata organization, indexing and filtering, and nested data mod-
eling. In particular, we investigated how efficiently the columnar
formats support common machine learning workloads and whether
their designs are friendly to GPUs. We detail the lessons learned in
Section 6 and summarize our main findings below.

First, there is no clear winner between Parquet and ORC in
format efficiency. Parquet has a slight file size advantage because of
its aggressive dictionary encoding. Parquet also has faster column
decoding due to its simpler integer encoding algorithms, while ORC
is more effective in selection pruning due to the finer granularity
of its zone maps (a type of sparse index).

Second, most columns in real-world data sets have a small num-
ber of distinct values (or low “NDV ratios” defined in Section 4.1),

“Huanchen Zhang is also affiliated with Shanghai Qi Zhi Institute.


https://doi.org/10.14778/3626292.3626298
https://github.com/XinyuZeng/EvaluationOfColumnarFormats
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3626292.3626298
https://www.acm.org/publications/policies/artifact-review-and-badging-current

which is ideal for dictionary encoding. As a result, the efficiency
of integer-encoding algorithms (i.e., to compress dictionary codes)
is critical to the format’s size and decoding speed. Third, faster
and cheaper storage devices mean that it is better to use faster de-
coding schemes to reduce computation costs than to pursue more
aggressive compression to save I/O bandwidth. Formats should not
apply general-purpose block compression by default because the
bandwidth savings do not justify the decompression overhead.

Fourth, Parquet and ORC provide simplistic support for auxiliary
data structures (e.g., zone maps, Bloom Filters). As bottlenecks shift
from storage to computation, there are opportunities to embed
more sophisticated structures and precomputed results into the
format to trade inexpensive space for less computation.

Fifth, existing columnar formats are inefficient in serving com-
mon machine learning (ML) workloads. Current designs are sub-
optimal in handling projections of thousands of features during
ML training and low-selectivity selection during top-k similarity
search in the vector embeddings. Finally, the current formats do
not provide enough parallel units to fully utilize the computing
power of GPUs. Also, unlike the CPUs, more aggressive compres-
sion is preferred in the formats with GPU processing because the
I/O overhead (including PCle transfer) dominates the file scan time.

We make the following contributions in this paper. First, we
created a feature taxonomy for columnar storage formats like Par-
quet and ORC. Second, we designed a benchmark to stress-test
the formats and identify their performance vs. space trade-offs
under different workloads. Lastly, we conducted a comprehensive
set of experiments on Parquet and ORC using our benchmark and
summarized the lessons learned for the future format design.

2 BACKGROUND AND RELATED WORK

The Big Data ecosystem in the early 2010s gave rise to open-source
file formats. Apache Hadoop first introduced two row-oriented
formats, SequenceFile [49] organized as key-value pairs, and
Avro [10] based on JSON. At the same time, column-oriented
DBMSs, such as C-Store [102], MonetDB [79], and VectorWise [118],
developed the fundamental methods for efficient analytical query
processing [55]: columnar compression, vectorized processing, and
late materialization. The Hadoop community then adopted these
ideas from columnar systems and developed more efficient formats.
In 2011, Facebook/Meta released a column-oriented format for
Hadoop called RCFile [76]. Two years later, Meta refined RCFile
and announced the PAX (Partition Attribute Across)-based [59]
ORC (Optimized Record Columnar File) format [17, 78]. A month
after ORC’s release, Twitter and Cloudera released the first ver-
sion of Parquet [18]. Their format borrowed insights from earlier
columnar storage research, such as the PAX model and the record-
shredding and assembly algorithm from Google’s Dremel [91].
Since then, both Parquet and ORC have become top-level Apache
Foundation projects. They are also supported by most data pro-
cessing platforms, including Hive [13], Presto/Trino [19, 98], and
Spark [20, 113]. Even database products with proprietary storage
formats (e.g., Redshift [75], Snowflake [70], ClickHouse [27], and
BigQuery [32]) support Parquet and ORC through external tables.
Huawei’s CarbonData [11] is another open-source columnar
format that provides built-in inverted indexing and column groups.

149

Because of its closer relationship with Spark, previous work failed
to evaluate the format in isolation [106]. Recent work concludes
that CarbonData has a worse performance compared with Parquet
and ORC and has a less active community [69].

A number of large companies have developed their own pro-
prietary columnar formats in the last decade. Google’s Capacitor
format is used by many of their systems [3], including BigQuery [92]
and Napa [58]. It is based on the techniques from Dremel [91] and
Abadi et al. [56] that optimize layout based on workload behavior.
YouTube developed the Artus format in 2019 for the Procella DBMS
that supports adaptive encoding without block compression and
0O(1) seek time for nested schemas [66]. Meta’s DWREF is a vari-
ant of ORC with better support for reading and encrypting nested
data [50]. Meta recently developed Alpha to improve the training
workloads of machine learning (ML) applications [108].

Arrow is an in-memory columnar format designed for efficient
exchange of data with limited or no serialization between differ-
ent application processes or at library API boundaries [8]. Unlike
Parquet or ORC, Arrow supports random access and thus does not
require block-based decoding on reads. Because Arrow is not meant
for long-term disk storage [5], we do not evaluate it in this paper.

The recent lakehouse [62] trend led to an expansion of formats to
support better metadata management (e.g., ACID transactions). Rep-
resentative projects include Delta Lake [61], Apache Iceberg [15],
and Apache Hudi [14]. They add an auxiliary metadata layer and
do not directly modify the underlying columnar file formats.

There are also scientific data storage formats for HPC workloads,
including HDF5, BP5, NetCDF, and Zarr [25, 39, 53, 73]. They target
heterogeneous data that has complex file structures, types, and
organizations. Their data is typically multi-dimensional arrays and
does not support column-wise encoding. Although they expose
several language APIs, few DBMSs support these formats because
of their lack of columnar storage features.

Most of the previous investigations on columnar formats target
entire query processing systems without analyzing the format in-
ternals in isolation [72, 80, 95]. Trivedi et al. compared the read
performance of Parquet, ORC, Arrow, and JSON on the NVMe
SSDs [106], but they only measured sequential scans with synthetic
data sets (i.e., TPC-DS [103]). There are also older industry articles
that compare popular columnar formats, but they do not provide
an in-depth analysis of the internal design details [1, 2, 4].

Other research proposes ways to optimize these existing colum-
nar formats under specific workloads or hardware configurations [63,
64, 89]. For example, Jiang et al. use ML to select the best encoding
algorithms for Parquet according to the query history [81]. Btr-
Blocks integrates a sampling-based encoding selection algorithm to
achieve the optimal decompression speed with network-optimized
instances [83]. Li et al. proposed using BMI instructions to improve
selection performance on Parquet [85]. None of these techniques,
however, have been incorporated in the most popular formats.

3 FEATURE TAXONOMY

In this section, we present a taxonomy of columnar formats fea-
tures (see Table 1). For each feature category, we first describe the
common designs between Parquet and ORC and then highlight
their differences as well as the rationale behind the divergence.



Table 1: Feature Taxonomy — An overview of the features of columnar storage formats.

Parquet

ORC

Internal Layout (§3.1) PAX
Encoding Variants (§3.2)
Compression (§3.3)
Type System (§3.4)
Zone Map / Index (§3.5)
Bloom Filter (§3.5)

Nested Data Encoding (§3.6)

FEATURES

Supported per column chunk
Dremel Model

Table 2: Concepts Mapping — Terms used in this paper and the corre-
sponding ones in the formats.

This Paper Parquet ORC
Row Group Row Group Stripe
Smallest Zone Map Page Index (a Page) Row Index (10k rows)
Compression Unit  Page Compression Chunk

3.1 Format Layout

As shown in Figure 1, both Parquet and ORC employ the PAX format.
The DBMS first partitions a table horizontally into row groups. It
then stores tuples column-by-column within each row group, with
each attribute forming a column chunk. The hybrid columnar layout
enables the DBMS to use vectorized query processing and mitigates
the tuple reconstruction overhead in a row group. Many systems
and libraries, such as DuckDB and Arrow, leverage the PAX layout
to perform parallel reads over column chunks.

Both formats first apply lightweight encoding schemes to the val-
ues for each column chunk. The formats then use general-purpose
block compression algorithms to reduce the column chunk’s size.
The entry point of a Parquet/ORC file is called a footer. Besides
file-level metadata such as table schema and tuple count, the footer
keeps the metadata for each row group, including its offset in the
file and zone maps for each column chunk. For clarity in our ex-
position, in Table 2 we also summarize the mapping between the
terminologies used in this paper and those used in Parquet/ORC.

Although the layouts of Parquet and ORC are similar, they differ
in how they map logical blocks to physical storage. For example,
(non-Java) Parquet uses a row-group size based on the number of
rows (e.g., IM rows), whereas ORC uses fixed physical storage size
(e.g., 64 MB). Parquet seeks to guarantee that there are enough
entries within a row group to leverage vectorized query processing,
but it may suffer from large memory footprints, especially with
wide tables. On the other hand, ORC limits the physical size of
a row group to better control memory usage, but it may lead to
insufficient entries with large attributes.

Another difference is that Parquet maps its compression unit
to the smallest zone map. ORC provides flexibility in tuning the
performance-space trade-off of a block compression algorithm.
However, misalignment between the smallest zone map and com-
pression units imposes extra complexity during query processing
(e.g., a value may be split across unit boundaries).

3.2 Encoding

Applying lightweight compression schemes to the columns can
reduce both storage and network costs [56]. Parquet and ORC
support standard OLAP compression techniques, such as Dictionary
Encoding, Run-Length Encoding (RLE), and Bitpacking.

plain, RLE_DICT, RLE, Delta, Bitpacking
Snappy, gzip, LZO, zstd, LZ4, Brotli
Separate logical and physical type system

Min-max per smallest zone map/row group/file

150

PAX

plain, RLE_DICT, RLE, Delta, Bitpacking, FOR
Snappy, zlib, LZO, zstd, LZ4

One unified type system

Min-max per smallest zone map/row group/file
Supported per smallest zone map

Length and presence

Parquet applies Dictionary Encoding aggressively to every col-
umn regardless of the data type by default, while ORC only uses
it for strings. They both apply another layer of integer encoding
on the dictionary codes. The advantage of applying Dictionary En-
coding to an integer column, as in Parquet, is that it might achieve
additional compression for large-value integers. However, the dic-
tionary codes are assigned based on the values’ first appearances in
the column chunk and thus might destroy local serial patterns that
could be compressed well by Delta Encoding or Frame-of-Reference
(FOR) [74, 84, 117]. Therefore, Parquet only uses Bitpacking and
RLE to further compress the dictionary codes.

Parquet imposes a limit (1 MB by default) to the dictionary size
for each column chunk. When the dictionary is full, later values fall
back to “plain” (i.e., no encoding) because a full dictionary indicates
that the number of distinct values (NDVs) is too large On the other
hand, ORC computes the NDV ratio (i.e., NDV / row count) of the
column to determine whether to apply Dictionary Encoding to it.
If a column’s NDV ratio is greater than a predefined threshold (e.g.,
0.8), then ORC disables encoding. Compared to Parquet’s dictionary
size physical limit, ORC’s approach is more intuitive, and the tuning
of the NDV ratio threshold is independent of the row group size.

For integer columns, Parquet first dictionary encodes and then
applies a hybrid of RLE and Bitpacking to the dictionary codes.
If the same value repeats > 8 times consecutively, it uses RLE;
otherwise, it uses bitpacking. Interestingly, we found that the RLE-
threshold 8 is a non-configurable parameter hard-coded in every
implementation of Parquet. Although it saves Parquet a tuning
knob, such inflexibility could lead to suboptimal compression ratios
for specific data sets (e.g., when the common repetition length is 7).

Unlike Parquet’s RLE + Bitpacking scheme, ORC includes four
schemes to encode both dictionary codes (for string columns) and
integer columns. ORC’s integer encoder uses a rule-based greedy
algorithm to select the best scheme for each subsequence of values.
Starting from the beginning of the sequence, the algorithm keeps a
look-ahead buffer (with a maximum size of 512 values) and tries
to detect particular patterns. First, if there are subsequences of
identical values with lengths between 3 and 10, ORC uses RLE to
encode them. If the length of the identical values is greater than
10, or the values of a subsequence are monotonically increasing
or decreasing, ORC applies Delta Encoding to the values. Lastly,
for the remaining subsequences, the algorithm encodes them using
either Bitpacking or a variant of PFOR [117], depending on whether
there exist “outliers” in a subsequence. Figure 2 is an example of
ORC’s integer encoding schemes.

The sophistication (compared to Parquet) of ORC’s integer encod-
ing algorithm allows ORC to seize more opportunities for compres-
sion. However, switching between four encoding schemes slows



----- » e IR P v IR
Column T m— e Col
= T | Index (logical) L
olumn \ \ S Col 1 Bloom Filter| J ” Column N,
Row Group 2 ‘\“ ‘ chunk 2 ‘ \ ‘ Page 2 ‘ \ ’ Definition Levels : :,’T| Chunk 2
. Repetition Levels . \ . \
: \ . \ . - / Row Group 2 N\
) \ ‘ Column ‘ \ ‘ page p ‘ \ ‘ Values ‘ Col ¢ Zone Map ; : Column
Chunk ¢ P! i ] Teerl I . Chunk c
Bloom Filter I,/ - type, encoding, compression, Row Group number of rows, ... / . dofflset, "
L Row Group 1 Metadata zone maps... / Row Group 1 Metadata index length,
/ ; - ColChunksStats || R data length,
- ‘ - . | foteieng
Footer Length Tl ‘ Row Group r Metadata ‘ >, ‘ Column ¢ Metadata ‘ Footer Length il N Row Group r Metadata M
N
(a) Parquet layout. (b) ORC layout.
Figure 1: Format Layout - Blocks in gray are optional depending on configurations/data.
Yy y iy P
913 | 222 | 123 ] 222 | 9135487996 Union allows data values to have different types for the same col-
Original Integer Sequence umn name. Recent work shows that a Union type can help optimize
- Parquet’s Dremel model with schema changes [60].
Bitpack RLE Delta RLE PFOR

Corresponding Encoding Method

Figure 2: ORC’s Hybrid Integer Encoding - Each encoding subsequence
has a header for the decoder to decide which algorithm to use at run time.

down the decoding process and creates more fragmented subse-
quences that require more metadata to keep track. All the open-
source DBMSs and libraries that we surveyed follow Parquet and
ORC’s default encoding schemes without implementing their own
tools for selecting encoding algorithms in the files.

3.3 Compression

Both Parquet and ORC enable block compression by default. The
algorithms supported by each format are summarized in Table 1. Be-
cause a block compression algorithm is type-agnostic (i.e., it treats
any data as a byte stream), it is mostly orthogonal to the underlying
format layout. Most block compression algorithms contain parame-
ters to configure the “compression level” to make trade-offs between
the compression ratio and the compression/decompression speed.
Parquet exposes these tuning knobs directly to the users, while ORC
provides a wrapper with two pre-configured options, “optimize for
speed” and “optimize for compression”, for each algorithm.

One of our key observations is that applying block compression
to columnar storage formats is unhelpful (or even detrimental) to
the end-to-end query speed on modern hardware. Section 5 further
discusses this issue with experimental evidence.

3.4 Type System

Parquet provides a minimal set of primitive types (e.g., INT32,
FLOAT, BYTE_ARRAY). All the other supported types (e.g., INTS,
date, timestamp) in Parquet are implemented using those primi-
tives. For example, INT8 in Parquet is encoded as INT32 internally.
Because small integers may be dictionary compressed well, such
a “type expansion” has minimal impact on storage efficiency. On
the other hand, every type in ORC has a separate implementation
with a dedicated reader and writer. Although this could bring more
type-specific optimizations, it makes the implementation bloated.
As for complex types, Parquet and ORC both support Struct, List,
and Map, but Parquet does not provide the Union type like ORC.

151

3.5 Index and Filter

Parquet and ORC include zone maps and optional Bloom Filters to
enable selection pruning. A zone map contains the min value, the
max value, and the row count within a predefined range in the file.
If the range of the values of the zone does not satisfy a predicate,
the entire zone can be skipped during the table scan. Both Parquet
and ORC contain zone maps at the file level and the row group level.
The smallest zone map granularity in Parquet is a physical page (i.e.,
the compression unit), while that in ORC is a configurable value
representing the number of rows (10000 rows by default). Whether
to build the smallest zone maps is optional in Parquet.

In earlier versions of Parquet, the smallest zone maps are stored
in the page headers. Because the page headers are co-located with
each page and are thus discontinuous in storage, (only) checking
the zone maps requires a number of expensive random I/Os. In
Parquet’s newest version (2.9.0), this is fixed by having an optional
component called the Pagelndex, stored before the file footer to
keep all the smallest zone maps. Similarly, ORC stores its smallest
zone maps at the beginning of each row group, as shown in Figure 1.

Bloom Filters are optional in Parquet and ORC. The Bloom Fil-
ters in ORC have the same granularity as the smallest zone maps,
and they are co-located with each other. Bloom Filters in Parquet,
however, are created only at the column chunk level partly because
the Pagelndex (i.e., the smallest zone maps) in Parquet is optional.
In terms of the Bloom Filter implementation, Parquet adopts the
Split Block Bloom Filter (SBBF) [96], which is designed to have
better cache performance and SIMD support [42].

According to our survey, Arrow and DuckDB only adopt zone
maps at the row group level for Parquet, while InfluxDB and Spark
enable PageIndex and Bloom Filters to trade space for better selec-
tion performance [46]. When writing ORC files, Arrow, Spark, and
Presto enable row indexes but disable Bloom Filters by default.

Zone maps are only effective when the values are clustered (e.g.,
mostly sorted). As data processing bottlenecks shift from storage
to computation, whether adding more types of auxiliary data struc-
tures [77, 86, 101, 115] to the format will be beneficial to the overall
query performance remains an interesting open question.



first last

Val Val

Mike Lee

{name: {first: Mike, last: Lee}, tags: [a, b]} Hill

o|lo|o|l=
NNl o

{name: {last: Hill}, tags: []}

o|lo|o|l=

{name: {first: Joe}, tags: [c]}

first last  ta

(a) Example schema and three sample records.

(b) Parquet’s. R/D=Repetition/Definition Level.

tag | name first last tags tag
D val | R b |! “ val | p val | p len | P val | P
:
2 i a
a o |2 |t Mike | 1 || tee | 1 2 | 1
2 b |1 |2 |4 0 Hill | 1 0 1 b 1
,
: o 1! oo | 2 e e v e
c |o 2 |
i

(c) ORC’s. Len=length, P=presence.

Figure 3: Nested Data Example — Assume all nodes except the root can be null.

Config File Metadata Table
4 Workload B %
'& Generator >
Transform
Workload
Templates Predicates Scan
0 Target Format .I Final results
— Select f

Figure 4: Benchmark Procedure Overview

3.6 Nested Data Model

As semi-structured data sets such as those in JSON and Protocol
Buffers [44] have become prevalent, an open format must sup-
port nested data. The nested data model in Parquet is based on
Dremel [91]. As shown in Figure 3b, Parquet stores the values of
each atomic field (the leaf nodes in the hierarchical schema in Fig-
ure 3a) as a separate column. Each column is associated with two
integer sequences of the same length, called the repetition level (R)
and the definition level (D), to encode the structure. R links the
values to their corresponding “repeated fields”, while D keeps track
of the NULLs in the “non-required fields”.

On the other hand, ORC adopts a more intuitive model based
on length and presence to encode nested data [92]. As shown in
Figure 3¢, ORC associates a boolean column to each optional field
to indicate value presence. For each repeated field, ORC includes
an additional integer column to record the repeated lengths.

For comparison, ORC creates separate columns (presence and
length) for non-atomic fields (e.g., “name” and “tags” in Figure 3c),
while Parquet embeds this structural information in the atomic
fields via R and D. The advantage of Parquet’s approach is that
it reads fewer columns (i.e., atomic fields only) during query pro-
cessing. However, Parquet often produces a larger file size because
the information about the non-atomic fields could be duplicated
in multiple atomic fields (e.g., “first” and “last” both contains the
information about the presence of “name” in Figure 3b).

4 COLUMNAR STORAGE BENCHMARK

The next step is to stress-test the performance and space efficiency
of the storage formats using data sets using varying value distribu-
tions. Standard OLAP benchmarks such as SSB [93], TPC-H [104]
and TPC-DS [103] generate data sets with uniform distributions.
Second, although some benchmarks, such as YCSB [67], DSB [71],
and BigDataBench [111] allow users to set data skewness, the con-
figuration space is often too small to generate distributions that are
close to real-world data sets. Lastly, using real-world data is ideal,
but the number of high-quality resources available is insufficient
to cover a comprehensive analysis.

Given this, we designed a benchmark framework based on real-
world data to evaluate multiple aspects of columnar formats. We

152

first define several salient properties of the value distribution of
a column (e.g., sortedness, skew pattern). We then extract these
properties from real-world data sets to form predefined workloads
representing applications ranging from BI to ML. To use our bench-
mark, as shown in Figure 4, a user first provides a configuration
file (or an existing workload template) that specifies the parameter
values of the properties. The workload generator then produces the
data using this configuration and then generates point and range
predicates to evaluate the format’s (filtered) scan performance.

4.1 Column Properties

We first introduce the core properties that define the value distri-
bution of a column. We use [ay, a, ..., an] to represent the values
in a particular column, where N denotes the number of records.

NDV Ratio: Defined as the number of distinct values (NDV) di-
vided by the total number of records in a column: f;, = N ]E)]V. A
numeric column typically has a higher NDV ratio than a categor-
ical column. A column with a lower NDV ratio is usually more

compressible via Dictionary Encoding and RLE, for example.

Null Ratio: Defined as the number of NULLs divided by the total
number of records in a column: f,, = H”Ll\s]nuu}l. It is important
for a columnar storage format to handle NULL values efficiently

both in terms of space and query processing.

Value Range: This property defines the range of the absolute
values in a column. Users pass two parameters: the average value
(e.g., 1000 for an integer column) and the variance of the value
distribution. The value range directly impacts the compressed file
size because most columnar formats apply Bitpacking to the values.
For string, this is defined as byte length.

Sortedness: The degree of sortedness of a column affects not
only the efficiency of encoding algorithms such as RLE and Delta
Encoding, but also the effectiveness of zone maps. Prior work has
proposed ways to measure the sortedness of a sequence [90], but
these metrics do not correlate strongly with encoding efficiency,
so we developed a simple metric that puts more emphasis on local
sortedness. We divide the column into fixed-sized blocks (512 entries
by default). Within each block, we compute a sortedness score to
reflect its ascending or descending tendency:
asc=|{i|1<i<nand a; <aj+1}|; desc=|{i|1<i<n and g; >a,~+11}v|
eq = l{il1<i<nand a;=ais1}|; fsortness = maX(asc,ﬁ;s]ci—:eq—[7j
We then take the average of the per-block scores to répresent the
column’s overall sortedness. A score of 1 means that the column
is fully sorted, while a score close to 0 indicates a high probability
that the column’s values are randomly distributed. Although this
metric is susceptible to adversarial patterns (e.g., 1,2,3,4,3,2, 1), it




(0.0, 1e-05] [8(0.001, 0.01]
[J(1e-05, 0.0001] NN (0.01, 0.1]

—o [E9(0.001, 0.1] Cuniform

[3(0.0, 1e-05] mmm(0.1, 0.5]

Embinary
[Jgentle_zipf EE@single

(0, 51 EEA(25, 50]
(5, 10] (50, 100]

(0,1] [ (1e3,1e4]
[C(1lel,1e2] MM (1e4,1e5]

(0.0, 0.2] ==(0.6, 0.8]
(0.2, 0.4] == (0.8, 1.0]

[£9(0.0001, 0.001 ] HEN (0.1, 1.0] [==I(1e-05, 0.001] mE (0.5, 1.0] [Ihotspot [=3(0.4, 0.6] [C1(1e2,1e3] MM (1e5,1e6]  [J(10, 25] HEN(100, 1000]
1.0 1.0 1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8 0.8 0.8
g [
806 0.6 0.6 0.6 0.6 0.6
€
8
S04 0.4 0.4 0.4 0.4 0.4
o
0.2 0.2 0.2 0.2 0.2 0.2
0.0 - - 0.0 - 0.0 " 0.0 - - 0.0 0.0 -
Integer Float Point String Integer Float Point String Integer Float Point String Integer Float Point String Integer String

(a) NDV Ratio (b) Null Ratio

(c) Skew Pattern

(d) Sortedness (e) Int Value Range (f) String Length

Figure 5: Parameter Distribution - Percentage of total columns from diverse data sets of different parameter values.

is sufficient for our generator to produce columns with different
sortedness levels. Given a score (e.g., 0.8), we first sort the values
in a block in ascending or descending order and then swap value
pairs randomly until the sortedness degrades to the target score.

Skew Pattern: We use the following pseudo-zipfian distribution
to model the value skewness in a column: p(k) = %/(Zle %).
C denotes the total number of distinct values, and k refers to the
frequency rank (e.g., p(1) represents the portion occupied by the
most frequent value). The Zipf-parameter s determines the column
skewness: a larger s leads to a more skewed distribution. Based on

the range of s, we classified the skew patterns into four categories:

e Uniform: When s < 0.01. Each value appears in the column
with a similar probability.

o Gentle Zipf: When 0.01 < s < 2. The data is skewed to some
extent. The long tail still dominates the values of a column.

e Hotspot: When s > 2. The data is highly skewed. A few hot
values cover almost the entire column.

o Single/Binary: This represents extreme cases in real-world data
where a column contains one/two distinct values.

The skew pattern is a key factor that determines the performance
of both lightweight encodings and block compression algorithms.

4.2 Parameter Distribution in Real-World Data

We study the following real-world data sets to depict a parameter

distribution of each of the core properties introduced in Section 4.1.

— Public BI Benchmark [45, 109]: real-world data and queries from
Tableau with 206 tables (uncompressed 386GB).

- ClickHouse [28]: sample data sets from the ClickHouse tutorials,
which represent typical OLAP workloads.

— UCI-ML [6]: a collection of 622 data sets for ML training. We select
nine data sets that are larger than 100 MB. All are numerical data
excluding unstructured images and embeddings.

- Yelp [52]: Yelp’s businesses, reviews, and user information.

- LOG [30]: log information on internet search traffic for EDGAR
filings through SEC.gov.

- Geonames [31]: geographical information covering all countries.

— IMDb [37]: data sets that describe the basic information, ratings,
and reviews of a collection of movies.

We extracted the core properties from each of the above data
sets and plotted their parameter distributions in Figure 5. As shown
in Figure 5a, over 80% of the integer columns and 60% of the string
columns have an NDV ratio smaller than 0.01. Surprisingly, even
for floating-point columns, 60% of them have significant value

153

repetitions with an NDV ratio smaller than 0.1. This implies that
Dictionary Encoding would be beneficial to most of the real-world
columns. Figure 5b shows that the NULL ratio is low, and string
columns tend to have more NULLs than the other data types.
Most columns in the real world exhibit a skewed value distribu-
tion, as shown in Figure 5c. Less than 5% of the columns can be
classified as Uniform. Regardless of the data type, a majority of the
columns fall into the category of Gentle Zipf. The remaining ~ 30%
of the columns contain “heavy hitters”. This distribution indicates
that an open columnar format must handle both the “heavy hitters”
and the “long tails” (from Gentle Zipf) efficiently at the same time.
Figure 5d shows that the distribution of the sortedness scores
is polarized: most columns are either well-sorted or unsorted at
all. This implies that encoding algorithms that excel only at sorted
columns (e.g., Delta Encoding and FOR) could still play an important
role. Lastly, as shown in Figure 5e, most integer columns have small
values that are ideal for Bitpacking compression. Long string values
are also rare in our data set collection (see Figure 5f). We also
analyzed real-world Parquet files sampled from publicly available
object store buckets and found that they mostly corroborate Figure 5.

4.3 Predefined Workloads

We extracted the column properties from the real-world data sets
introduced in Section 4.1 and categorized them into five predefined
workloads: bi (based on the Public BI Benchmark), classic (based
on IMDDb, Yelp, and a subset of the Clickhouse sample data sets), geo
(based on Geonames and the Cell Towers and Air Traffic data sets
from Clickhouse), log (based on LOG and the machine-generated
log data sets from Clickhouse), and ml (based on UCL-ML). Table 3
presents the proportion of each data type for each workload, while
Table 4 summarizes the parameter settings of the column properties.
Each value in Table 4 represents a weighted average across the data
types (e.g., if there are 6 integer columns with an NDV ratio of 0.1,
3 string columns with an NDV ratio of 0.2, and 1 float columns with
an NDV ratio of 0.4, the value reported in Table 4 would be 0.16).
The classic workload has a higher Zipf parameter and a higher
NDV ratio at the same time, indicating a long-tail distribution. On
the other hand, the NDV ratio in log is relatively low, but the
columns are better sorted. In terms of data types, classic and geo
are string-heavy, while log and ml are float-heavy.

We then created the core workload which is a mix of the five pre-
defined workloads. It contains 50% of bi columns, 21% of classic,
7% of geo, 7% of log, and 15% of ml. We will use core as the de-
fault workload in Section 5. For each workload, we also specify a



Table 3: Data type distribution of different workloads — Number in
the table indicating the proportion of columns.

Type core bi classic geo log ml
Integer 0.37 0.46 0.33 0.31 0.22 0.24
Float 0.21 0.20 0.06 0.08 0.46 0.39
String 0.41 0.34 0.61 0.61 0.32 0.37
Bool 0.003 0.002 0.00 0.00 0.00 0.01

Table 4: Summarized Workload Properties — We categorize each prop-
erty into three levels. The darker the color the higher the number.

Properties core bi classic geo log ml
NDV Ratio 0.12 0.08 0.08 0.12
Null Ratio 0.09 0.02 0.00
Value Range medium small small  small
Sortedness 0.54 0.57 0.49 0.45 0.30
Zipf s 1.00

1.12 1.10 0.89
Pred. Selectivity = mid J low
selectivity for our benchmark to generate predicates to evaluate the
filtered scan performance of a columnar storage format. As shown
in Table 4, bi and classic have high selectivities because these
scenarios typically involve large scans. On the contrary, we use a
low selectivity in geo and log because their queries request data
from small geographic areas or specific time windows.

5 EXPERIMENTAL EVALUATION

In this section, we analyze Parquet and ORC’s features presented in
Section 3. The purpose is to provide experiment-backed lessons to
guide the design of the next-generation columnar storage formats.
Section 5.1 describes the experimental setup. Section 5.2 presents
the performance and space results of Parquet and ORC under default
configurations using the predefined workloads in our benchmark.
We then examine the formats’ key components with controlled
experiments in Sections 5.3 to 5.7. Lastly, we test the formats’ ability
to support ML workloads (Section 5.8) and GPUs (Section 5.9).

5.1 Experiment Setup

We run the experiments on an AWS 1i3.2xlarge instance with 8
vCPUs of Intel Xeon CPU E5-2686 v4, 61GB memory, and 1.7TB
NVMe SSD. The operating system is Ubuntu 20.04 LTS. We use
Arrow v9.0.0 to generate the Parquet and ORC files. For all experi-
ments, we use the following configurations of the formats (unless
specified otherwise). Parquet has a row group size of 1m rows and
sets the dictionary page size limit to 1 MB. The row group size in
ORC is 64 MB, and its NDV-ratio threshold for dictionary encoding
is v0.8 (Hive’s default). Snappy compression is enabled (by default
) for both formats. We use the C++ implementation of Parquet
(integrated with Arrow C++) [21] and ORC (v1.8) [41] compiled
with g++ v9.4. To evaluate page-level zone maps, we use the Rust
implementation (v32) of Parquet in Section 5.6. We generate the
workloads for the experiments using the benchmark introduced
in Section 4. We measure the file sizes and the scan performance
(with filters) in these experiments. Each reported measurement is
the average of three runs per experiment.

One approach to measuring the (filtered) scan performance of
Parquet and ORC is to decode both formats into Arrow tables. But
this approach is unfair because Parquet is tightly coupled with
Arrow with native support for format transformation (e.g., Arrow

154

[ Parquet [ ORC
_ 0.6
2] —
=150 Bo4 g 100
o o =
100
@ £ 2 s0
(2] =
2 50 Eo2 £
= oo

.0 A 0
e _a%edod & @O %O & e a%eO\® &
o :,\6"‘)& 02 © &eege OO s c\'o‘f’@e’ o &

(a) File Size (b) Scan Time (c) Select Time

Figure 6: Benchmark results with predefined workloads

can decode Parquet’s dictionary page directly into its dictionary
array), while we must convert ORC into an intermediate in-memory
representation (ColumnVectorBatch) before transforming it into
Arrow tables. Given this, we focus on the raw scan performance of
each storage format. We preallocate a fixed-sized memory buffer.
After decoding the fixed-size unit of data, the system writes the
result to the same buffer, assuming that the previous one has already
been consumed by upstream operators.

5.2 Benchmark Result Overview

We first present the results of benchmarking Parquet and ORC
with their default configurations using the predefined workloads
(Section 4.3). We generate a 20-column table with 1m rows for each
workload and store the data in a single Parquet/ORC file. We then
perform a sequential scan of the file and report the execution time.
Lastly, we clear the buffer cache and perform 30 select queries. The
selectivities of the range predicates are defined in Table 4, and we
report the average latency of the select queries for each workload.

As shown in Figure 6a, there is no clear winner between Parquet
and ORC in terms of file sizes. Parquet’s file size is smaller than
ORC'’s in log and ml because Parquet applies dictionary encoding
on float columns where their NDV ratios are low in real-world data
sets (Figure 5a). However, ORC generates smaller files for classic
and geo because they mostly contain string data. We provide further
analysis of the encoding schemes in Section 5.3.

The results in Figure 6b indicate that Parquet is faster than ORC
for scans. The main reason is that Parquet’s integer/dictionary-code
encoding scheme is lightweight: it mostly uses Bitpacking and only
applies RLE when value repetition is > 8 (Section 3.2). Because
RLE decoding is hard to accelerate using SIMD, it has an inferior
performance compared to Bitpacking when the repetition count
is small. In contrast, ORC applies RLE more aggressively (when
value repetition is > 3, and its integer encoding scheme switches
between four algorithms, thus slowing down the decoding process.

Figure 6¢ shows the average latencies of the select queries. The
results generally follow those in Figure 6b. The only exception is
geo where ORC outperforms. The reason is that ORC’s smallest
zone map has a finer granularity than Parquet’s. Compared to other
workloads, geo has a relatively high NDV ratio but a low predicate
selectivity, which makes fine-grained zone maps more effective.

5.3 Encoding Analysis
We next examine the performance and space efficiency of the en-

coding schemes in Parquet and ORC in this section.

5.3.1 Compression Ratio. To investigate how Parquet and ORC’s
compression ratios change based on column properties, we generate



—¥— Parquet —@— ORC
I g” 18 oo oo, . .. 39 36
‘?D 250 LyV—r————— S o o 26 24 ’_‘___‘/‘/r’/‘
Q N
E ﬁZS 6 13 2ivY—>—>—v ¥ v ¥ ¥
— z 0 0 0
1074 1073 1072 107! 10° 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 102 104 108 108
w B 288 186 297 10%
=
E E 192 124 198 10
=} » 96 62 99 102
)
v o g 0 0
104 10?102 107! 10° 0.0 0.5 1.0 15 2.0 00 02 04 06 08 1.0 10! 102
5 168 168 171 168
- = T ° N N N PR
g 112 112 114 112
8
= &6 F/k/'/,/ s m 57 v\.\'\'\"v 56
)
E o0 0 0 0
0% 10?102 107! 10° 0.0 0.5 1.0 15 2.0 00 02 04 06 08 1.0 103 10° 107
NDYV Ratio Zipfs Sortedness Value Range

Figure 7: Encoding size differences — Varying parameters on core workload w/o block compression.

a series of tables, each having 1m rows with 20 columns of the same
data type. For each table, we use the core workload’s parameter
settings but modify one of the four column properties: NDV ratio,
Value Range, Sortedness, and the Zipf parameter. Figure 7 shows
how the file size changes when we sweep the parameter of different
column properties. We disabled block compression in both Parquet
and ORC temporarily in these experiments.

As shown in the first row of Figure 7, Parquet achieves a better
compression ratio than ORC for integer columns with a low to
medium NDV ratio (which is common in real-world data sets) be-
cause Parquet applies Dictionary Encoding on integers before using
Bitpacking + RLE. When the NDV ratio grows larger (e.g., > 0.1),
this additional layer of Dictionary Encoding becomes less effective
than ORC’s more sophisticated integer encoding algorithms.

As the Zipf parameter s becomes larger, the compression ratios
on integer columns improve for both Parquet and ORC (row 1,
column 2 in Figure 7). The file size reduction happens earlier for
ORC (s = 1) than Parquet (s = 1.4). This is because RLE kicks in to
replace Bitpacking earlier in ORC (with the run length > 3) than
Parquet (with the run length > 8). We also observe that when the
integer column is highly sorted, ORC compresses those integers
better than Parquet (row 1, column 3 in Figure 7) because of the
adoption of Delta Encoding and FOR in its integer encoding.

Parquet’s file size is stable as the value range of the integers varies
(row 1, column 4 in Figure 7). Parquet applies Dictionary Encoding
on the integers and uses Bitpacking + RLE on the dictionary codes
only. Because these codes do not change as we vary the value range,
the file size of Parquet stays the same in these experiments. On the
other hand, the file size of ORC increases as the value range gets
larger because ORC encodes the original integers directly.

For string columns, as shown in the second row of Figure 7,
Parquet and ORC have almost identical file sizes because they both
use Dictionary Encoding on strings. ORC has a slight size advantage
over Parquet, especially when the dictionary is large because ORC
applies encoding on the string lengths of the dictionary entries.

The third row of Figure 7 shows the results for float columns.
Parquet dominates ORC in file sizes because Dictionary Encoding
is surprisingly effective on float-point numbers in the real world.

Discussion: Because of the low NDV ratio of real-world columns
(as shown in Figure 5), Parquet’s strategy of applying Dictionary
Encoding on every column seems to be a reasonable default for
future formats. However, an encoding selection algorithm such as

155

B Parquet_Decode I Parquet |0 lll ORC Decode I ORC_IO

s 0.76 (10:0.05)
0 0.5
Yoa4
P

0.2
Eo1
o0 . H . H . i

int string float int string float int string float

(a) Time [Uncompressed] (b) Time [Snappy] (c) Time [zstd]

B Parquet 1 ORC

[
I
o

=
=)
o

Size (MB)
g

o

int string  float “int string float "int string  float

(d) Size [Uncompressed] (e) Size [Snappy] (f) Size [zstd]

Figure 8: Varying compression on core workload.

20

AO.ZO ~¥- Parquet =8 ORC
9 o1
ﬁO.lS s 5
v 0.10
£ _g 10
F 0.05 n
5
0.00
2 3 5 6 7 8 9 10 2 3 5 6 7 8 9 10

4 4
Data Run Length Data Run Length

(a) Scan Time (b) File Size

Figure 9: Varying run length on string, w/o compression.

the one described in [81] is needed to handle the situation when
Dictionary Encoding fails. Also, the format should expose certain
encoding parameters, such as the minimum run length for RLE for
tuning so that users can make the trade-off more smoothly.

5.3.2 Decoding Speed. We next benchmark the decoding speed of
Parquet and ORC. We use the data sets in Section 5.3.1 that follow
the default core workload. Block compression is still disabled in the
experiments in this section. We perform a full table scan on each
file and measure the I/O time and the decoding time separately.

Table 6: Branch Mispredic-
tions of Figure 8a.

Table 7: Subsequences count and data
percentage for integer in Table 6.

Workload Encoding
Format int string float RLE Bitpack Delta PFOR
ORC 29M 3.1M 0.3M IM(16%) TM(32%) .2M(49%) .01M(3%)

Parquet 0.9M 1.9M 0.6M .2M(46%) .2M(54%) 0 0




Figure 8a shows that Parquet has faster decoding than ORC
for integer and string columns. As explained in Section 5.2, there
are two main reasons behind this: (1) Parquet relies more on the
fast Bitpacking and applies RLE less aggressively than ORC, and
(2) Parquet has a simpler integer encoding scheme that involves
fewer algorithm options. As shown in Table 6, switching between
the four integer encoding algorithms in ORC generates 3X more
branch mispredictions than Parquet during the decoding process
(done on a similar physical machine to collect the performance
counters). According to the breakdown in Table 7, ORC has 4x
more subsequences to decode than Parquet, and the encoding algo-
rithm distribution among the subsequences is unfriendly to branch
prediction. Parquet’s decoding-speed advantage over ORC shrinks
for integers compared to strings, indicating a (slight) decoding
overhead due to its additional dictionary layer for integer columns.
Parquet also optimizes the bit-unpacking procedure using SIMD
instructions and code generation to avoid unnecessary branches.

To further illustrate the performance and space trade-off be-
tween Bitpacking and RLE, we construct a string column with a
pre-configured parameter r where each string value repeats r times
consecutively in the column. Recall that ORC applies RLE when
r > 3, while the RLE threshold for Parquet is r > 8. Figure 9 shows
the decoding speed and file sizes of Parquet and ORC with different
r’s. We observe that RLE takes longer to decode compared to Bit-
packing for short repetitions. As r increases, this performance gap
shrinks quickly. The file sizes show the opposite trend (Figure 9b)
as RLE achieves a much better compression ratio than Bitpacking.

For float columns, ORC achieves a better decoding performance
than Parquet because ORC does not apply any encoding algorithms
on floating-point values. Although the float columns in ORC occupy
much larger space than the dictionary-encoded ones in Parquet (as
shown in Figure 7), the saving in computation outweighs the I/O
overhead with modern NVMe SSDs.

Discussion: Although more advanced encoding algorithms,
such as FSST [65], HOPE [116], Chimp [87] and LeCo [88], have
been proposed recently, it is important to keep the encoding scheme
in an open format simple to guarantee a fast decoding speed. Se-
lecting from multiple encoding algorithms at run time imposes
noticeable performance overhead on decoding. Future format de-
signs should be cautious about including encoding algorithms that
only excel at specific situations in the decoding critical path.

In addition, as the storage device gets faster, the local I/O time
could be negligible during query processing. According to the float
results in Figure 8a, even a scheme as lightweight as Dictionary
Encoding adds significant computational overhead for a sequential
scan, and this overhead cannot get covered by the I/O time savings.
This indicates that most encoding algorithms still make trade-offs
between storage efficiency and decoding speed with modern hard-
ware (instead of a Pareto improvement as in the past). Future for-
mats may not want to make any lightweight encoding algorithms
“mandatory” (e.g., leave raw data as an option). Also, the ability to
operate on compressed data is important with today’s hardware.

156

100 {~= Parquet Metadata Parsing
3 zstd_Decode [ Parquet Data Decode
3 zstd 1O 80 { 1 ORC Metadata Parsing
B NoCompression_Decode| @ [ ORC Data Decode
3 NoCompression_IO £ 60
[
£ 40
=
20
stl gp3_gp2 ol nvme s3 0 2000 4000 8000 10000

200

Storage Type Number of Features

Figure 10: Block Compression  Figure 11: Wide-Table Projection

5.4 Block Compression

We study the performance-space trade-offs of block compression on
the formats in this section. We first repeat the decoding-speed exper-
iments in Section 5.3.2 with different algorithms (i.e., Snappy [34],
Zstd [54]). As shown in Figures 8d to 8f, Zstd achieves a better com-
pression ratio than Snappy for all data types. The results also show
that block compression is effective on float columns in ORC because
they contain raw values. For the rest of the columns in both Parquet
and ORC, however, the space savings of such compression is lim-
ited because they are already compressed via lightweight encoding
algorithms. Figures 8a to 8c also shows that block compression
imposes up 4.2Xx performance overhead to scanning.

We further investigate the I/O benefit and the computational
overhead of block compression on Parquet across different storage-
device tiers available in AWS. The x-axis labels in Figure 10 show
the storage tiers, where st1, gp3, gp2, and io1 are from Amazon
EBS, while nvme is from an AWS i3 instance. These storage tiers
are ordered by an increasing read bandwidth. We generate a table
with 1m rows and 20 columns according to the core workload and
store the data in Parquet. The file sizes are 34 MB and 25 MB with
Zstd disabled and enabled, respectively. We then perform scans on
the Parquet files stored in each storage tier using a single thread.

As shown in Figure 10, applying Zstd to Parquet only speeds
up scans on slow storage tiers (e.g., st1) where I/O dominates
the execution time. For faster storage devices, especially NVMe
SSDs, the I/0 time is negligible compared to the computation time.
In this case, the decompression overhead of Zstd hinders scan
performance. The situation is different with S3 because of its high
access latency [61]. Reading a Parquet file requires several round
trips, including fetching the footer length, the footer, and lastly the
column chunks. Therefore, even with multi-threaded optimization
to fully utilize S3’s bandwidth, the I/O cost of reading a medium-
sized (e.g., 10s-100s MB) Parquet file is still noticeable.

Discussion: As storage gets faster and cheaper, the computa-
tional overhead of block compression dominates the I/O and storage
savings for a storage format. Unless the application is constrained
by storage space, such compression should not be used in future
formats. Moreover, as more data is located on cloud-resident ob-
ject stores (e.g., S3), it is necessary to design a columnar format
specifically for this operating environment (e.g., high bandwidth
and high latency). Potential optimizations include storing all the
metadata continuously in the format to avoid multiple round trips,
appropriately sizing the row groups (or files) to hide the access
latency, and coalescing small-range requests to better utilize the
cloud storage bandwidth [9, 63].



g 200 —¥— Parquet
b —e— ORC
N 100
n
2
(. 0 . = - - —
2 4 8 17 324762
Max Depth
(b) File Size
4
z 0.2 1
2 :
£
£
0 ; ; ———— 0.0+% - - . ——r—
2 4 8 17 324762 2 4 8 17 324762
Max Depth Max Depth

(c) Time of Scanning to Arrow (d) Nested Info Decode Overhead

Figure 12: Nested Data Model - Varying max depth in the data.

5.5 Wide-Table Projection

According to our discussion with Meta’s Alpha [108] team, it is
common to store a large number of features (thousands of key-value
pairs) for ML training in ORC files using the “flat map” data type
where the keys and values are stored in separate columns. Because
each ML training process often fetches a subset of the features, the
columnar format must support wide-table projection efficiently. In
this experiment, we generate a table of 10K rows with a varying
number of float attributes. We store the table in Parquet and ORC
and randomly select 10 attributes to project. Figure 11 shows the
breakdown of the average latency of the projection queries.

As the number of attributes (i.e., features) in the table grows, the
metadata parsing overhead increases almost linearly even though
the number of projection columns stays fixed. This is because the
footer structures in Parquet and ORC do not support efficient ran-
dom access. The schema information is serialized in Thrift (Parquet)
or Protocol Buffer (ORC), which only supports sequential decoding.
We also notice that ORC’s performance declines as the table gets
wider because there are fewer entries in each row group whose size
has a physical limit (64 MB).

Discussion: Wide tables are common, especially when storing
features for ML training. Future formats must organize the metadata
to support efficient random access to the per-column schema.

5.6 Indexes and Filters

We tested the efficacy of zone maps and Bloom Filters in Parquet and
ORC by performing scans with predicates of varying selectivities.
The experiment results are presented in our technical report [114].
Overall, zone maps and Bloom Filters can boost the performance of
low-selectivity queries. However, zone maps are effective only for
a smaller number of well-clustered columns, while Bloom Filters
are useful only for point queries. Future formats should consider
recent research advances in indexing and filtering structures such
as column indexes [77, 86, 101] and range filters [107, 115].

5.7 Nested Data Model

In this section, we quantitatively evaluate the trade-off on the nested
data model between Parquet and ORC. To only test the nested model

157

and isolate other noise, we use float data so we can disable encoding
and compression on both formats. We test against a synthetic nested
schema tree which we design as follows (as shown in Figure 12a):
The root node is a struct containing a float field and a list field. The
list recursively contains 0-2 structs with the same schema as the
root. 97% of the lists contain one struct, and 1% contains no struct.
We generate a series of Arrow tables with 256k rows on different
max depths of the schema tree and write them into Parquet and
ORC. During table generation, the tree of a record stops growing
when the depth of the tree reaches the desired max depth. Then
we record the file size, the time to read the file into an Arrow table,
and the time to decode the nested structure during the table scan.

As shown in Figure 12b, as the depth of the schema tree gets
larger, the Parquet file size grows faster than ORC. On the other
hand, ORC spends much more time transforming to Arrow (Fig-
ure 12c). The reason is that ORC needs to be read into its in-memory
data structure and then transformed to Arrow. And the transfor-
mation is not optimized. Therefore, we further profile the time
decoding the nested information during the scan. The result in Fig-
ure 12d shows that ORC’s overhead to decode the nested structure
information is getting larger than Parquet’s as the schema gets
deeper. The reason is that ORC needs to decode structure infor-
mation of struct and list while Parquet only needs to decode leaf
fields along with their levels. This result is consistent with Dremel’s
retrospective work [92].

Discussion: The trade-offs between the two nested data models
only manifest when the depth is large. Future formats should pay
more attention to avoiding extra overhead during the translation
between the on-disk and in-memory nested models.

5.8 Machine Learning Workloads

We next investigate how well the columnar formats support com-
mon ML workloads. Besides raw data (e.g., image URLs, text) and
the associated metadata (e.g., image dimensions, tags), an ML data
set often contains the vector embeddings of the raw data, which
is a vector of floating-point numbers to enable similarity search in
applications such as text-image matching and ad recommendation.
It is common to store the entire ML data set in Parquet files [35],
where the vector embeddings are stored as lists in Parquet’s nested
model. Additionally, ML applications often build separate vector
indexes directly from Parquet to speed up similarity search [23].

5.8.1 Compression Ratio and Deserialization Performance with Vec-
tor Embeddings. In this experiment, we collect 30 data sets with
vector embeddings from the top downloaded and top trending
lists on Hugging Face and store the embeddings in four differ-
ent formats: Parquet, ORC, HDF5, and Zarr. We then scan those
files into in-memory Numpy arrays and record the scan time for
each file. We report the median, 25/75%, and min/max of the com-
pression ratio (format_size / Numpy_size) and the scan slowdown
(format_scan_time / disk_Numpy_scan_time) in Figure 13.

Figure 13a shows that none of the four formats achieves good
compression with vector embeddings, although Zarr is optimized
for storing numerical arrays. Zarr, however, incurs a smaller scan-
ning overhead compared to Parquet and ORC, as shown in Fig-
ure 13b. This is because Zarr divides a list of (fixed-length) vector



N
o

2o o

E 1.00 5 15

§0.75 @ o

a £10

8 0.50 =

g -

= &

S =
0.00

\,‘d(B-gZ\% ar quet—zﬁdo‘,c_zstga n,_b\osc_zstd hd(-s_gz'\%arquet—zstdo\,c_zstga”_b\ osc-Zst

(a) Compression Ratio (b) Scan Time w.r.t Numpy

Figure 13: Efficiency of storing and scanning embeddings

embeddings into grid chunks to facilitate parallel scanning/decod-
ing of the vectors. On the other hand, Parquet and ORC only support
sequential decoding within a row group.

Discussion: Existing columnar formats are less optimized to
store and deserialize vector embeddings, which prevail in ML data
sets. Future format designs should include specialized data type-
s/structures to allow better floating point compression [83, 87, 94]
and better parallelism.

5.8.2 Integration with Vector Search Pipeline. Despite the emerging
vector databases [26, 43, 110], performing the vector search directly
in the data lake is still common to avoid the expensive ETL process.
Databricks recently announced their vision of Vector Data Lakes
to support querying vector embeddings stored in Parquet inside
Delta Lake [51]. In this experiment, we evaluate the performance
of Parquet and ORC in top-k similarity search queries.

We use the image-text LAION-5B data set [97] with the cor-
responding embeddings. We store the first 100M entries in Par-
quet/ORC and then use the embeddings from the rest of the data set
to perform top-k similarity search queries (k = 10). We maintain an
in-memory vector index auto-tuned using the FAISS library [22, 82].
Each query first searches the vector index to get the row IDs of the
top 10 most similar entries. The query then uses those row IDs to
fetch the URLs and text from the underlying columnar storage. We
batch the queries to amortize the read amplification.

Figure 14a shows the average time (over 20 trials) of performing
the top-k queries with a varying batch size on the x-axis. We re-
peated the queries using local NVMe SSDs and AWS S3 for storage.
We observe that the selection operations in ORC are faster than
those in Parquet on local SSDs because ORC includes fine-grained
zone maps to reduce the read amplification. As the query batch
size gets larger, the performance gap between ORC and Parquet
shrinks because the query batch fetches a significant portion of the
file. The result is different when the files are stored in S3. Fetching
records is much slower in ORC because it issues = 4x S3 GET than
Parquet during the process, as shown in Figure 14b. The reason is
that the zone maps in ORC are scattered in the row-group footers
while those in Parquet are centralized in the file footer.

Discussion: ML workloads often involve low-selectivity vector
search queries. Although aggressive query batching could amortize
the read amplification, fine-grained indexes (e.g., zone maps) are
necessary to guarantee the search latency. Also, as more and more
large-scale ML data sets reside in data lakes, it is critical for future
formats to reduce the number of small reads (e.g., zone map fetches
in ORC) to the high-latency cloud object stores.

5.8.3 Storage of Unstructured Data. Besides tabular data, deep
learning data sets often include unstructured data such as images,

158

-%- Vector Index Search Parquet on SSD - ORC on SSD —¥— Parquet on S3 —e— ORC on S3

103 @
5104
s 1 /—v——'*"—_'_' g
o 10 5
v %] ©
E Lo oo 3103
o e 2 10
g €
1071 g e e E
emRmTX T
P 23 25 27 20 P 23 25 27 29

Vector Batch Size Vector Batch Size

(a) Time of vector index search vs. se-
lection on files using resulting row IDs

(b) S3 GET requests issued

Figure 14: Top-k Search Workflow Breakdown (k = 10)

filter_0 filter_1 -+~ filter 2 -+~ filter 3 -¥- filter 4
20 ‘J
ot 3
15 g —
C) -~ 0}
o N o 27 ¥
£ 10 - £ AN
e PP ~iad SR
5 el 1 N
- v R
"_‘_,/ =3
v- 04

26 29 215 215

Row Group Size (number of rows)

212 26 29 212

Row Group Size (number of rows)

(a) With images in projection (b) Without images in projection

Figure 15: Filterscan on Image Data in Parquet - Filters 0-4 correspond
to low to high selectivities. Filters are applied on tabular data.

audio, and videos. One approach for storing them in the columnar
format is to use their external URLs, as done in the LAION-5B data
set above. This approach, however, could suffer from massive http-
get requests and invalid URLs over time. Therefore, it is beneficial
to store the unstructured data within the same file [36].

We evaluate this on Parquet using the LAION-5B data set with
the image URLs replaced by the original binaries. The result Parquet
file is 13 GB with 219K rows and is stored on NVMe SSD. We
perform scans with five different filters (filter_0 - filter_4) whose
selectivities are 1, 0.1, 0.01, 0.001, and 0.0001, respectively. We
enable parallel read and pre-buffer of column chunks. Figure 15a
shows the query times when the image column is projected, while
Figure 15b presents the query times with only the tabular columns
projected. We vary the row-group size on the x-axis. A smaller row-
group size works better when fetching the images because more
row groups allow better parallel read of the large binaries with
asynchronous I/Os. A smaller row group, however, compromises
the compression of the structured data, and the increased I/O time
dominates the latency of queries that only project structured data.

Discussion: It is inefficient to store large binaries with struc-
tured data in the same PAX format with a default row-group size.
Future designs should separate them in the physical layout of the
format while providing a unified query interface logically.

5.9 GPU Decoding

Besides machine learning, GPUs are used to speed up data ana-
lytics [99, 112] and decompression [100]. In this section, we in-
vestigate the decoding efficiency of Parquet and ORC with GPUs.
We use state-of-the-art GPU readers for Parquet and ORC in cuDF
23.10a [47]. The machine is equipped with NVIDIA GeForce RTX
3090, AMD EPYC 7H12 with 128 cores, 512GB DRAM, and Intel
P5530 NVMe SSD. We generate the data set using the core workload
with a table of 32 columns and a varying number of rows.



—%— Parquet-Arrow Parquet-cuDF —e— ORC-Arrow --#- ORC-cuDF

%\ - L ] ©

z $o.1s .

) Qo Y .

£ 5 ’

= 3010 .

H £ .

o o

S 30.05 .

3 £ .

= [= *®

- [ 399 }

0 .

= 214 217 220 223 0.00 ola 217 220 223

Row Count Row Count

(a) core workload (b) Peak GPU Throughput Percentage

% Parquet-uncomp. s o-..g 150 [ orc-zstdEE orc-uncomp.
z8 parquet-zstd : 1 I/O(includes PCle transfer)
§ : g?g—untzomp. o0 B &2 decompress
26 ~25! . £ 100 {E= decode
= . =
=] o8 9]
4
g o's £
9, . F 50
° e ¥
e o
Z .| giss¥
(=]
214 217 220 223 128K 256K 512K M
Row Count Row Count

(c) cuDF varying compression (d) Time breakdown of ORC in (c)

Figure 16: GPU Decoding

In the first experiment, we scan and decode the files using Arrow
(with multithread and I/O prefetching enabled) and cuDF, respec-
tively. As shown in Figure 16a, ORC-cuDF exhibits higher decoding
throughput than Parquet-cuDF because ORC has more independent
blocks to better utilize the massive parallelism provided by the GPU:
the smallest zone map in ORC maps to fewer rows than Parquet’s,
and each GPU thread block is assigned to each smallest zone map
region in cuDF. As the number of rows increases in the files, the
decoding throughput of Parquet-Arrow scales because there are
more row groups to leverage for multi-core parallel decoding with
asynchronous I/O. On the contrary, the Arrow implementation for
ORC does not support parallel read.

We further profile the GPU’s peak throughput in the above ex-
periment over its theoretical maximum throughput using Nsight
Compute [40]. As shown in Figure 16b, the overall compute utiliza-
tion is low (although the GPU occupancy is full when row count
reaches 8M). This is because the integer encoding algorithms used
in Parquet and ORC (e.g., hybrid RLE + Bitpacking) are not designed
for parallel processing: all threads must wait for the first thread to
scan the entire data block to obtain their offsets in the input and
output buffers. Moreover, because cuDF assigns a warp (32 threads)
to each encoded run, a short run (e.g., a length-3 RLE run in ORC)
would cause the threads within a warp to be underutilized.

We next perform a controlled experiment under the same setting
as above to evaluate how block compression affects GPU decoding.
Figure 16c shows that applying zstd improves the scan throughput
for both Parquet and ORC when there are enough rows in the
files (i.e., enough data to leverage GPU parallelism). Figure 16d
shows the scan time breakdown. We observe that the I/O time
(including the PCle transfer between GPU and CPU) dominates the
scan performance, making aggressive block compression pay off.

Discussion: Existing columnar formats are not designed to be
GPU-friendly. The integer encoding algorithms operate on variable-
length subsequences, making decoding hard to parallelize efficiently.
Future formats should favor encodings with better parallel process-
ing potentials. Besides, aggressive block compression is beneficial
to alleviate the dominating I/O overheads (unlike with CPUs).

159

6 LESSONS AND FUTURE DIRECTIONS

We summarize the lessons learned from our evaluation of Parquet
and ORC to guide future innovations in columnar storage formats.

Lesson 1. Dictionary Encoding is effective across data types
(even for floating-point values) because most real-world data have
low NDV ratios. Future formats should continue to apply the tech-
nique aggressively, as in Parquet.

Lesson 2. It is important to keep the encoding scheme simple in a
columnar format to guarantee a competitive decoding performance.
Future format designers should pay attention to the performance
cost of selecting from many codec algorithms during decoding.

Lesson 3. The bottleneck of query processing is shifting from
storage to (CPU) computation on modern hardware. Future formats
should limit the use of block compression and other heavyweight
encodings unless the benefits are justified in specific cases.

Lesson 4. The metadata layout in future formats should be
centralized and friendly to random access to better support wide
(feature) tables common in ML training. The size of the basic I/O
block should be optimized for high-latency cloud storage.

Lesson 5. As storage is getting cheaper, future formats could
afford to store more sophisticated indexing and filtering structures
to speed up query processing.

Lesson 6. Nested data models should be designed with an affinity
to modern in-memory formats to reduce the translation overhead.

Lesson 7. The characteristics of common machine learning work-
loads require future formats to support both wide-table projections
and low-selectivity selections efficiently. This calls for better meta-
data organization and more effective indexing. Besides, future for-
mats should allocate separate regions for large binary objects and
incorporate compression techniques specifically designed for floats.

Lesson 8. Future formats should consider the decoding efficiency
with GPUs. This requires not only sufficient parallel data blocks at
the file level but also encoding algorithms that are parallelizable to
fully utilize the computation within a GPU thread block.

7 CONCLUSION

In this paper, we comprehensively evaluate the common colum-
nar formats, including Parquet and ORC. We build a taxonomy
of the two formats to summarize the design of their format inter-
nals. To better test the formats’ trade-offs, we analyze real-world
data sets and design a benchmark that can sweep data distribution
to demonstrate the differences in encoding algorithms. Using the
benchmark, we conduct experiments on various metrics of the for-
mats. Our results highlight essential design considerations that are
advantageous for modern hardware and emerging ML workloads.

ACKNOWLEDGMENTS

The authors thank Pedro Pedreira, Yoav Helfman, Orri Erling, and
Zhenyuan Zhao for discussing Meta’s ML use cases. We also thank
Gregory Kimball from NVidia for the feedback on GPU-decoding
experiments. This work was supported (in part) by Shanghai Qi Zhi
Institute, National Science Foundation (IIS-1846158, SPX-1822933),
VMware Research Grants for Databases, Google DAPA Research
Grants, and the Alfred P. Sloan Research Fellowship program.



REFERENCES

(1]

[2]
(3]

[4]

2016. File Format Benchmark - Avro, JSON, ORC & Parquet.
https://www.slideshare. net/HadoopSummit/file-format-benchmark-avro-
json-orc-parquet.

2016. Format Wars: From VHS and Beta to Avro and Parquet. http://www.svds.
com/dataformats/.

2016. Inside Capacitor, BigQuery’s next-generation columnar storage
format. https://cloud.google.com/blog/products/bigquery/inside- capacitor-
bigquerys-next-generation-columnar-storage-format.

2017. Apache Arrow vs. Parquet and ORC: Do we really need a third Apache
project for columnar data representation? http://dbmsmusings.blogspot.com/
2017/10/apache-arrow-vs-parquet-and-orc-do-we html.

2017. Some comments to Daniel Abadi’s blog about Apache Arrow. https:
//wesmckinney.com/blog/arrow-columnar-abadi/.

2022. UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets.
php. Accessed: 2022-09-22.

2023. Amazon S3. https://aws.amazon.com/s3/.

2023. Apache Arrow. https://arrow.apache.org/.

2023. Apache Arrow Dataset API. https://arrow.apache.org/docs/python/
generated/pyarrow.parquet.ParquetDataset.html.

2023. Apache Avro. https://avro.apache.org/.

2023. Apache Carbondata. https://carbondata.apache.org/.

2023. Apache Hadoop. https://hadoop.apache.org/.

2023. Apache Hive. https://hive.apache.org/.

2023. Apache Hudi. https://hudi.apache.org/.

2023. Apache Iceberg. https://iceberg.apache.org/.

2023. Apache Impala. https://impala.apache.org/.

2023. Apache ORC. https://orc.apache.org/.

2023. Apache Parquet. https://parquet.apache.org/.

2023. Apache Presto. https://prestodb.io/.

2023. Apache Spark. https://spark.apache.org/.

2023. Arrow C++ and Parquet C++. https://github.com/apache/arrow/tree/
main/cpp.

2023. AutoFaiss. https://github.com/criteo/autofaiss.

2023.  AutoFAISS build index APL https://criteo.github.io/autofaiss/API/
_autosummary/autofaiss.external. quantize.build_index.html. Accessed: 2023-
07-17.

2023. Azure Blob Storage. https://azure.microsoft.com/en-us/services/storage/
blobs/.

2023. BP5. https://adios2.readthedocs.io/en/latest/engines/engines.html#bp5.
2023. Chroma. https://github.com/chroma-core/chroma/.

2023. ClickHouse. https://clickhouse.com/.

2023. ClickHouse Example Datasets. https://clickhouse.com/docs/en/getting-
started/example-datasets.

2023. Dremio. https://www.dremio.com//.

2023. EDGAR Log File Data Sets. https://www.sec.gov/about/data/edgar-log-
file-data-sets.html.

2023. GeoNames Dataset. http://www.geonames.org/.

2023. Google BigQuery. https://cloud.google.com/bigquery.

2023. Google Cloud Storage. https://cloud.google.com/storage.

2023. Google snappy. http://google.github.io/snappy/.

2023. Hugging Face Datasets Server. https://huggingface.co/docs/datasets-
server/quick_start#access- parquet-files. Accessed: 2023-07-09.

2023. image-parquet. https://discuss.huggingface.co/t/image-dataset-best-
practices/13974.

2023. IMDb Datasets. https://www.imdb.com/interfaces/.

2023. InfluxData. https://www.influxdata.com/.

2023. NetCDF. https://www.unidata.ucar.edu/software/netcdf/.

2023. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-compute.
2023. ORC C++. https://github.com/apache/orc/tree/main/c%2B%2B.

2023. Parquet Bloom Filter Jira Discussion. https://issues.apache.org/jira/
browse/PARQUET-41.

2023. Pinecone. https://www.pinecone.io/.

2023. Protocol Buffers. https://developers.google.com/protocol-buffers/.

2023. Public BI benchmark. https://github.com/cwida/public_bi_benchmark.
2023. Querying Parquet with Millisecond Latency. https://www.influxdata.
com/blog/querying-parquet-millisecond-latency/.

2023. RAPIDS. https://rapids.ai/.

2023. Samsung 980 PRO 4.0 NVMe SSD. https://www.samsung.com/us/
computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-
1tb-mz-v8p1tOb-am/. Accessed: 2023-02-21.

2023. SequenceFile. https://cwiki.apache.org/confluence/display/HADOOP2/
SequenceFile.

2023. The DWRF Format. https://github.com/facebookarchive/hive-dwrf.
2023. Vector Data Lakes. https://www.databricks.com/dataaisummit/session/
vector-data-lakes/. Accessed: 2023-07-28.

2023. Yelp Open Dataset. https://www.yelp.com/dataset/.

160

[53]
[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66

[67]

[68]

[69]

[70]

[71]

[72

[73]

[74

[75]

[76]

[77]

[78]

2023. Zarr. https://zarr.dev/.

2023. Zstandard. https://github.com/facebook/zstd.

Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Mad-
den, et al. 2013. The design and implementation of modern column-oriented
database systems. Foundations and Trends® in Databases 5, 3 (2013), 197-280.
Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-
sion and execution in column-oriented database systems. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data. 671-682.
Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout:
Decoding> 100 Billion Integers per Second with Scalar Code. Proceedings of the
VLDB Endowment 16, 9 (2023), 2132-2144.

Ankur Agiwal and Kevin Lai et al. 2021. Napa: Powering Scalable Data Ware-
housing with Robust Query Performance at Google. Proceedings of the VLDB
Endowment (PVLDB) 14 (12) (2021), 2986—-2998.

Anastassia Ailamaki, David ] DeWitt, Mark D Hill, and Marios Skounakis. 2001.
Weaving Relations for Cache Performance.. In VLDB, Vol. 1. 169-180.

Wail Y. Alkowaileet and Michael J. Carey. 2022. Columnar Formats for Schema-
less LSM-Based Document Stores. Proc. VLDB Endow. 15, 10 (sep 2022),
2085-2097. https://doi.org/10.14778/3547305.3547314

Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu,
Mukul Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja
Luszczak, et al. 2020. Delta lake: high-performance ACID table storage over
cloud object stores. Proceedings of the VLDB Endowment 13, 12 (2020), 3411—
3424.

Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lake-
house: a new generation of open platforms that unify data warehousing and
advanced analytics. In Proceedings of CIDR. 8.

Haogiong Bian and Anastasia Ailamaki. 2022. Pixels: An Efficient Column
Store for Cloud Data Lakes. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). IEEE, 3078-3090.

Haogiong Bian, Ying Yan, Wenbo Tao, Liang Jeff Chen, Yueguo Chen, Xiaoyong
Du, and Thomas Moscibroda. 2017. Wide table layout optimization based on
column ordering and duplication. In Proceedings of the 2017 ACM International
Conference on Management of Data. 299-314.

Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random
access string compression. Proceedings of the VLDB Endowment 13, 12 (2020),
2649-2661.

Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-
cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, et al. 2019. Procella: Unifying serving and analytical data at YouTube.
(2019).

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In SoCC.
143-154.

George P Copeland and Setrag N Khoshafian. 1985. A decomposition storage
model. Acm Sigmod Record 14, 4 (1985), 268-279.

Dario Curreri, Olivier Curé, and Marinella Sciortino. [n.d.]. RDF DATA AND
COLUMNAR FORMATS. Master’s thesis.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, et al. 2016. The Snowflake Elastic Data Warehouse. In SIG-
MOD.

Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek Narasayya. 2021.
DSB: A decision support benchmark for workload-driven and traditional data-
base systems. Proceedings of the VLDB Endowment 14, 13 (2021), 3376-3388.
Avrilia Floratou, Umar Farooq Minhas, and Fatma Ozcan. 2014. Sql-on-hadoop:
Full circle back to shared-nothing database architectures. Proceedings of the
VLDB Endowment 7, 12 (2014), 1295-1306.

Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson.
2011. An overview of the HDF5 technology suite and its applications. In
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases. 36-47.
Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1998. Compressing
relations and indexes. In Proceedings 14th International Conference on Data
Engineering. IEEE, 370-379.

Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak,
Stefano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case
for Simpler Data Warehouses. In SIGMOD.

Yonggiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang,
and Zhiwei Xu. 2011. RCFile: A fast and space-efficient data placement struc-
ture in MapReduce-based warehouse systems. In 2011 IEEE 27th International
Conference on Data Engineering. IEEE, 1199-1208.

Brian Hentschel, Michael S Kester, and Stratos Idreos. 2018. Column sketches:
A scan accelerator for rapid and robust predicate evaluation. In Proceedings of
the 2018 International Conference on Management of Data. 857-872.

Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner, Eric N Hanson,
Owen O’Malley, Jitendra Pandey, Yuan Yuan, Rubao Lee, and Xiaodong Zhang.
2014. Major technical advancements in apache hive. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. 1235-1246.


https://www.slideshare.net/HadoopSummit/file-format-benchmark-avro-json-orc-parquet
https://www.slideshare.net/HadoopSummit/file-format-benchmark-avro-json-orc-parquet
http://www.svds.com/dataformats/
http://www.svds.com/dataformats/
https://cloud.google.com/blog/products/bigquery/inside-capacitor-bigquerys-next-generation-columnar-storage-format
https://cloud.google.com/blog/products/bigquery/inside-capacitor-bigquerys-next-generation-columnar-storage-format
http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html
http://dbmsmusings.blogspot.com/2017/10/apache-arrow-vs-parquet-and-orc-do-we.html
https://wesmckinney.com/blog/arrow-columnar-abadi/
https://wesmckinney.com/blog/arrow-columnar-abadi/
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://aws.amazon.com/s3/
https://arrow.apache.org/
https://arrow.apache.org/docs/python/generated/pyarrow.parquet.ParquetDataset.html
https://arrow.apache.org/docs/python/generated/pyarrow.parquet.ParquetDataset.html
https://avro.apache.org/
https://carbondata.apache.org/
https://hadoop.apache.org/
https://hive.apache.org/
https://hudi.apache.org/
https://iceberg.apache.org/
https://impala.apache.org/
https://orc.apache.org/
https://parquet.apache.org/
https://prestodb.io/
https://spark.apache.org/
https://github.com/apache/arrow/tree/main/cpp
https://github.com/apache/arrow/tree/main/cpp
https://github.com/criteo/autofaiss
https://criteo.github.io/autofaiss/API/_autosummary/autofaiss.external.quantize.build_index.html
https://criteo.github.io/autofaiss/API/_autosummary/autofaiss.external.quantize.build_index.html
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://adios2.readthedocs.io/en/latest/engines/engines.html#bp5
https://github.com/chroma-core/chroma/
https://clickhouse.com/
https://clickhouse.com/docs/en/getting-started/example-datasets
https://clickhouse.com/docs/en/getting-started/example-datasets
https://www.dremio.com//
https://www.sec.gov/about/data/edgar-log-file-data-sets.html
https://www.sec.gov/about/data/edgar-log-file-data-sets.html
http://www.geonames.org/
https://cloud.google.com/bigquery
https://cloud.google.com/storage
http://google.github.io/snappy/
https://huggingface.co/docs/datasets-server/quick_start#access-parquet-files
https://huggingface.co/docs/datasets-server/quick_start#access-parquet-files
https://discuss.huggingface.co/t/image-dataset-best-practices/13974
https://discuss.huggingface.co/t/image-dataset-best-practices/13974
https://www.imdb.com/interfaces/
https://www.influxdata.com/
https://www.unidata.ucar.edu/software/netcdf/
https://developer.nvidia.com/nsight-compute
https://github.com/apache/orc/tree/main/c%2B%2B
https://issues.apache.org/jira/browse/PARQUET-41
https://issues.apache.org/jira/browse/PARQUET-41
https://www.pinecone.io/
https://developers.google.com/protocol-buffers/
https://github.com/cwida/public_bi_benchmark
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/
https://rapids.ai/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://cwiki.apache.org/confluence/display/HADOOP2/SequenceFile
https://cwiki.apache.org/confluence/display/HADOOP2/SequenceFile
https://github.com/facebookarchive/hive-dwrf
https://www.databricks.com/dataaisummit/session/vector-data-lakes/
https://www.databricks.com/dataaisummit/session/vector-data-lakes/
https://www.yelp.com/dataset/
https://zarr.dev/
https://github.com/facebook/zstd
https://doi.org/10.14778/3547305.3547314

(79]

(80]

[81

(84]

(85]

[86

(88

[89

[90

[91

[92

[93

[94

[95

[96

<
=

[98

[99

S Idreos, F Groffen, N Nes, S Manegold, S Mullender, and M Kersten. 2012.
Monetdb: Two decades of research in column-oriented database. IEEE Data
Engineering Bulletin (2012).

Todor Ivanov and Matteo Pergolesi. 2020. The impact of columnar file formats on
SQL-on-hadoop engine performance: A study on ORC and Parquet. Concurrency
and Computation: Practice and Experience 32, 5 (2020), 5523.

Hao Jiang, Chunwei Liu, John Paparrizos, Andrew A Chien, Jihong Ma, and
Aaron J Elmore. 2021. Good to the Last Bit: Data-Driven Encoding with
CodecDB. In Proceedings of the 2021 International Conference on Management of
Data. 843-856.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535-547.
Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proc. ACM
Manag. Data 1, 2, Article 118 (jun 2023), 26 pages. https://doi.org/10.1145/
3589263

Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per
second through vectorization. Software: Practice and Experience 45, 1 (2015),
1-29.

Yinan Li, Jianan Lu, and Badrish Chandramouli. 2023. Selection Pushdown in
Column Stores Using Bit Manipulation Instructions. Proc. ACM Manag. Data 1,
2, Article 178 (jun 2023), 26 pages. https://doi.org/10.1145/3589323

Yinan Li and Jignesh M Patel. 2013. Bitweaving: Fast scans for main memory data
processing. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 289-300.

Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: efficient lossless floating point compression for time series databases.
Proceedings of the VLDB Endowment 15, 11 (2022), 3058-3070.

Yihao Liu, Xinyu Zeng, and Huanchen Zhang. 2023. LeCo: Lightweight Com-
pression via Learning Serial Correlations. arXiv preprint arXiv:2306.15374 (2023).
Samuel Madden, Jialin Ding, Tim Kraska, Sivaprasad Sudhir, David Cohen,
Timothy Mattson, and Nesime Tatbul. 2022. Self-Organizing Data Containers.
In The Conference on Innovative Data Systems Research, CIDR.

Heikki Mannila. 1985. Measures of presortedness and optimal sorting algo-
rithms. IEEE transactions on computers 100, 4 (1985), 318-325.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: interactive analysis of
web-scale datasets. Proceedings of the VLDB Endowment 3, 1-2 (2010), 330-339.
Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava
Min, et al. 2020. Dremel: A decade of interactive SQL analysis at web scale.
Proceedings of the VLDB Endowment 13, 12 (2020), 3461-3472.

Patrick E O’Neil, Elizabeth ] O’Neil, and Xuedong Chen. 2007. The star schema
benchmark (SSB). Pat 200, 0 (2007), 50.

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816~
1827.

Pouria Pirzadeh, Michael Carey, and Till Westmann. 2017. A performance study
of big data analytics platforms. In 2017 IEEE international conference on big data
(big data). TEEE, 2911-2920.

Felix Putze, Peter Sanders, and Johannes Singler. 2010. Cache-, Hash-, and
Space-Efficient Bloom Filters. ACM J. Exp. Algorithmics 14, Article 4 (Jan 2010),
18 pages.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon,
Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis,
Mitchell Wortsman, Patrick Schramowski, Srivatsa Kundurthy, Katherine Crow-
son, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. 2022. LAION-5B:
An open large-scale dataset for training next generation image-text models. In
NeurIPS.

Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al.
2019. Presto: SQL on everything. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 1802-1813.

Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A study of the funda-
mental performance characteristics of GPUs and CPUs for database analytics. In
Proceedings of the 2020 ACM SIGMOD international conference on Management
of data. 1617-1632.

161

[100

[101

[102

[107

[108

[109

[110

[111

[112]

[113]

[114]

[115]

[116]

[117

[118

Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, and Samuel Madden. 2022.
Tile-Based Lightweight Integer Compression in GPU. In Proceedings of the
2022 International Conference on Management of Data (Philadelphia, PA, USA)
(SIGMOD °22). Association for Computing Machinery, New York, NY, USA,
1390-1403. https://doi.org/10.1145/3514221.3526132

Lefteris Sidirourgos and Martin Kersten. 2013. Column imprints: a secondary
index structure. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 893-904.

Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-

niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J.
O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik. 2005.

C-Store: A Column-oriented DBMS. In Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September
2, 2005. ACM, 553-564.

The Transaction Processing Council. 2021. TPC-DS Benchmark (Revision 3.2.0).
The Transaction Processing Council. 2022. TPC-H Benchmark (Revision 3.0.1).
Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626—1629.

Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schuepbach, and
Bernard Metzler. 2018. Albis: {High-Performance} File Format for Big Data Sys-
tems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). 615-630.
Kapil Vaidya, Subarna Chatterjee, Eric Knorr, Michael Mitzenmacher, Stratos
Idreos, and Tim Kraska. 2022. SNARF: a learning-enhanced range filter. Pro-
ceedings of the VLDB Endowment 15, 8 (2022), 1632-1644.

Suketu Vakharia, Peng Li, Weiran Liu, and Sundaram Narayanan. 2023. Shared
Foundations: Modernizing Meta’s Data Lakehouse. In The Conference on Inno-
vative Data Systems Research, CIDR.

Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel Then. 2018. Get
Real: How Benchmarks Fail to Represent the Real World. In Proceedings of
the Workshop on Testing Database Systems (Houston, TX, USA) (DBTest’18).
Association for Computing Machinery, New York, NY, USA, Article 1, 6 pages.
Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,
Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614-2627.

Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yonggiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, Chen Zheng, Gang Lu, Kent
Zhan, Xiaona Li, and Bizhu Qiu. 2014. BigDataBench: A big data benchmark
suite from internet services. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). 488-499. https://doi.org/10.1109/
HPCA.2014.6835958

Bobbi W Yogatama, Weiwei Gong, and Xiangyao Yu. 2022. Orchestrating data
placement and query execution in heterogeneous CPU-GPU DBMS. Proceedings
of the VLDB Endowment 15, 11 (2022), 2491-2503.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient distributed datasets: A {Fault-Tolerant} abstraction for {In-Memory}
cluster computing. In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12). 15-28.

Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and
Huanchen Zhang. 2023. An Empirical Evaluation of Columnar Storage Formats.
https://arxiv.org/pdf/2304.05028.pdf/. arXiv preprint arXiv:2304.05028 (2023).
Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. Surf: Practical range
query filtering with fast succinct tries. In Proceedings of the 2018 International
Conference on Management of Data. 323-336.

Huanchen Zhang, Xiaoxuan Liu, David G Andersen, Michael Kaminsky, Kim-
berly Keeton, and Andrew Pavlo. 2020. Order-preserving key compression for
in-memory search trees. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1601-1615.

Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-
scalar RAM-CPU cache compression. In 22nd International Conference on Data
Engineering (ICDE’06). IEEE, 59-59.

Marcin Zukowski, Mark Van de Wiel, and Peter Boncz. 2012. Vectorwise: A
vectorized analytical DBMS. In 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 1349-1350.


https://doi.org/10.1145/3589263
https://doi.org/10.1145/3589263
https://doi.org/10.1145/3589323
https://doi.org/10.1145/3514221.3526132
https://doi.org/10.1109/HPCA.2014.6835958
https://doi.org/10.1109/HPCA.2014.6835958
https://arxiv.org/pdf/2304.05028.pdf/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Feature Taxonomy
	3.1 Format Layout
	3.2 Encoding
	3.3 Compression
	3.4 Type System
	3.5 Index and Filter
	3.6 Nested Data Model

	4 Columnar Storage Benchmark
	4.1 Column Properties
	4.2 Parameter Distribution in Real-World Data
	4.3 Predefined Workloads

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Benchmark Result Overview
	5.3 Encoding Analysis
	5.4 Block Compression
	5.5 Wide-Table Projection
	5.6 Indexes and Filters
	5.7 Nested Data Model
	5.8 Machine Learning Workloads
	5.9 GPU Decoding

	6 Lessons and Future Directions
	7 Conclusion
	Acknowledgments
	References

