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ABSTRACT

Efficient utilization of dynamic random access memory (DRAM)

is crucial for achieving high-performance query processing in

database systems, especially as data volumes continue to grow.

Unfortunately, the cost of DRAM is unlikely to decrease in the

coming years, and it is already the dominating cost factor in

modern data centers. Consequently, lightweight in-memory com-

pression techniques can reduce the memory footprint and maxi-

mize the data stored in memory. However, compressing all data,

regardless of the compression algorithm’s efficiency, causes ad-

ditional CPU overhead during query execution. To address this

challenge, we introduce AdaCom, a novel framework that selec-

tively applies lightweight succinct encodings only to infrequently

accessed data. By doing so, wemitigate the performance overhead

associated with compression. In our experimental evaluation, we

demonstrate that AdaCom reduces the memory footprint by up

to 40% while retaining most of the performance (≈ 95%).

1 INTRODUCTION

In recent years, database systems that store large fractions of

their datasets in dynamic random access memory (DRAM) be-

came increasingly popular because of their unprecedented query

performance [16, 27, 32]. They enable real-time analytics over

terabytes of data, which is a desired feature for financial services

and emerging new business types. On the one hand, the over-

all data volume is increasing exponentially, and it is expected

to reach 175 ZB by 2025 [39]. On the other hand, because of

the end of Moore’s law [37], memory (DRAM) prices stabilized

recently [26, 29], making pure in-memory database systems im-

practical for large datasets. For example, memory has already

become the dominating cost factor in data centers, with 40% of

Meta’s rack costs [31] and 50% of Azure’s servers [3] coming

from memory.

Decreasing the memory footprint of database systems can

reduce operating costs and improve performance by fitting more

data into memory, resulting in fewer cache misses and memory

stalls. Several ideas have already been proposed to reduce the

DBMS memory footprint, many focusing on more space-efficient

index structures [6, 42, 43] or lightweight data compression algo-

rithms [23, 25].

However, applying lightweight in-memory compression to

entire relations or columns is not optimal because no matter how

lightweight the compression algorithm is, it will still incur extra

computation during query execution, negatively impacting query

performance.
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In this work, we propose Adaptive Compression (AdaCom)

for databases, which is a new framework that borrows the prin-

ciple ideas of workload-adaptive hybrid indexes [6]: (1) We use

lightweight sampling to track the data segment’s accesses and

(2) periodically identify frequently accessed (‘hot’) and rarely ac-

cessed (‘cold’) data segments. (3) Then, we adaptively compress

cold data segments using simple bit packing and uncompress the

hot data segments.

We integrate AdaCom into DuckDB and provide an extensive

experimental evaluation in Section 4. Our experiments show that

applying lightweight bit packing to DuckDB’s column segments

can improve performance by up to 7× when DuckDB’s standard

encoding no longer fits into memory. For datasets fitting com-

pletely into memory, AdaCom can reduce the memory footprint

by up to 38% while achieving 95% of the performance-optimized

encodings.

We make the following contributions:

• We introduce AdaCom, a generic approach to adaptively

apply lightweight compression to rarely accessed data in

database systems.

• We provide an open-source prototype implementation of

AdaCom and a full system-integration for DuckDB1.

• Based on an extensive set of micro- and end-to-end sys-

tem benchmarks, we demonstrate AdaCom’s applicability

and experimentally show that it can significantly reduce

DuckDB’s memory by up to 40% footprint while retaining

most of its performance (≈ 95%).

2 RELATED WORK

Compressing Data for Disk. The performance of disk-based

database management systems is mainly dominated by the high

latency and low bandwidth of disk I/O. Despite the recent ad-

vances of modern non-volatile memory express (NVMe) cards,

a large performance gap remains between DRAM and disk,

which makes even more compute-intensive compression algo-

rithms attractive as long as the reduced I/O outweighs the de-

/compression’s CPU overhead. Therefore, much work has been

done on evaluating the various compression techniques on data-

base storage [9, 20, 21, 38].

Lightweight In-Memory Compression. With the advent of

in-memory database systems enabled by ever-growing memory

capacities, fetching data from DRAM has become the new bot-

tleneck [33]. However, the difference in random access latencies

between processor caches (≈ 1ns) and DRAM (≈ 10 − 50ns) is

much smaller compared to fetching data from SSDs (≈ 105𝑛𝑠)

[11, 41], and in contrast to disk compression, in-memory com-

pression must be far less compute-intensive to be outweighed by

the compression benefits. Therefore, the database community has

started to explore applying lightweight in-memory compression

1https://github.com/leonwind/duckdb-adaptive-compression



to database systems. Krüger et al. [28] evaluated several light-

weight compression techniques, such as run-length, bit-vector,

and dictionary encoding, as well as null suppression for analyti-

cal and transaction processing in column-oriented in-memory

database systems. Increasing memory capacities also result in

an increase of access latencies to DRAM [33]. For that reason,

SanssouciDB uses lightweight in-memory compression to utilize

memory more efficiently by fitting more data into cache lines, im-

proving the overall query performance and reducing its memory

footprint [33].

‘Succinct’ is a data store that uses a compressed representa-

tion for its input data and reduces the memory consumption

by up to an order of magnitude [4]. Furthermore, its new query

algorithm allows for random access, count, search, wildcard, and

range queries directly on the succinct data representation. In

2021, Heinzl et al. [23] stress the importance of integer columns

in query processing based on various synthetic and real-world

benchmarks. Therefore, they investigated seven open-source in-

teger compression libraries and algorithms, including bit packing,

null suppression, frame-of-reference (FOR), dictionary, and delta

encoding, and evaluated their performance and compression ra-

tio in the in-memory HTAP database system Hyrise [22]. They

conclude that most benchmarks such as TPC-H, TPC-DS [1], and

JOB [30] require efficient random access to integer columns and,

therefore, perform better with lightweight bit packing compres-

sion.

Succinct Data Structures. Succinct data structures (SDS) re-

duce the space consumption close to the information-theoretical

lower bound [24]. In contrast to general-purpose compression

algorithms like LZ4 [10] or Snappy [13], succinct encodings allow

for efficient random data access in constant time (O(1)) without

requiring the entire structure to be decompressed first. There-

fore, succinct data structures could be attractive for in-memory

databases that must store rapidly growing volumes of data to

help fit more data into memory and reduce the amount of ex-

pensive I/O disk accesses. A variety of data structures can be

succinctly encoded, including trees [14, 24], filters [12, 15, 44, 45],

and graphs [18]. Nonetheless, succinct data structures smaller

memory footprint comes at the cost of an increased number of

instructions for accessing single data elements (arithmetic shifts

for data alignment), which is one of the reasons for their limited

adoption in database systems. Therefore, adaptively applying suc-

cinct encodings only to rarely accessed data can help to improve

the overall index performance significantly [5, 6].

Succinct Integer Vectors (Bit Packing). Integer vectors can

be encoded succinctly by using only the required number of bits

per element, which is also known as bit packing. Usually, the

bits-per-element, also referred to as bit width, is determined by

the maximum element in the vector 𝑣 . For example, if𝑚 is the

maximum element in 𝑣 , then every element 𝑒 can be represented

by using ⌈log2 (𝑚)⌉ bits.

Succinct integer vectors can reduce the memory footprint sig-

nificantly, as the following example illustrates: A vector storing

10B 64-bit integers, each in the range [0, 1010), results in a total

size of 80 GB. With bit packing, we can encode every element

with ⌈log2 (10
10 − 1)⌉ = 34 bits only, which reduces the total size

to 34 bits · 1010 = 42.5 GB, which is a relative space reduction of

46.875%.

Since every element is represented by the same number of

bits𝑤 , we can randomly access the 𝑖-th element in O(1), as the

element is stored in the interval [𝑖 ·𝑤 , 𝑖 ·𝑤 +𝑤]. As this range
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Figure 1: Overview of DuckDB’s column layout. Each col-

umn is split into column segments (CS) which are indexed

by a segment tree.

is not necessarily a multiple of a byte and does not need to be

memory-aligned, retrieving its values requires additional shift

instructions. However, a succinct integer vector should have a

better cache locality due to the reduced size.

Succinct Data Structure Library (SDSL). The Succinct Data

Structure Library [19] provides different, highly optimized suc-

cinct data structures in C++. For this work, we use SDSLs succinct

integer vector, which has a similar interface as std::vector in

C++ with additional capabilities, e.g. bit-compression. We ex-

perimentally investigate the impact on performance and cache

locality for different access patterns in Section 3.1.

DuckDB. DuckDB [36] is an open-source relational database

system optimized for analytical queries (OLAP) and running

in-process DBMS embedded in a host application, making it at-

tractive for data scientists and analysts. It uses a column-oriented

storage architecture and splits its columns further into smaller

column segments, each having a size of up to 256 KiB. The col-

umn segments are then internally organized using a segment

tree as visualized in Figure 1.

DuckDB implements several compression algorithms for per-

sistent storage, all of them being optimized for a high compres-

sion ratio to reduce I/O rather than providing the lightweight

compression offered by succinct representations that allow ac-

cessing single elements in constant time [35].

3 APPROACH

In this work, we propose a new framework for database systems

that adaptively applies lightweight compression to cold data only

and, therefore, limits the compression overhead.

3.1 Lightweight In-Memory Compression

First, we perform micro-benchmarks to understand better the

implications of lightweight in-memory compression on space

consumption and performance.

We focus on integer columns, as they are the most frequently

accessed ones during query processing [23]. We consider vectors

containing between two and 231 64-bit integers and shuffle their

elements using Sattolo’s algorithm [40] to generate a one-cyclic

permutation and use it to perform 10M uniformly distributed

point lookups. We execute the benchmark multiple times and

compare the std::vector ( ) to the sdsl::vector using bit

packing ( ) and byte packing ( ). Furthermore, we denote

the ratio of either latency or size (depending on the plot) of

sdsl::vector and std::vector ( ) and visualize the results

in Figure 2.

For up to approximately 104 elements, the sdsl::vector in-

creases the execution time by 3× compared to the std::vector,

because both vectors fit into the L1 cache and the extra CPU

costs of accessing the elements of the succinct vector dominate.
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tations. The vertical green (std::vector) and blue (sdsl::vector)

lines represent the number of elements fitting into the CPU caches.
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(b) Overhead ratio of sdsl::vector and std::vector for run time

and size. Lower values favor using the sdsl::vector.
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(c) In-depth performance evaluation with perf.

Figure 2: Performance comparison of sdsl::vector and

std::vector. All x-axes are on a log scale.

Contrary, with an increasing number of elements, the succinct

vector performs slightly better since the default vector exceeds

the caches with fewer elements (cf. the performance ratio below

one in Figure 2b). As the vectors grow larger than the last level

caches (LLC), the performance ratio converges against one as the

cache misses begin to outweigh the extra instructions needed to

access elements of the succinct vector.

The sdsl::vector requires significantly less memory com-

pared to std::vector. For 231 elements, the succinct encoding

reduces the memory consumption by over 50% since all elements

can be encoded with 31 bits compared to the 64 bits required by

the std::vector.

To verify our observations and to gain deeper insights, we used

the perf to collect hardware performance counters and show

the results in Figure 2c. Surprisingly, for 1M elements, the LLC

misses only slightly increase from 0.06 for sdsl::vector to 0.22

for std::vector, and the difference converges towards 0 with

an increasing number of elements, even though std::vector’s

memory footprint is 50% larger.

As expected, the sdsl::vector comes at the cost of more

instructions for a single query due to the unaligned memory ac-

cesses and shift operations for extracting single elements. While

the difference in the number of instructions seems large (4-5 vs.

16-20 instructions per access), the instructions per cycle (IPC)

metric shows its impact is limited as the CPU can handle it well

during stalls.

Padding To Byte Alignment. Asmentioned above, the succinct

encoding based on bit packing incurs additional CPU overhead

due to unaligned memory accesses. However, we can address

this issue by adjusting the size of each element to align with

whole bytes, a technique known as byte packing. For example,

instead of 7, 15, or 23 bits per element, we would use 8, 16, or

24 bits, respectively. While padding increases the overall space

consumption, it would reduce the number of instructions and

thus increase the performance.

However, Figure 2 and the experimental evaluation in Sec-

tion 4, show that the implication on the overall performance

is limited as both are in the same order of magnitude for LLC

misses, instructions, and IPC. While bit packing causes slightly

fewer LLC misses and, therefore, utilizes the caches better, it also

requires slightly more instructions per access. Consequently, the

overhead incurred by unaligned memory accesses in the context

of bit packing is relatively modest.

3.2 Adaptive Compression

The experiments in Section 3.1 and in [23] have shown that

lightweight in-memory compression for integer columns can

significantly reduce the database’s memory consumption by up

to 50% while having a negative impact on raw query performance

of up to 10% because of the additional instructions for accessing

and decompressing the data. At the same time, most workloads

have skewed access patterns, where only a small part of the data

is accessed frequently, while most data is rarely accessed [6, 8].

Therefore, we propose AdaCom, which adaptively compresses

rarely accessed data to reduce the overall memory footprint while

keeping frequently accessed data in a performance-optimized,

uncompressed representation.

We visualize our approach in Figure 3. As workloads and

queries 1 are unknown beforehand, we track the column seg-

ment (CS) accesses 2 at run time to differentiate frequently from

rarely accessed segments. For example, 60% of the queries access

CS3, but only 5% access CS0. Tracking all column accesses would

incur significant performance overheads. Instead, AdaCom sam-

ples only a subset of the accesses and keeps track of the access

statistics in a hashtable 3 . Based on the access statistics, we

periodically adapt the segment encodings.

AdaCom has two parameters compaction threshold and adap-

tation period that have implications on the effectiveness and the

performance of our approach:

Compaction Threshold. Based on the sampled column access

statistics that are stored in the hashtable 3 , we define a com-

paction threshold 𝛼 ∈ [0, 1] that determines how aggressively

column segments are compressed. For example, 𝛼 = 0.75 means

that 75% of the columns with the fewest accesses will be migrated

to the compact encoding. Please note that the compaction thresh-

old could also be made adaptive depending on the available buffer

and memory size.

Adaptation Period. AdaCom has an adaptive compaction man-

ager (ACM) 4 that runs in the background and initiates the

migration of column segments in equidistant time periods. Once

the adaptation starts, the ACM (1) sorts the column segments

by their access statistics. Next, it (2) compresses rarely accessed,
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Figure 3: Overview of AdaCom’s approach to adaptively compress column segments based on the access statistics.

cold column segments and (3) uncompresses the frequently ac-

cessed, hot segments if they are not yet stored in the targeted

encoding format 5 . Last, the ACM (4) resets the access statistics

and sleeps for a predefined adaptation period 𝑝 .

If the workloads and access patterns change, compact seg-

ments can decompress again and vice versa. The ACM runs in

the background without interrupting the query processing since

it only needs to read the existing segment to create the compact-

ed/uncompacted version in parallel. While this approach creates

a temporary memory overhead during the compression and de-

compression of column segments, the size overhead is limited

since the column segments are usually small, e.g., 256 KiB in

DuckDB.

Updates and Inserts. As the bit width in bit packing depends

on the maximum element in the vector, updates and inserts may

require a re-encoding of the entire vector, e.g., when the new or

modified value is larger than the current maximum and cannot

be represented by the current bit width.

However, in real-world workloads, inserts are often skewed,

and a few key ranges are updated and inserted the most [7], but

they can still affect a compacted segment. Because decoding a

256 KiB segment is computationally expensive, we would like

to avoid an oscillation effect where a segment, which is neither

clearly hot nor cold, gets de-/compressed every other adaptation

phase. Therefore, we track a history of inserts per segment and

disallow compaction of recently decompressed segments.

A perfect use-case for our approach are primary key columns,

as they should never get updated and the keys are monotonously

increasing. Enumerations (enums) are another good example

since the number of enum items is usually fixed and relatively

small, which offers a good compression ratio.

Integration into DuckDB. We integrated AdaCom into

DuckDB, where it tracks the accesses per column segment in a

hashtable. We run the adaptive compression manager in a new

thread that periodically initiates the adaptation process 4 every

𝑝 seconds.

We use the sdsl::vector for the compact and the

std::vector for the default encoding of column segments. To

further reduce the space consumption of the compacted column

segments, we use frame-of-reference (FOR) encoding. Therefore,

we extract the minimum element of each column segment CS and

store only the difference 𝑒 −𝑚𝑖𝑛 for every 𝑒 in CS, which reduces

the number of bits (bit width) that is used by the sdsl::vector.

Since DuckDB splits a column into smaller segments and

tracks basic statistics for each segment (such as the minimum

and maximum element), our approach can utilize this informa-

tion when compacting a segment without requiring additional

work. DuckDB’s column segments have a maximum size of 256

KiB and can, thus, only store up to 65,536 4-byte integers. For

example, if the column segment’s elements are monotonically

increasing, as is the case for primary keys, FOR encoding re-

duces the space per element to two bytes only, which provides a

memory improvement of ≥ 50%.

4 EVALUATION

Experimental Setup. We conducted all experiments on a server

equipped with a single socket Intel® Core™ i9-7900X CPU at 3.30

GHz, 10 physical cores, 125 GB of DRAM, and a Samsung SSD

850 EVO with 2 TB. We run Ubuntu 22.10 and compile our C++

code with g++ 12.2.0 and the -O3 flag.

We set DuckDB’s buffer size to the available physical memory

and run end-to-end SQL queries in DuckDB.

DuckDB Memory Consumption. Besides the memory allo-

cated to represent the column data, DuckDB allocates further

memory, e.g., to store validity masks. In our evaluation, this addi-

tional memory overhead is included in our results. If we would,

instead, consider the ‘raw data’ (e.g., the column data) only, we

would achieve even better compression ratios, e.g., saving up to

50% of the data for 32-bit and 75% for 64-bit integers by using

sdsl::vector and frame-of-reference encoding.

Competitors. We compare three different column segment

encodings: the default encoding uses DuckDB’s internal vec-

tor interface ( ), and the succinct encoding is based on the

sdsl::vector either using bit ( ) or byte packing ( ).

4.1 Sequential Scan

We scan a primary key column containing 5B primary key 64-bit

integers. The results of the three encodings introduced above to

store the column segments are shown in Figure 4.

Byte packing/bit packing increases the execution time by

9% / 8.5% of the default column representations performance

while reducing the memory footprint by 61.5% / 60%. Further-

more, the difference between bit and byte packing on the perfor-

mance or thememory consumption is minimal (1.5% performance

improvement and 3% memory increase).

Most of sdsl::vector’s overhead comes from copying data.

The default encoding does not require data copies and only passes

the data pointer to the following operator. As the query process-

ing layer currently cannot handle the sdsl::vector, we must

copy the data into DuckDB’s internal vector before continuing

query processing.
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4.2 Out-of-Memory Performance

As our previous experiments have shown, succinct encodings can

significantly reduce the space consumption of integer columns

and allow us to fit more data into memory, reducing the number

of expensive disk accesses. For this experiment, we scan a column

with 5B 64-bit integers and use DuckDB’s default vector ( ) and

a sdsl::vector with bit packing ( ) to encode the column

segments. Furthermore, we limit the buffer size of DuckDB to 25

GB. Figure 5 shows the results.

Compared to the default encoding, the sdsl::vector reduces

the execution time and the space consumption by up to 7× and

61.5%, respectively, since the succinct encoding enables DuckDB

to fit all data into memory. On the contrary, the default encod-

ing leads to buffer overflows and eventually causes many disk

accesses that dominate the execution time.

0

200

400

T
im

e
[s
]

71.2

547.0

0

25

50

S
iz
e
[G
B
]

22.2

58.0

Succinct Uncompressed

Figure 5: Sequential scan with a buffer size of 25 GB.

4.3 Adaptive Compression

In the following, we evaluate using AdaCom ( ) to track ac-

cesses at run time and compress rarely accessed segments using

the succinct encoding. In contrast, frequently accessed segments

are stored in the default encoding. The adaptive compression

manager (ACM) checks every 𝑝 = 10 seconds for changing access

patterns and adapts the segment encodings accordingly. We set

the compaction threshold to 𝛼 = 0.9, meaning the ACM will com-

press 90% of the least frequently accessed segments. We evaluate

our approach’s performance by considering query throughput

(QPS) and memory footprint.

4.3.1 Implications of Skewness. First, we investigate the per-

formance implications of skewness on the ACM by running point

lookups sampled from Zipf distributions having different skew

factors 𝑘 for one minute, ranging from 𝑘 = 0 (no skew) to 𝑘 = 2.5

(highly skewed), on a column with 10M 32-bit integers. Figure 6

shows the different competitors’ average QPS and memory sizes.

While the memory usage is independent of the workload’s

skew, the QPS increases with a higher skew for all competitors

due to better cache utilization. While AdaCom is slower than

the uncompressed competitor for uniform workloads, it achieves

similar performance for skewed workloads where 𝑘 ≥ 1 while

reducing memory usage by 37% and outperforming the strict

succinct encoded competitor.
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Figure 6: Zipf point lookup queries with different skew

factors 𝑘 from 0 (no skew) to 2.5 (highly skewed).

4.3.2 Meta’s RocksDB Workload. We use RocksDB’s tool

dbbench to generate a workload based on anonymized 64-bit

user ids that exhibit access patterns commonly observed at Meta

[2, 7]. We evenly split the workload into three phases (where

each phase has different access patterns) that we run sequentially,

one after the other, on a database containing initially 53M user

ids. Each phase consists of point lookups and new inserts of the

anonymized user ids. Figure 7 shows the results.

Applying the default encoding to all column segments yields

the highest average throughput of ≈ 3300 QPS. However, Ada-

Com is on average only 3% slower (≈ 3200 QPS), while keeping

all segments in the succinct encoding decreases the QPS by 20%

(≈ 2600 QPS). When the ACM changes the segments’ encod-

ings, the throughput drops to ≈ 2900 QPS for a short time. Since

DuckDB is optimized for OLAP workloads and does not use in-

dexes, point lookups require table scans, with small materialized

aggregates for pruning, that result in a QPS of only 3300, which

is low compared to other systems like SQLite [17, 34].

The memory consumption of AdaCom is up with the default

uncompressed encoding until the ACM, after 𝑝 = 10 seconds,

starts compressing the rarely accessed segments, and the mem-

ory consumption gets reduced by ≈ 30%. Keeping the top 10%

segments uncompressed increases memory consumption by 11%

compared to the full-succinct option.
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Figure 7: Generated workload with similar access patterns

observed at Meta [7] consisting of three phases. Dashed

lines indicate the end of each phase for each competitor.



5 DISCUSSION

As shown in the evaluation in Section 4, AdaCom effectively

reduces the memory footprint while achieving a similar query

performance. However, our approach has some limitations and

challenges, further discussed in the following.

Generalizability. While we successfully integrated AdaCom

into DuckDB, our prototypical implementation comes with in-

creased code complexity due to the extensivemodifications across

various parts of DuckDB. This complexity raises questions about

the generalizability of AdaCom. Specifically, AdaCom is tightly

coupled with DuckDB’s column segment architecture, which

serves as the foundation for distinguishing ‘hot’ and ‘cold’ data

segments within individual columns. This architectural depen-

dency suggests that databases with different storage architectures

may face challenges in directly applying AdaCom. Alternative

approaches may be necessary to identify data segment candidates

for compression, depending on the specific access patterns of the

workload.

Furthermore, the current prototype has a limitation in the

query processing engine. Instead of passing a pointer to the data,

queried tuples from compressed column segments are copied into

DuckDB’s default vector. This limitation exists because the query

engine does not support succinct vectors natively. Overcoming

this constraint could even further minimize the performance gap

between standard DuckDB and AdaCom.

AdaCom’s Parameter. AdaCom’s performance is influenced by

two parameters: the compaction threshold 𝛼 and the adaptation

period. The optimal settings for these parameters depend on

multiple factors, including available system resources and the

specific workloads the database system processes.

To achieve the best performance ś assuming that sufficient

memory is available ś the compaction threshold 𝛼 should be

set to 0, effectively turning off AdaCom. However, one of Ada-

Com’s advantages lies in its ability to minimize memory con-

sumption without sacrificing much performance. This capability

enables databases to deliver comparable performance even on

more budget-friendly hardware or cloud instances with limited

memory resources (c.f. Section 4.2). Furthermore, the compaction

threshold is flexible and can be leveraged for specific use cases.

For example, it can be increased at night to conserve memory,

which is acceptable when mostly long-running analytical jobs

are processed. Conversely, the threshold can be lowered during

the day to achieve higher query processing performance and

faster response times, which are required for real-time analyses.

In contrast to the compaction threshold, heuristics for opti-

mizing the adaptation period are more difficult to identify due to

its high sensitivity to workload variability at run time. Generally,

a shorter adaptation period allows AdaCom to react and adapt

quickly to changes in workload distribution. However, the analy-

sis and compaction introduce computational overhead, thereby

diverting CPU resources from the query engine and negatively

impacting the database’s performance. The optimal length of the

adaptation period may also depend on the ‘stability’ of the work-

load. For instance, if the workload remains stable for an extended

time period, a longer adaptation period could be beneficial, as

frequent column segment compression and decompression are

less likely to occur. Conversely, shorter adaptation periods are

advantageous if the workload changes rapidly, as they allow for

more frequent adjustments in column segment compression and

decompression. Our future work will explore various strategies

for dynamically adjusting the adaptation period during run time.

6 CONCLUSIONS

In this work, we have shown that lightweight in-memory

compression can significantly reduce the memory footprint of

databases while achieving similar query performance. Our adap-

tive compression manager identifies frequently accessed column

segments and keeps them in performance-optimized structures,

while it compresses rarely accessed segments by keeping their

negative impact on raw performance limited.

We plan to extend AdaCom to automatically tune the com-

paction threshold and the adaptation period at run time. Further-

more, we will integrate AdaCom into other database systems to

assess the generalizability of our approach.
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