TETRIS: Scalable and Efficient Neural Network
Acceleration with 3D Memory

Mingyu Gao Jing Pu

Xuan Yang

Mark Horowitz ~ Christos Kozyrakis

Stanford University

{mgaol2,jingpu,xuany,horowitz,kozyraki}@stanford.edu

Abstract

The high accuracy of deep neural networks (NNs) has led
to the development of NN accelerators that improve perfor-
mance by two orders of magnitude. However, scaling these
accelerators for higher performance with increasingly larger
NNs exacerbates the cost and energy overheads of their
memory systems, including the on-chip SRAM buffers and
the off-chip DRAM channels.

This paper presents the hardware architecture and soft-
ware scheduling and partitioning techniques for TETRIS, a
scalable NN accelerator using 3D memory. First, we show
that the high throughput and low energy characteristics of
3D memory allow us to rebalance the NN accelerator design,
using more area for processing elements and less area for
SRAM buffers. Second, we move portions of the NN com-
putations close to the DRAM banks to decrease bandwidth
pressure and increase performance and energy efficiency.
Third, we show that despite the use of small SRAM buffers,
the presence of 3D memory simplifies dataflow schedul-
ing for NN computations. We present an analytical schedul-
ing scheme that matches the efficiency of schedules derived
through exhaustive search. Finally, we develop a hybrid par-
titioning scheme that parallelizes the NN computations over
multiple accelerators. Overall, we show that TETRIS im-
proves the performance by 4.1x and reduces the energy by
1.5x over NN accelerators with conventional, low-power
DRAM memory systems.

CCS Concepts e Computer systems organization —
Neural networks

Keywords 3D memory, neural networks, acceleration, dataflow

scheduling, partitioning

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions @acm.org.

ASPLOS ’17, April 08 - 12,2017, Xi’an, China

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4465-4/17/04. .. $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037702

1. Introduction

Modern computer intelligence problems, including voice
recognition, object detection, and scene labeling, can be
solved with unprecedented accuracy using deep neural net-
works (NNs) [27]. However, their high computation require-
ments (500K operations per pixel) and large memory foot-
prints (up to 100s of MBytes) make NNs a challenging work-
load for programmable computer systems. Hence, recent
research has focused on building domain-specific accelera-
tors for NN computations, which mostly use spatial arrays of
narrow-datawidth processing elements and achieve 100x im-
provements in performance and energy efficiency compared
to general-purpose platforms [5, 7, 12, 18, 36].

Ideally, we would like to continue scaling the perfor-
mance and efficiency of NN accelerators in order to achieve
real-time performance for increasingly complicated prob-
lems. In general, the size of state-of-the-art NNs has been
increasing over the years, in terms of both the number of
layers and the size of each layer [19, 26, 41]. As a result,
the memory system is quickly becoming the bottleneck for
NN accelerators. To feed larger numbers of processing el-
ements, the accelerators need to use large on-chip SRAM
buffers and multiple DDRx channels, both of which are ex-
pensive in terms of power and cost (chip area or pin count).

Advances in through-silicon-via (TSV) technology have
enabled 3D memory that includes a few DRAM dies on top
of a logic chip [20, 22, 44]. Compared with the conven-
tional 2D DRAM, 3D memory provides an order of mag-
nitude higher bandwidth with up to 5x better energy effi-
ciency by replacing the off-chip traces with hundreds of ver-
tical connections [21]. Hence, 3D memory is an excellent
option for the high throughput, low energy requirements of
scalable NN accelerators. There are already proposals that
place several NN accelerator arrays on the logic layer of a
3D memory stack to improve performance [25].

This paper focuses on improving the performance scal-
ability and energy efficiency of inference tasks on large-
scale NNs by going beyond naively combining 3D mem-
ory with NN accelerator arrays. At the hardware level, we
take advantage of the high bandwidth and low access energy
of 3D memory to rebalance the NN accelerator chip, using

more area for processing elements and less area for on-chip
SRAM buffers. This allows us to achieve both higher per-
formance and better energy efficiency. We also move simple
accumulation operations close to the data locations (DRAM
banks) in order to reduce memory accesses and improve per-
formance and energy. At the software level, we build an an-
alytical model to quickly derive optimized dataflow sched-
ules, while previous NN designs required exhaustive search
for the optimal schedules [7, 45]. Finally, we also develop
an efficient hybrid partitioning scheme for NNs that allows
us to exploit the high parallelism inherent in 3D memory
stacks.

We combine these hardware and software optimizations
in the design of TETRIS, an NN accelerator that uses an
eight-die HMC memory stack organized into 16 vaults (ver-
tical channels). Each vault is associated with an array of
14 x 14 NN processing elements and a small SRAM buffer.
We demonstrate that a single TETRIS vault improves the per-
formance and energy efficiency by 37% and 40% respec-
tively over a larger, 16 x 16 array with a 4 times larger buffer
and one 2D low-power DDRx channel. Using all 16 vaults
in the 3D stack, TETRIS achieves 4.1x and 1.5x performance
and energy improvements respectively over the conventional
2D design, even if we scale its memory channels to four.
We show that TETRIS improves computational density by
optimally using area for processing elements and on-chip
buffers, and that moving partial computations to DRAM dies
is beneficial. Moreover, our analytically derived dataflow
schedules are equally efficient to the exhaustively searched
optimal schedules using previous approaches. Finally, the
proposed hybrid partitioning scheme improves the perfor-
mance and energy efficiency by more than 10% over simple
heuristics as we parallelize NN computations across multi-
ple stacks. Overall, we develop and evaluate all of the ele-
ments necessary to make 3D memory a practical substrate
for scalable and efficient NN accelerators.

The rest of this paper is organized as follows: Section 2
provides the background on NN acceleration and demon-
strates the memory challenges for scaling NN accelerators.
Section 3 presents the hardware architecture for TETRIS and
Section 4 develops the software scheduling and partitioning
schemes for it. Section 6 evaluates TETRIS against state-of-
the-art 2D and previous 3D NN accelerator designs using the
methodology in Section 5. Section 7 discusses the related
work and Section 8 concludes the paper.

2. Background and Motivation
2.1 Deep Neural Networks

Advances in deep learning have made multi-layer neural net-
works (NN5s) a popular approach for solving machine intelli-
gence problems, as they have greatly exceeded the accuracy
of traditional methods for many tasks such as recognition,
localization, and detection [27]. An NN is composed of a
pipeline or a directed acyclic graph (DAG) of layers. In the

inference task, each layer performs computations on a set
of neurons and feeds the results forward to later layers ac-
cording to the network connections. The first layer accepts
the input data (e.g., an image), and the last layer generates
the output as an encoded tag or a probability vector for the
category of the input (e.g., picture of a dog).

NN can have different types of layers. In the computer
vision domain, convolutional neural networks (CNNs) are
mostly composed of convolutional (CONV) layers. The neu-
rons in a CONV layer are organized into a set of 2D feature
maps (fmaps). A small number of CONV layers at the front
of the CNN work on large fmaps, e.g. 112 x 112 or 56 x 56,
followed by a very deep stack of CONV layers processing
a large set (up to 1024) of small (e.g., 14 x 14) fmaps per
layer. Each CONV layer performs 2D convolutions between
input fmaps (ifmaps) and trained filter weights, and then a
non-linear activation function, such as ReLU or sigmoid, is
applied on the sum of the convolution results to generate the
output fmaps (ofmaps). This computation is typically per-
formed on a batch of fmaps for better efficiency. The formal
definition is:

O[p][v] = f (i I[b][u] * W u][v] +B[v]> 0

0<v<N,—1, 0<b<N,—1

where O, I, and W are the ofmaps, ifmaps, and filter
weights, each of which has four dimensions (2D image,
number of fmaps, and batch). “+” denotes a 2D convolution
operation, and NV, Ny, and N}, are the number of ifmaps,
ofmaps and the size of batch, respectively. B is a 1D bias.!
f is the non-linear activation function.

Fully-connected (FC) layers also widely exist in many
NNs (e.g., at the end of a CNN). An FC layer operates
on lower-dimensional ifmaps and weights, and calculates
their inner products to generate ofmaps. Mathematically,
the computation can also be framed using Equation 1, by
restricting each ofmap size to be 1 x 1. Pooling (POOL)
and normalization (NORM) layers are also common, but
do not use trained weights and are fast to process through
streaming, thus we focus on CONV and FC layers.

Many studies have shown that NNs become more effec-
tive as the networks become deeper. For example, ResNet [19],
the ILSVRC 2015 winner, has 152 layers. Furthermore, the
composition of CONV layers in CNNs becomes modular-
ized by using small filters (e.g., 3 x 3), but the number of
fmaps in each layer is usually large (256 to 1024). There-
fore, we expect future NNs will have increasing numbers
of layers, and the CONV layers will have large numbers of
fmaps. Both trends increase the NN size.

2.2 Neural Networks Acceleration

Given their high accuracy with challenging applications,
there are now many industrial and academic efforts to accel-

! Mathematically B can be merged into W/, so we ignore it in this paper.

erate NNs of various scales, including designs based on cus-
tom ASICs, reconfigurable logic, multi-core systems, GPUs,
and cluster-based solutions [1, 5, 15, 23, 47]. We focus on
the domain-specific accelerators for NN inference. Such ac-
celerators are likely to be deployed widely in both server and
client (mobile or IoT) systems. NN training is usually done
offline using clusters of GPUs [1].

Recent NN accelerators are typically spatial architec-
tures with a large number of processing elements (PEs)
for multiply-accumulate (MAC) operations [10, 30, 42].
The PEs are organized in a 2D array, with a custom on-
chip interconnect between the PEs and the memory hierar-
chy [5, 7, 12]. Such spatial architectures are particularly suit-
able for NNs, as the 2D layout can capture the locality and
communication in the tensor-based patterns (Equation 1).
As a result, they can offer 100x higher performance over
general-purpose processors for inference tasks, while only
consuming 200 to 300 mW of power [5, 8].

2.3 Memory Challenges for NN Acceleration

The memory system, including the on-chip buffers and off-
chip main memory, is frequently the bottleneck for NN ac-
celerators. A typical CONV layer in start-of-the-art NNs
may contain several hundreds of fmaps (V;, N, = 100 —
500), with each fmap being hundreds to thousands of pix-
els. Even with a low-precision 16-bit datawidth, the total
size of the ifmaps, ofmaps, and filter weights can easily ex-
ceed megabytes. For example, the largest CONV layer in
VGGNet [41] has 6.4 MB ofmaps and the largest FC layer
has more than 102 million filter weights. The large volume
of data makes it challenging to supply a large number of
PEs efficiently. Recent research has focused on alleviating
these memory bottlenecks. Large on-chip SRAM caches or
buffers of up to a few MBytes are commonly used to cap-
ture the locality in the fmap and filter weight accesses in
order to reduce the main memory traffic [8, 12]. Prefetch-
ing is also effective for NN workloads as the access pat-
terns are statically known [25]. On the software side, better
dataflow scheduling [7] and effective loop blocking and re-
ordering techniques [45] have been proposed. They typically
use heuristics or exhaustive search to find the schedules that
minimize the off-chip accesses and maximize on-chip reuse
in the NN computations.

While there is strong interest to scale the NN accelerators
to achieve real-time performance on deeper and larger NN,
large PE arrays exacerbate the memory challenges, render-
ing the optimizations discussed above insufficient. First, the
on-chip buffers, which are already at the MByte level [7],
consume significant chip area (up to 70%), greatly increas-
ing the cost and decreasing the computational density. In-
creasing the PE count would require even larger buffers in
future NN accelerators. Second, even with an optimized on-
chip buffer design, the required DRAM bandwidth can still
reach 20 to 30 GBps for large PE arrays (see Figure 1), re-
quiring several standard DDR3 channels that consume high

Power Consumption (W)

Memory Bandwidth (GBps)

100 120 144 168 196 224 256 288 324 360 400

Number of PEs
[Total Static Power

®—® Peak Off-Chip Bandwidth

I PE Dynamic Power
[RegFile/Buffer Dynamic Power
I Memory Dynamic Power

Figure 1. Memory bandwidth and power consumption
when scaling the PE array size running VGGNet [41] on Ey-
eriss with the optimal scheduling. Logic runs at 500 MHz.
70% of on-chip area is used for buffers. The minimum num-
ber of LPDDR3-1600 channels are used in each case to sup-
ply the required bandwidth. The jumps in the scaling are
due to mismatches between the dimensions of PE array and
fmaps.

dynamic power. Last but not least, there will be significant
static power consumption from both the multiple off-chip
DRAM channels and the large on-chip SRAM buffers. Even
if we use low-power SRAM and DRAM technologies, the
static power is still non-negligible (see Figure 1). Overall,
relying solely on large on-chip buffers is not only an expen-
sive approach in terms of both area and power, but is also
insufficient to reduce the high bandwidth requirement and
energy consumption of DRAM main memory.

To demonstrate the memory bottlenecks of NN scaling,
we take the state-of-the-art Eyeriss accelerator, currently us-
ing 168 PEs [8], and scale the PE array size. As shown
in Figure 1, SRAM registers/buffers and DRAM contribute
more than 60% of the total power. While the optimized
scheduling minimizes the dynamic DRAM power, the static
memory power becomes significant with larger arrays, even
when low-power DRAM is used. When the PE array size
scales to 400, the off-chip bandwidth exceeds 25 GBps de-
spite using a 1.5 MB on-chip buffer. This requires four
LPDDR3-1600 x32 chips and leads to overall system power
of 1.5 W, six times higher than the current Eyeriss chip. Us-
ing DDR3/4 channels would result in even worse power con-
sumption. Since we constantly fetch data from DRAM, it
cannot go into the low power mode.

Recognizing the memory bottlenecks, several prior NN
designs proposed to fully eliminate DRAM [12, 18]. How-
ever, we believe that a system with high bandwidth DRAM
would be more flexible and general to use, since it would
impose no limitation on the NN size. Future NNs will likely
become even deeper, with increasing numbers of fmaps in
each layer, making it harder to fit the entire model and inter-
mediate data of all layers in on-chip SRAM. Switching be-
tween layers in an NN or between several NNs sharing the
same hardware (e.g., image and voice recognition in paral-

lel) makes DRAM unavoidable for practical NN accelerators
that can support many large models.

2.4 Opportunities and Challenges with 3D Memory

3D memory [44] is a promising technology for the memory
system of NN accelerators. It vertically integrates multiple
DRAM dies on top of a logic layer within a single package
by leveraging low-capacitance through-silicon vias (TSVs).
The two well-known realizations of 3D memory are Mi-
cron’s Hybrid Memory Cube (HMC) [20, 21] and JEDEC
High Bandwidth Memory (HBM) [22, 28]. Nowadays, each
3D memory stack can use thousands of TSVs and provide
an order of magnitude higher bandwidth (160 to 250 GBps)
with 3 to 5 times lower access energy than DDR3 [21]. In ad-
dition, the large number of TSVs can be organized into mul-
tiple, independently-operated channels that exploit memory-
level parallelism.

The Neurocube design has demonstrated the feasibility
and performance benefits of using HMC for NN accelera-
tors [25]. Nevertheless, to fully exploit the benefits of 3D
memory, there are several challenges to address. First, given
the characteristics of 3D memory, it is worth revisiting the
on-chip buffer design. The lower cost of main memory ac-
cess allows for smaller on-chip buffers with different use.
Second, 3D integration technology also provides opportu-
nities to rethink where computations are executed, poten-
tially moving some operations closer to the actual memory
locations. Third, once the memory and compute hardware
changes, we need new approaches for dataflow scheduling
for NN computations. Finally, the 3D memory stack with
multiple vertical channels naturally creates a highly paral-
lel system that requires efficient partitioning of NN com-
putations. Neurocube fetched all ifmap data from 3D mem-
ory through specialized controllers without capturing reuse
in the on-chip buffers, and only used a simple partitioning
scheme [25]. Neither approaches was optimal.

3. TETRIS Architecture

TETRIS is an NN accelerator optimized for use with state-
of-the-art 3D memory stacks. Its architecture also exploits
the opportunities for near-data processing to move parts of
the NN computations into the memory system [4].

3.1 Baseline System Architecture

We use Micron’s Hybrid Memory Cube (HMC) [20, 21] as
the 3D memory substrate of TETRIS.? Figure 2 shows the
hardware architecture of TETRIS. The HMC stack (Figure 2
left) is vertically divided into sixteen 32-bit-wide vaults [21],
which are similar to conventional DDRx channels and can be
accessed independently. The vault channel bus uses TSVs to
connect all DRAM dies to the base logic die. Each DRAM
die contains two banks per vault (Figure 2 right top). Each

2We prefer HMC to HBM because HMC connects to the host processor
using packet-based serial links, which is convenient to program and control.

Global
dataline

pw/Ippy
Row decoder

n
Q
3
g
©
H
o
3

~~” Tolocal
vault

i 77
I //_Logic Die) To remote
Vault Sl vault

(Channel) RN

|
|
l
|
|
|
|
/
|
|
l
|
|
I

140 WA
1a4ng [eqo|o

Engine

Figure 2. TETRIS architecture. Left: HMC stack. Right top:
per-vault DRAM die structure. Right bottom: per-vault logic
die structure.

To memory
Global Buffer

Figure 3. NN engine associated with one vault in TETRIS.

bank is an array of DRAM cells. On data access, the global
datalines transfer data from the internal DRAM cell arrays to
the global sense-amplifiers (SAs) at the bottom of the bank,
which amplify it and relay it to the channel TSV data bus.
While accesses to different banks can overlap, all banks in a
vault share the same TSVs.

The original HMC logic die implements the vault mem-
ory controllers, a crossbar network connecting all vaults, the
off-chip link SerDes, and other testing circuits [21]. Similar
to previous studies [16, 25], we incorporate the NN accel-
erators by replacing the crossbar network with a 2D mesh
network-on-chip (NoC). An NN engine is placed in each
vault, connected to the vault memory controller as shown
in Figure 2 (bottom right). The router can forward non-local
accesses to other vaults through the NoC. Figure 3 shows
the detailed structure of the NN engine associated with each
vault. The engine is similar to a single Eyeriss accelera-
tor [7]: Hundreds of PEs are connected through a dedicated
network into a 2D array. Each PE contains a 16-bit fixed-
point ALU and a small local register file of 512 to 1024
bytes. A global buffer is shared by all PEs to store and reuse
data from memory. While the size of each engine is similar
to one 2D NN accelerator, the collective number of PEs in
all vaults in a stack is much higher. Multiple vault engines
can be used to process a single NN layer in parallel (see Sec-
tion 4.2).

Operation [Energy (pJ/bit) [Relative Cost]

16-bit PE [12] 0.2 1
256 kB SRAM [29] 1.2 6
2D DRAM random 15.0 75
2D DRAM sequential 4.6 23
3D DRAM random 5.1 26
3D DRAM sequential 4.2 21

Table 1. Energy comparison between PE, SRAM buffers,
2D and 3D DRAM. PE and SRAM buffers use 45 nm pro-
cess. 2D DRAM is based on 16 Gb LPDDR3 [32]. 3D
DRAM is based on the methodology in Section 5. We only
consider internal access without off-chip transfer for 3D
DRAM.

3.2 Memory Hierarchy for TETRIS

Recent NN accelerators assumed that the energy cost of
DRAM access is one or two orders of magnitude higher than
the access to on-chip SRAM [7, 12, 18]. The difference is
due to the energy overheads of high-speed data transfers on
PCB traces (on-die termination, PLL/DLL logic) [31] and
the coarse granularity of DDRx access [43]. Regardless of
the width of data needed, a whole DRAM row of 1 to 2 kB
must be activated in the sense-amplifiers and 64 bytes are
transfered on the DDRx channel. Hence, NN accelerators
use large, on-chip SRAM buffers/registers to reduce DRAM
accesses. However, these buffers take most of the chip area,
87% in ShiDianNao [12] and 70% in Eyeriss [7], despite the
relatively small PE arrays, 8 x 8 and 16 x 16, respectively.
They also consume significant power (see Figure 1).

3D memory has much lower energy consumption com-
pared to 2D commodity DRAM. The vertical TSVs elimi-
nate off-chip transfers for the NN engines on the logic die.
Table 1 compares 2D DRAM and 3D memory internal ac-
cess energy with a 256 kB SRAM buffer and the PE used in
our study. While random access to 2D DRAM is 12 times
more expensive than SRAM, 3D memory significantly re-
duces this cost. Moreover, the sequential patterns for access-
ing the tensor-based data in NN computations amortize the
overheads of coarse-grain DRAM accesses. These two ob-
servations lower the necessity of large SRAM buffers.

Another reason to rebalance the resources used for SRAM
buffers and PE arrays in 3D NN engines is the limited area
of the logic die in 3D memory. With 10 to 16 GBps per
vault [20], each engine needs more than 200 PEs to fully
utilize this bandwidth (see Figure 1). The HMC logic die
allows for roughly 50 — 60 mm? of additional logic beyond
the existing circuits [21], or 3.5 mm? per vault. This is an
extremely tight budget for a large PE array. For comparison,
the Eyeriss NN accelerator took 12 mm? for a 168 PE array
with 182 kB of SRAM at 65 nm [8].

Overall, we argue that NN accelerators with 3D mem-
ory should use larger PE arrays (higher performance) with
smaller SRAM buffers (lower area). Figure 4 shows the
execution time and energy consumption with different PE

1.8

v o

5 15 2
B £
T 09 43 %
£ 0.6 2 g
Z 03 1 2
0.0 0

36/ 48/ 64/ 80/ 100/ 120/ 144/ 168/ 196/ 224/
467kB 441kB 408kB 374kB 332kB 290kB 240kB 190kB 133kB 72kB

Number of PEs / Global Buffer Size
I Memory Dynamic
[Total Static

I PE Dynamic ®—® Runtime

[RegFile/Buffer Dynamic

Figure 4. Energy consumption and execution time with dif-
ferent sizes of PE arrays and global buffers in a 3D NN en-
gine running VGGNet with optimal scheduling. Register file
per PE is 512 B. Total area budget is 3.5 mm?.

array sizes in one vault. Since the area budget is fixed,
to add more PEs we have to lower the global buffer size.
We use the optimal dataflow schedules to achieve the best
data reuse in the global buffer (see Section 5). Initially, the
performance scales with the number of PEs until the re-
duced buffer size becomes the bottleneck (area-constrained
design). While the energy spent on DRAM accesses slowly
increases with smaller buffers, most of the dynamic energy
is consumed by the NN engine. Moreover, the static energy
decreases significantly with the improved performance. The
most efficient design has 196 PEs with 133 kB buffer per
vault. The buffer/PE area ratio is about 1:1, roughly half that
of 2D Eyeriss that uses 70% of its area for buffers [7].

Note that we do not reduce the register file size in the PEs
(512 bytes) as it can capture most of the data reuse given the
efficient row stationary dataflow schedule [7]. With 196 PEs,
this means that the SRAM buffer is only 1.35x larger than
the aggregated register file capacity. Hence, the global buffer
is not large enough to capture much additional data reuse
beyond the register files, and it makes sense to bypass it for
some types of data. Section 4 presents dataflow scheduling
that realizes buffer bypass.

3.3 In-Memory Accumulation

The reduced global buffer capacity makes it important to
minimize DRAM accesses. We focus on the accesses for
ofmaps. The reduced buffer capacity may force the ofmaps
to be swapped out to DRAM before being fully accumulated
through all of the ifmaps. Hence, they must be fetched again
to complete the accumulation, generating twice the traffic
compared with the read-only ifmaps and weights. Since the
succeeding convolution or inner-product computations do
not depend on the partially accumulated ofmaps, we can
treat any newly-generated values from the remaining ifmaps
as updates and push them towards the partially accumulated
ofmaps, rather than fetching the ofmaps again.

3D memory enables the implementation of such in-
memory accumulation. The vault memory controller is

From DRAM

]
P
16 xburst | @
16 x burjst %
=
To DRAM 18
Fi

rom logic

Row decoder
pwo/1ppy

Option 2: Bank Option 1: DRAM
Accumulation Die Accumulation

Figure 5. Two alternatives for in-memory accumulation:
DRAM die accumulation and bank accumulation.

within the stack and can be fully customized. Unlike a DDRx
channel that spreads values across multiple DRAM chips, a
3D vault sends all bits to the same DRAM bank, allowing
the accumulation to be applied locally without carry propa-
gation between chips or banks.

In-memory accumulation provides several benefits. First,
it eliminates half of the ofmap memory traffic, saving mem-
ory bandwidth and thus improving performance. Second, the
reduced ofmap data transfers also save energy on the vertical
TSV channels. Third, compared with separate read and write
accesses, the combined update access executes the two oper-
ations back-to-back in DRAM, resulting in better row buffer
utilization and reduced peripheral logic activity (e.g., shar-
ing row and column address decoding), which reduce both
latency and energy consumption.

The key question becomes where we should place the
accumulation logic. We discuss the tradeoffs of four options:

Memory controller accumulation: We can easily place
the accumulators in the memory controllers on the logic die,
without modifying the DRAM chips. However, this option
does not eliminate any DRAM accesses and may introduce
latency overheads by increasing the controller occupancy.
Hence, we do not evaluate it.

DRAM die accumulation: We can place the accumula-
tion logic close to the TSV driver block on the DRAM dies
as shown in Figure 5. Assuming 32-bit vault channels with
8x burst, we need two 16-bit adders operating in a SIMD
manner and two 128-bit latches that buffer the full size of
data in a burst. We introduce an “update” command that
works as follows. The address is first sent to the bank and
the old values are read out to the latches. Next, the update
values are supplied through the data bus to the accumulation
logic which performs the additions. Finally, we switch the
bank into write mode and write the updated values back to
the bank. The data transfer between the bank and the TSV
block and the bank mode switch between read and write
may introduce slight latency overheads compared with nor-
mal read/write operations.

The accumulation logic is outside of the DRAM banks,
so it does not affect the memory array layout. Since the
logic is implemented in DRAM technology, its latency will

be longer, but still small enough (sub-ns) compared to the
DRAM array access latency. In addition, there is sufficient
memory-level parallelism to hide its latency. We estimate the
area for one accumulator (one 16-bit adder and one 128-bit
latch) to be 663 um? at 45 nm, indicating only 0.038% area
overhead for two such accumulators per vault. Even if we
consider the lower area efficiency of implementing logic in
DRAM technology, the cost is negligible.

Bank accumulation: We can go one step further and
place the accumulators in each DRAM bank. The two banks
per die per vault can now perform updates in parallel without
blocking the TSV bus for the duration of the update opera-
tion. To gather the data bits spread across the wide global
sense-amplifier stripe, we reuse the inter-bank data bus and
place the accumulators close to the TSV block, as shown in
Figure 5. Since the accumulators are still at the bank periph-
ery, they do not impact the cell arrays. The area overhead is
2x higher than DRAM die accumulation due to the replica-
tion, but is still negligible.

Subarray accumulation: Recent research has proposed
to leverage the shared bitlines in each DRAM cell subarray
within a bank to implement operations such as copy [38] and
bitwise AND/OR [39]. While this approach can eliminate
the need to read data out of a bank, it is not practical for
accumulation as it applies operations at the granularity of
full DRAM rows (1 to 2 kB) and the adder cells would
introduce significant overheads and layout changes. Hence,
we do not evaluate this approach.

In Section 6, we evaluate the performance and energy im-
plications of DRAM die accumulation and bank accumula-
tion. The RowClone proposal [38] considered the system-
level implications, including issues such as address align-
ment, coherence (flush and invalidation) and memory con-
sistency. These issues are not critical for our design as we
use a custom NN accelerator that operates directly on phys-
ical memory. The accelerator uses scratchpad buffers, not
coherent caches.

4. TETRIS Scheduling and Partitioning

The efficiency of an NN accelerator depends heavily on
the scheduling (ordering) of the computations. Scheduling
is particularly important for TETRIS since it uses small on-
chip buffers, which could potentially increase the accesses to
DRAM. Moreover, since TETRIS includes one NN accelera-
tor per vault, we need to effectively partition and parallelize
the NN workloads across vaults.

4.1 Dataflow Scheduling

Although the dataflow of NN computations for inference is
well-defined, the large volume of data makes it difficult to
simultaneously buffer the ifmaps, ofmaps, and filter weights
in the multi-level memory hierarchy and optimize for their
access order. Recall that each NN layer has /NV; ifmaps. Each
ifmap contributes to N, ofmaps through convolutions or

inner-products with different 2D filters. Such computations
repeat for V}, times per batch.

The scheduling problem can be decomposed into two
subproblems. First, we decide how to best map one 2D con-
volution computation of a particular group of ifmap I[b][u],
filter W [u][v], and ofmap O[b][v] onto the PE array (map-
ping problem). Next, we decide the order between the V; x
N, x Ny 2D convolutions and how to buffer the data in or-
der to maximize on-chip reuse (ordering problem). Note that
these two problems are orthogonal and can be solved sepa-
rately. The mapping problem exploits the PE array intercon-
nect and register files, while the ordering problem focuses
on data buffering in the global buffer.

For the mapping problem, we leverage the state-of-the-art
row stationary dataflow proposed for the Eyeriss design [7].
Row stationary maps the 1D convolution primitive onto a
single PE to utilize the PE register file for local data reuse.
It also carefully orchestrates the 2D convolution dataflow
on the 2D array interconnect so that the data propagation
between PEs remains local. Row stationary also supports
mapping layers with different sizes onto the fixed-size PE
array through folding (breaking large fmaps) and replication
(processing multiple fmaps in parallel).?

While the row stationary dataflow provides an efficient
solution to the mapping problem, the ordering problem re-
mains unsolved. This problem involves blocking and re-
ordering for the three loops (V;, N,, Ny) to reduce memory
traffic. Previous work has used a cost model to capture the
multi-level memory hierarchy (registers, global buffer, and
main memory), and framed it as an optimization problem [7,
45]. However, the optimization problem is non-convex, and
no general, closed-form solution exists. While exhaustive
search can be used, searching large design spaces requires
hours to days. Moreover, the optimal solution varies sig-
nificantly with different layers [45], making it difficult to
quickly deploy new NN with many layers onto accelerators.

While the ordering problem is difficult in its general form,
it is actually simpler to analyze with the memory hierarchy
of TETRIS. As discussed in Section 3.2, TETRIS uses a larger
PE array and a smaller global buffer. The buffer capacity is
just slightly higher than that of all the register files in the
PE array. Hence, for any register-allocated data, it is not
profitable to also store copies in the global buffer since it is
not large enough to capture further reuse patterns. Moreover,
sequential accesses to 3D DRAM can be served at high
bandwidth and are not particularly expensive in terms of
energy (Table 1). Therefore, we propose to bypass the global
buffer in TETRIS for two of the three input streams in the
convolution computations, and utilize its full capacity to
store data for just one stream in order to maximize the reuse

3 Folding and replication during mapping will affect the numbers of ifmaps,
ofmaps, and batch size in the ordering problem. For example, if we replicate
2 ofmaps on the same physical PE array, N, will reduce by half. We take
this into account in the models.

ifmaps ofmaps filters

© Read one of ; ifmapl
chunks into gbuf @ Streamn, | © Stream

ofmaps into | filter weights

Global X '
Buffer regfile into regfile
u (bypass gbuf) | (bypass gbuf)
O Move n; ifmaps
into regfile r
Register Q_Convolve
- n; ifmaps to
Files

get n, ofmaps

Figure 6. The diagram of OW bypass ordering with batch-
ing omitted. See Algorithm 1 for a detailed description.

of this stream in the global buffer beyond the register files.
We call this approach bypass ordering and explore three
variants: IW bypass (avoid the global buffer for ifmaps and
filters), OW bypass (avoid the global buffer for ofmaps and
filters), and IO bypass (avoid the global buffer for ifmaps
and ofmaps).

Figure 6 explains OW bypass as an example. We split
the [V; ifmaps into multiple chunks and fill the global buffer
with one chunk at a time (@). For each ifmap chunk, the
ofmaps are streamed directly from DRAM into the register
files (®). Since each ifmap-ofmap pair uses a different 2D
filter, the filters have little reuse outside of batching and are
also streamed directly from DRAM (®). The register files
are used exactly the same way as row stationary dataflow
dictates: the ifmaps in the global buffer will be streamed
in (@) to process with the ofmaps and filters stored in the
register files (@). Recall that the numbers of ifmaps, ofmaps,
and the batch size are N;, N,, Ny, respectively. Assuming
the blocking factors on the ifmaps and batch are ¢; and
tp, the overall OW bypass ordering algorithm is formally
presented in Algorithm 1, including the batching details. The
IW bypass and 10 bypass algorithms are similar; they use the
global buffer to store the ofmaps and filters respectively.

Bypass ordering is significantly simpler than the gen-
eral loop blocking and reordering schemes explored in [45]
and can be implemented using a simple hardware controller
(FSM). Moreover, we can analytically derive the optimal
scheduling parameters without exhaustive search. With the
parameters defined above and the schedule shown in Algo-
rithm 1, the total number of accesses to DRAM is

ADRAM =2X NbNOSO X ti +NbNiSi +NONiSW X tb (2)

where S, S,, Sy are the sizes of one 2D ifmap, ofmap,
and filter, respectively. With OW bypass, each ifmap is only
accessed once. The ofmaps are read and written ¢; times and
the filters are streamed ¢, times. The constraints are further
summarized as
{f;xff;xsissbuf -
1<ty <Ny, 1<HLSN;

for by < 1,t}, do

// divide batch Ny, into t}, pieces, each with ny
fitting in registers.

fori; < 1,t¢; do

// ti ifmap chunks, each time read one chunk
into global buffer.

for oo + 1, % do

// stream n, ofmaps to registers each
time.

for iz «+ 1, % do
ini
// move mn; buffered ifmaps into
registers each time.
// now no ofmaps and n; ifmaps in
registers, each with batch ny.
for 03 < 1,n, do
for iz < 1,n; do
for b3 <+ 1,ny, do
// do computation with all
data in registers using
row stationary.
end
end
end

end
end

end

end
Algorithm 1: Pseudocode for OW bypass ordering. Loop
subscripts 1, 2, and 3 describe blocking at the level of the
global buffer, register file, and PEs, respectively.

given that each time the global buffer stores N;/t; ifmaps
with 1/ty, of the batch size Ny,.

Unlike the general ordering problem [45], minimizing
Equation 2 for TETRIS under the constraints of Equation 3
can be formalized as a convex optimization to solve for t;
and t,,. Furthermore, we can obtain an analytical solution
for OW bypass:

SWSi 2SiSo
o= Noy =220 4
Vasosew =MV @

There are similar solutions for IW and IO bypass ordering.

These solutions allow us to optimally schedule any NN
layer on TETRIS. The optimal values for ¢; and ¢, in Equa-
tion 4 also provide interesting insights. When the fmap size
is large and the filter size is small (S, > S,,), we need large
tp, (smaller batch) but small ¢; (larger fmap chunks). The cost
of refetching the filters is relatively small compared to that of
refetching the fmaps. Hence, we should reduce the number
of times we stream the fmaps (i.e., ¢;) at the cost of reducing
the filter reuse across batches.

Bypass ordering also benefits from the in-memory accu-
mulation discussed in Section 3.3. When the ofmaps bypass
the global buffer, each ofmap is read and written ¢; times.
With in-memory accumulation, the updates to the ofmaps
are pushed directly to the memory, which eliminates the
need for ofmap reads and further reduces the cost of by-

Fmap (image)
partitioning

Output partitioning

Input partitioning

...... H Il esaaas

[Scheme [Ifmap [Ofmap [Weight]
Fully replicate
Fully replicate
Fully partition

Fully partition

Batch Fully partition
Fmap With overlap
Broadcast
Input Fully partition

Fully partition
Fully partition
Fully partition
Broadcast

Figure 7. NN partitioning scheme comparison.

passing the global buffer. Accordingly, the factors of two in
Equation 2 and Equation 4 will be removed.

4.2 NN Partitioning across Vaults

The 3D memory stack in TETRIS contains multiple vaults,
each with a separate NN accelerator array (see Figure 2). In
addition to processing different NNs or layers in each vault,
we can divide large NN layers across the vaults to process
them in parallel. We first present a taxonomy of the differ-
ent partitioning schemes summarized in Figure 7. Then, we
systematically explore and find the optimized scheme.

Batch partitioning (data-parallelism): The simplest
scheme is to use the multiple NN accelerators to process
multiple input images in parallel, effectively dividing a batch
of images across vaults [11]. While good for throughput, it
requires the NN model to be replicated in each vault, which
is a significant capacity challenge for large NNs. Moreover,
parallelism is limited by the batch size. This scheme is less
attractive for latency-sensitive, real-time applications since
it does not improve the latency for inference on each image.

Fmap (image) partitioning: If the fmap is large (e.g.,
112 x 112), we can partition it into smaller tiles as shown
in Figure 7. The smaller fmap tile will fit better into the PE
array in each vault and reduce the need for folding in the row
stationary dataflow [7]. Moreover, If the ifmaps and ofmaps
in a CONV layer use the same fmap partitioning, most data
accesses will be local within each vault due to the locality
of 2D convolution. However, the filters need to be replicated
across all vaults.

Output partitioning: As each layer usually has multi-
ple ofmaps, we can partition the ofmaps across vaults. For
example, we can divide the N, ofmaps into 16 groups and
each vault processes N, /16 ofmaps. Since each ofmap uses
different filters, the filter weights can be fully partitioned.

Since all ifmaps contribute to all ofmaps, all ifmaps must be
sent to all vaults, which requires remote vault accesses.

Input partitioning: Similar to output partitioning, we
could also partition the N; ifmaps across vaults. The differ-
ence is where the computations take place. However, as dis-
cussed in Section 3.3, access to ofmaps generates both read
and write traffic, and thus is more critical than the ifmap ac-
cess. Hence, it is better to use output partitioning that avoids
the remote accesses for ofmaps, rather than using input par-
titioning that avoids the remote accesses for ifmaps.

Neurocube [25] used a simple heuristic to minimize re-
mote vault accesses, i.e., fmap partitioning for CONV layers
and output partitioning for FC layers. This heuristic does not
necessarily lead to the best performance and energy. In ad-
dition to the number of remote accesses, we should consider
the impact of the partitioning scheme on the total number
of memory accesses and the data reuse in the PE register
files. Because the fmaps are tiled with fmap partitioning,
each vault needs to load the same filters into the PE regis-
ters, while only reusing them across the smaller fmap tile.
In contrast, output partitioning keeps the whole fmap in one
vault, loads the filters once, and uses them across the whole
fmap which results in higher filter reuse. Moreover, output
partitioning can be combined with the OW bypass ordering
in Section 4.1, which requires just one round of ifmap reads,
minimizing the cost of ifmap remote accesses.

Therefore, we consider a hybrid partitioning scheme that
strikes a balance between the benefits of fmap partitioning
(minimizing remote accesses) and those of output partition-
ing (better on-chip data reuse to minimize total DRAM ac-
cesses). Such a hybrid scheme also captures the intention of
the Neurocube heuristic: for the first few CONV layers in
common CNNs, the access to large fmaps dominates and the
weight reuse is not significant, thus we should mostly use
fmap partitioning; for the FC layers, the filter weights are
much larger than the fmaps, so output partitioning is pre-
ferred to maximize weight reuse.

To find the optimized partitioning scheme, we propose a
simple cost model in terms of overall memory access energy:

Eaccess - ADRAM X e X (]- + ﬁ’f’) (5)

where e is the energy for one DRAM access to the local
vault, 3 is the energy penalty for one remote vault access,
and r is the percentage of accesses to remote vaults. Apgam
is the total number of main memory accesses. Fmap parti-
tioning minimizes r but results in larger Apgam, While out-
put partitioning has smaller Apgam by sacrificing 7.

Each NN layer can be potentially parallelized using a
combination of fmap partitioning and output partitioning.
Adjacent layers are coupled because the partitioning scheme
used for the previous layer determines the layout of ifmaps
of the next layer (see Figure 7). Assuming ¢ layers and c
partitioning combinations per layer, we must consider the
overall memory access energy cost for ¢ scenarios. As £
can be 20 to 100 and ¢ can be 4 to 8, the cost is prohibitive.

AlexNet ZFNet VGG16 | VGG19 | ResNet
[26] [46] [41] [41] [19]
CONVs 5 5 13 16 151
#FCs 3 3 3 3 1
Fmap size | 0.58/1.32 | 2.4/3.4 | 6.4/27.0 | 6.4/28.0 | 1.6/40.0
Filter size 74/124 150/214 | 204/276 | 204/286 | 4.6/110
Year 2012 2013 2014 2014 2015

Table 2. The NNs used in our evaluation. We show the fmap
and filter sizes in Mbytes for the largest layer and the whole
NN (largest/total). We use 16-bit fixed-point data.

We leverage two strategies to reduce the difficulty of par-
titioning exploration. First, we use a greedy algorithm that
explores the partitioning options for layer ¢ without back-
tracing, assuming the partitioning of the first ¢ — 1 layers in
the optimal scheme is independent of that for the later layers.
The first CONV layer is assumed to only use fmap partition-
ing. This allows us to reduce the number of choices to ¢ X ¢,
roughly several thousands in common cases. Second, we ap-
ply the bypass ordering in Section 4.1 to the partitioned lay-
ers in each vault. This allows us to determine Apray analyt-
ically without time-consuming exhaustive search. Although
partitioned layers are smaller, the solutions are still close to
optimal as we show in Section 6.3.

4.3 NN Partitioning across Multiple Stacks

We can use the same methodology to partition inference
tasks across multiple 3D stacks with NN accelerators. Mul-
tiple stacks allow us to scale to arbitrarily large NNs. For
inter-stack partitioning, the remote access cost 3 in Equa-
tion 5 is significantly higher. Moreover, the remote access
percentage r also increases with more stacks. This implies
that we should mostly use fmap partitioning to minimize re-
mote accesses for multi-stack scenarios.

We leave a thorough exploration of multi-stack partition-
ing to future work. Current 3D stacking technology supports
4 to 8 GB with up to 256 GBps per stack. Hence, a single
stack is sufficient for inference with large NNs. Multi-stack
configurations may be more interesting for training, where
the memory footprint increases significantly [1].

5. Methodology

Workloads. We use several state-of-the-art NN workloads to
evaluate TETRIS, summarized in Table 2. They are medium
to large scale with several hundreds of MBytes memory
footprints. In particular, we include the ILSVRC 2015 win-
ner, ResNet, one of the largest NNs nowadays with 152
layers [19]. AlexNet, ZFNet, and ResNet (despite its large
depth) mostly use small fmaps no more than 50 x 50, ex-
cept for the first few layers. The two VGGNet variants con-
tain large fmaps in the early layers, 56 x 56 to 224 x 224,
which dominate performance. All NNs have large numbers
of fmaps at the later layers (up to 2048)

System models and simulation. We use 45 nm technol-
ogy for the logic of 2D baseline NN accelerators and the
3D NN engines. We model the NN compute engine after
Eyeriss [7, 8] (Figure 3). Both the 2D and 3D engines run
at 500 MHz. The area and power consumption of each PE
are scaled from [8, 12], assuming 0.01 mm? at 45 nm and
3.2 pJ for each 16-bit multiply-accumulate operation includ-
ing control overheads. The area and power of the register
files and the global buffers at different capacities are mod-
eled using CACTI-P [29] that has improved leakage power
models over previous versions. For the 3D case, the total area
budget for additional logic of each vault is assumed to be
3.5 mm?, which constrains the PE array size and the global
buffer capacity. In the 2D baselines we assume no limitation
for the chip area, but the available DRAM bandwidth is lim-
ited by the pin count: at most 4 DDR3/LPDDR3 channels
can be connected to one accelerator chip.

The 2D baselines use 16 Gb, LPDDR3-1600, x32 chips.
Each channel provides 6.4 GBps bandwidth. The memory

timing and power parameters are obtained from datasheets [32]

and the system power is calculated using [31]. For 3D mem-
ory, we use an HMC stack [20, 21], assuming sixteen 32-
bit-wide vaults in each stack, providing 8 GBps bandwidth
per vault. The power parameters are modeled using [43] and
calibrated with prior literature on HMC designs [17, 21]. For
remote accesses to other vaults, the NoC power is estimated
using ORION 2.0 [24].

Given the timing characteristics of the NN accelerators
and the memory channels/vaults, we use zsim [37] to evalu-
ate the performance and in particular the impact of the lim-
ited memory bandwidth. We extended zsim to model the
logic die NoC interconnect latency and throughput. We gen-
erate memory address traces based on the schedule. We ad-
just the trace to incorporate prefetching, but perfect prefetch-
ing is impractical since it would require us to use half of the
global buffer capacity for double buffering. Our methodol-
ogy captures the latency of DRAM accesses. Once data is
on-chip, all other accesses to the global buffer and register
files and all PE operations proceed deterministically in fully
predictable manners. We use the actual simulated time in-
stead of the modeled ideal number of execution passes to
compare performance and calculate static energy consump-
tion.

Scheduling and partitioning. We implemented and re-
leased a scheduling tool* to schedule NN layers of arbitrary
sizes onto the given-size physical PE array. The mapping
phase uses row stationary dataflow with folding and replica-
tion to maximize register-file-level data reuse [7]. The order-
ing phase uses exhaustive search to find the best loop block-
ing and reordering [45]. The tool has been verified against
the Eyeriss results [7]. We use its results as the globally op-
timal schedules and compare them against the results from
the analytical solutions for bypass ordering (Section 4.1)

“https://github.com/stanford-mast/nn_dataflow.

Normalized Energy
ormalized Runtime

02 Z

AlexNet ZFNe
I PE Dynamic
[RegFile/Buffer Dynamic I NoC Dynamic
L1: LPDDR3-1, T1: TETRIS-1, L4: LPDDR3-4, N16: Neurocube-16, T16: TETRIS-16

<
Q
2]
o

VGG19 ResNet
I Memory Dynamic [Total Static
®—@ Runtime

Figure 8. Performance and energy comparison between 2D
and 3D NN architectures.

We also extended our scheduling tool to support NN
partitioning (Section 4.2). It includes the base partitioning
scheme from the Neurocube design [25], and the greedy al-
gorithm for the hybrid partitioning scheme. Once layers are
partitioned, we use bypass ordering for dataflow scheduling
as explained above.

6. Evaluation
6.1 Overall Performance and Energy Comparison

Figure 8 compares the performance and energy consumption
of TETRIS with three baselines. The 2D baselines use 1
and 4 LPDDR3 channels, respectively (L1 and L4). Their
NN engine is a scaled-up version of Eyeriss [7], using a
16 x 16 PE array with a 1024-byte register file per PE
and a 576 kB global buffer. There is one NN engine in the
single-channel baseline. The 4-channel baseline has 4 NN
engines for a total of 1024 PEs and 2.3 MB global buffer
(34 mm?). Both of the TETRIS designs, with 1 and 16 vaults,
respectively (T1 and T16), use a 14 x 14 PE array per vault,
with a 512-byte register file per PE and a 133 kB global
buffer per vault (Figure 4). We assume bank in-memory
accumulation and use the analytical scheduling solutions
and hybrid partitioning schemes presented in Section 4 for
both TETRIS designs. The 2D designs are limited by the
off-chip memory bandwidth, while the 3D TETRIS designs
are limited by the area in the logic die. We also compare
to the 3D Neurocube design with 16 vaults (N16) [25]. For
a fair comparison, we scale up its logic resources to be the
same as in TETRIS, but use their proposed scheduling and
partitioning schemes. As a result, any difference between
TETRIS and Neurocube comes from software.

For the 2D NN accelerator, increasing the number of
LPDDR3 channels and NN engines from 1 to 4 improves
the performance by 3.9x to 4.6x (L1 vs. L4). However,
the overall energy consumption remains roughly the same
(97% to 108%), suggesting a 4-5x increase in power. In
other words, the performance scaling also increases the cost
(power consumption and pin count).

Normalized Energy
o
ormalized Runtime

4
IS
N

0 0.
LI3PTnTdTb LI13PTnTdTb LI3PTnTdTb LI3PTnTdTb LI3PTnTdTb

AlexNet ZFNet VGG16 VGG19 ResNet
I PE Dynamic I Memory Dynamic ©—@ Runtime
[RegFile/Buffer Dynamic [Total Static

L1: LPDDR3, 3P: 3D-Proj, Tn: TETRIS, Td: TETRIS w/ DieAccum, Tb: TETRIS w/ BankAccum

Normalized Energy
ormalized Runtime

.Jo2 Z

o s o s o S O s o s
AlexNet ZFNet VGG16 VGG19 ResNet
I PE Dynamic I Memory Dynamic ©—@ Runtime

[RegFile/Buffer Dynamic [Total Static

O: Optimal, S: Solved

Figure 9. Effects of PE/buffer area rebalancing and in-
memory accumulation in TETRIS. All results use 1 chan-
nel/vault.

TETRIS with a single 3D vault (T1) leads to a 35% to 40%
energy reduction over 1 LPDDR3 channel (L1). Its power
consumption is actually lower despite improving the per-
formance by up to 37%. Scaling to 16 vaults (T16) results
in 12.9x better performance with 9.2% higher energy con-
sumption on average over T1. Overall, the 16-vault TETRIS
improves the performance by 4.1x and reduces the energy
by 1.48x over the L4 baseline with 4 LPDDR3 channels.
3D memory provides the bandwidth necessary to scale the
NN accelerator from 4 to 16 PE arrays in an energy-efficient
manner. Compared with the scaled Neurocube design (N16),
TETRIS (T16) improves the performance and energy by 20%
and 15%, respectively, which establishes the need for better
scheduling and partitioning schemes.

Note that in both 2D and 3D designs, parallelizing a layer
across multiple PE arrays results in higher energy consump-
tion on SRAM and DRAM memories. This validates the re-
duction in data reuse discussed in Section 4.2 and the need to
co-optimize remote accesses and total memory accesses with
the hybrid partitioning scheme. This co-optimization allows
the 16-vault TETRIS design to have better energy character-
istics over the 16-vault Neurocube.

The aggregated power consumption of the 16-vault TETRIS
is on average 6.94 W at 500 MHz with a maximum of
8.42 W, which is comparable to the power consumption of
previous studies that placed compute capabilities in HMC
stacks [2, 16, 35]. Eckert et al. demonstrated that 10 W
power consumption in 3D memory stacks is feasible even
with low-end passive heat sinks [14] . Therefore, we believe
that processing at full speed with all vaults in the stack is a
practical choice to accelerate the NN workloads.

6.2 3D NN Hardware Evaluation

We now evaluate the impacts of rebalancing the on-chip
PE/buffer area (Section 3.2) and in-memory accumulation
(Section 3.3). Figure 9 shows the performance comparison
and energy breakdown for five systems: the previous 1-
channel LPDDR3 baseline (L1), a projected 3D design (3P),
and three TETRIS designs with no in-memory accumulation

Figure 10. Comparison between optimal dataflow sched-
ules and analytical solutions of bypass ordering. Both use
1 vault.

(Tn), DRAM die accumulation (Td), and bank accumulation
(Tb). The projected design uses the same PE-to-buffer area
ratio as the 2D accelerator and simply scales down to a
10 x 11 array with 259 kB buffer to fit within the 3.5 mm?
area constraint.

Simply scaling down the 2D design to fit in the 3D con-
straints not only leads to a performance drop of up to 2.7x
due to the smaller PE array, but also has limited (7% to 27%)
energy savings from 3D memory due to the increased static
energy. When the area budget is rebalanced (Tn), we are able
to achieve up to 36% performance improvement over L1,
taking advantage of the higher memory bandwidth in a 3D
vault versus an LPDDR3 channel (8 GBps vs. 6.4 GBps).
The energy savings are also higher, ranging from 35% to
40% compared to L1.

DRAM die accumulation (Td) reduces the DRAM dy-
namic energy by 6.3% over no in-memory accumulation
(Tn) on average, and up to 10.4% with the deepest NN
(ResNet), as it reduces the traffic on the vertical channel
and activities in the DRAM peripheral logic (Section 3.3).
The savings are lower for AlexNet and ZFNet, since their
DRAM energy is mostly from operating on FC layers that in-
memory accumulation does not help with. Bank accumula-
tion (Tb) further improves the performance and static energy
by up to 3.1% over Td. However, since we have already min-
imized DRAM accesses and applied effective prefetching,
the overall performance and system energy improvements
are limited.

6.3 Dataflow Scheduling and Partitioning

Figure 10 compares the analytically derived bypass ordering
schedules in Section 4.1 to the optimal dataflow schedules
obtained from exhaustive search. Unlike partitioning, order-
ing for each different layer is independent. Hence, we choose
the best among IW, OW, and IO bypass schedules for each
layer. There is hardly any difference between bypass and op-
timal schedules, less than 2.9% for runtime and 1.8% for en-
ergy. We have verified that for most layers in the NNs, the

Normalized Energy
Normalized Runtime

Bo Bs Ho Hs Bo Bs Ho Hs Bo Bs Ho Hs Bo Bs Ho Hs Bo Bs Ho Hs
AlexNet ZFNet VGG16 VGG19 ResNet

I PE Dynamic I Memory Dynamic [Total Static
[RegFile/Buffer Dynamic I NoC Dynamic ®—® Runtime

Bo: Base-Optimal, Bs: Base-Solved, Ho: Hybrid-Optimal, Hs: Hybrid-Solved

Figure 11. Comparison between the base partitioning used
in [25] and the hybrid partitioning over 16 vaults in TETRIS.

two schedules are equivalent, demonstrating the effective-
ness of our analytical approach.

Finally, Figure 11 compares the TETRIS hybrid partition-
ing scheme in Section 4.2 with the base partitioning scheme
used in Neurocube [25], which exclusively uses fmap par-
titioning for CONV layers and output partitioning for FC
layers. We present both results with exhaustive search and
analytical solving as the scheduling approach, respectively.
While the NoC energy increases slightly with hybrid par-
titioning, the SRAM and DRAM energy decreases due to
better data reuse, leading to 13.3% performance and 10.5%
energy improvements on average. Note that the analytical
scheduling solutions are less optimized than the single-vault
case (Figure 10), mostly due to the smaller fmap sizes after
partitioning which make it easier to buffer data on-chip and
less attractive to bypass.

7. Related Work

NN acceleration. There were several recent proposals for
CNN accelerators using ASIC or FPGA platforms [33, 34].
Early designs [5, 6, 47] used parallel inner-product engines
which could be easily programmed for different layer types.
Neuflow [15], ShiDianNao [12], and Eyeriss [8] utilized 2D
spatial PE arrays with specialized interconnects to match the
2D convolution pattern. Several techniques are commonly
used to improve computational efficiency. Low-precision
arithmetic reduces area and energy cost with minimum accu-
racy impact for NN inference [5, 36]. Dynamically pruning
zero and/or small activations and weights at runtime avoids
useless work [3, 36]. Static pruning compresses NNs into
sparse formats to reduce memory footprints [18]. While our
baseline compute engine is similar to Eyeriss, these tech-
niques are orthogonal to the TETRIS memory hierarchy and
can be integrated into our design.

NN and near-data processing. Most recent proposals
for near-data processing (NDP) architectures focused on
general-purpose processing [2, 17, 35]. HRL used a het-
erogeneous reconfigurable array that was similar to spa-
tial NN engines [16]. ISAAC [40] and PRIME [9] uti-
lized non-volatile ReRAM crossbars to not only store the

weights but also perform in-situ analog dot-product opera-
tions. Neurocube proposed an NN accelerator for 3D mem-
ory stacks [25], with SIMD-style multiply-accumulate units
in each vault to process the partitioned NNs. Each vault
also had a specialized memory controller for prefetching.
We extend Neurocube by using a 2D PE array with a global
buffer as the compute engine in each vault, enabling us to ex-
plore more sophisticated dataflow scheduling. We also study
in-memory accumulation and hybrid partitioning schemes.
Finally, the RowClone design for in-memory bulk data
copy [38], and its extension on bulk bitwise AND/OR op-
erations [39] implemented simple operations inside DRAM
arrays. Our in-memory accumulation leverages the same in-
sights, but is less intrusive and allows for more powerful
arithmetic operations.

NN scheduling and partitioning. NN scheduling was
typically optimized using auto-tuning or heuristic-based
loop blocking strategies [13, 34, 47]. Eyeriss summarized
a taxonomy of CNN dataflows and proposed row stationary
heuristic, but it still used exhaustive search for the ordering
problem [7]. Yang et al. proposed a framework to optimize
CNN scheduling in multi-level memory systems and pointed
out the non-convexity of the problem. Thus, the optimal
schedule could only be found by exhaustive search [45]. In
contrast, bypass scheduling allows us to analytically derive
near-optimal schedules that yield good performance in the
restricted 3D memory environment. Yang et al. also explored
optimal NN partitioning in their framework for uniformly
distributed systems [45]. Neurocube used a simple heuristic
for 2D partitioning [25]. Neither of them considered hybrid
partitioning in one layer.

8. Conclusion

We presented TETRIS, a scalable and efficient architec-
ture with 3D-stacked memory for neural network inference.
TETRIS provides 4.1x performance improvement with 1.5x
energy saving compared to an aggressive 2D NN acceler-
ator design with 1024 processing elements and four, low-
power DRAM channels. The performance and energy gains
are achieved by rebalancing the use of area for processing
elements and SRAM buffers, as well as introducing novel
in-memory accumulation hardware features. We have also
proposed a scheduling scheme for TETRIS that can be de-
rived analytically and has equivalent efficiency to the opti-
mal schedules derived from exhaustive search. Finally, we
presented a hybrid partitioning scheme that parallelizes the
NN layers across multiple vaults in the stack, further im-
proving performance and efficiency.

Acknowledgments

The authors want to thank the anonymous reviewers for
their insightful comments. This work was supported by the
Stanford Pervasive Parallelism Lab, the Stanford Platform
Lab, and NSF grant SHF-1408911.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: A System for Large-Scale Machine
Learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 265-283, 2016.

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A Scalable
Processing-in-memory Accelerator for Parallel Graph Pro-
cessing. In 42nd International Symposium on Computer Ar-
chitecture (ISCA), pages 105-117, 2015.

[3] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos. Cnvlutin: Ineffectual-Neuron-Free Deep
Neural Network Computing. In 43rd Annual International
Symposium on Computer Architecture (ISCA), pages 1-13,
2016.

[4] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno,
R. Murphy, R. Nair, and S. Swanson. Near-Data Processing:
Insights from a MICRO-46 Workshop. IEEE Micro, 34(4):
36-42, 2014.

[5] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam. DianNao: A Small-Footprint High-Throughput
Accelerator for Ubiquitous Machine-Learning. In 19th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages
269-284, 2014.

[6] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang,
L. Li, T. Chen, Z. Xu, N. Sun, and O. Temam. DaDi-
anNao: A Machine-Learning Supercomputer. In 47th An-
nual ACM/IEEE International Symposium on Microarchitec-
ture (MICRO), pages 609-622, 2014.

[7] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural
Networks. In 43rd Annual International Symposium on Com-
puter Architecture (ISCA), pages 367-379, 2016.

[8] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An
Energy-Efficient Reconfigurable Accelerator for Deep Convo-
lutional Neural Networks. In IEEE International Solid-State
Circuits Conference (ISSCC), pages 262-263, 2016.

[9] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie. PRIME: A Novel Processing-in-Memory Architec-
ture for Neural Network Computation in ReRAM-Based Main
Memory. In 43rd International Symposium on Computer Ar-
chitecture (ISCA), pages 27-39, 2016.

[10] K. Choi. Coarse-Grained Reconfigurable Array: Architecture
and Application Mapping. IPSJ Transactions on System LSI
Design Methodology, 4:31-46, 2011.

[11] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V.
Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and
A. Y. Ng. Large Scale Distributed Deep Networks. In 25th
International Conference on Neural Information Processing
Systems (NIPS), pages 1223-1231, 2012.

[12] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,
Y. Chen, and O. Temam. ShiDianNao: Shifting Vision Pro-
cessing Closer to the Sensor. In 42nd Annual International

Symposium on Computer Architecture (ISCA), pages 92—-104,
2015.

[13] A. Dundar, J. Jin, V. Gokhale, B. Martini, and E. Culurciello.
Memory Access Optimized Routing Scheme for Deep Net-
works on a Mobile Coprocessor. In 2014 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pages 1-6,
2014.

[14] Y. Eckert, N. Jayasena, and G. H. Loh. Thermal Feasibility
of Die-Stacked Processing in Memory. In 2nd Workshop on
Near-Data Processing (WoNDP), 2014.

[15] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello,
and Y. LeCun. Neuflow: A Runtime Reconfigurable Dataflow
Processor for Vision. In 2011 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages
109-116, 2011.

[16] M. Gao and C. Kozyrakis. HRL: Efficient and Flexible Re-
configurable Logic for Near-Data Processing. In 22nd IEEE
International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 126-137, 2016.

[17] M. Gao, G. Ayers, and C. Kozyrakis. Practical Near-Data
Processing for In-Memory Analytics Frameworks. In 2015
International Conference on Parallel Architecture and Com-
pilation (PACT), pages 113-124, 2015.

[18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dall. EIE: Efficient Inference Engine on Com-
pressed Deep Neural Network. In 43rd Annual International
Symposium on Computer Architecture (ISCA), pages 243—
254, 2016.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. arXiv preprint arXiv:1512.03385,
2015.

[20] Hybrid Memory Cube Consortium. Hybrid Memory Cube
Specification 2.1, 2014.

[21] J. Jeddeloh and B. Keeth. Hybrid Memory Cube New DRAM
Architecture Increases Density and Performance. In 2072
Symposium on VLSI Technology (VLSIT), pages 87-88, 2012.

[22] JEDEC Standard. High Bandwidth Memory (HBM) DRAM.
JESD235A, 2015.

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint
arXiv:1408.5093, 2014.

[24] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0:
A Fast and Accurate NoC Power and Area Model for Early-
stage Design Space Exploration. In Conference on Design,
Automation and Test in Europe (DATE), pages 423-428, 2009.

[25] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay. Neurocube: A Programmable Digital Neuromorphic Ar-
chitecture with High-Density 3D Memory. In 43rd Annual
International Symposium on Computer Architecture (ISCA),
pages 380-392, 2016.

[26] A. Krizhevsky, L. Sutskever, and G. E. Hinton. ImageNet Clas-

sification with Deep Convolutional Neural Networks. In 25th

International Conference on Neural Information Processing
Systems (NIPS), pages 1097-1105, 2012.

[27] Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature,
521(7553):436-444, 2015.

[28] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim,
Y. J. Park, J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin,
J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park,
B. Chung, and S. Hong. 25.2 A 1.2V 8Gb 8-channel 128GB/s
High-Bandwidth Memory (HBM) Stacked DRAM with Ef-
fective Microbump I/0O Test Methods Using 29nm Process and
TSV. In IEEE International Solid-State Circuits Conference
(ISSCC), pages 432433, 2014.

[29] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi. CACTI-P: Architecture-Level Modeling for SRAM-
based Structures with Advanced Leakage Reduction Tech-
niques. In 2011 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 694-701, 2011.

[30] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwere-
ins. ADRES: An Architecture with Tightly Coupled VLIW
Processor and Coarse-Grained Reconfigurable Matrix. In 13th
International Conference on Field Programmable Logic and
Application (FPL), pages 61-70, 2003.

[31] Micron Technology Inc. TN-41-01: Calculating Memory
System Power for DDR3. https://www.micron.com/
support/tools-and-utilities/power-calc, 2007.

[32] Micron Technology Inc. Mobile LPDDR3 SDRAM: 178-Ball,
Single-Channel Mobile LPDDR3 SDRAM Features. https:

//www.micron.com/products/dram/lpdram/16Gb,
2014.

[33] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo.
A 1.93TOPS/W Scalable Deep Learning/Inference Processor
with Tetra-Parallel MIMD Architecture for Big-Data Applica-
tions. In IEEE International Solid-State Circuits Conference
(ISSCC), pages 1-3, 2015.

[34] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal.
Memory-Centric Accelerator Design for Convolutional Neu-
ral Networks. In 31st International Conference on Computer
Design (ICCD), pages 13-19, 2013.

[35] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian,
V. Srinivasan, A. Buyuktosunoglu, A. Davis, and F. Li. NDC:
Analyzing the Impact of 3D-Stacked Memory+Logic De-
vices on MapReduce Workloads. In International Symposium
on Performance Analysis of Systems and Software (ISPASS),
pages 190-200, 2014.

[36] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.
Lee, J. M. Hernandez-Lobato, G.-Y. Wei, and D. Brooks.
Minerva: Enabling Low-Power, Highly-Accurate Deep Neu-
ral Network Accelerators. In 43rd Annual International Sym-
posium on Computer Architecture (ISCA), pages 267-278,
2016.

[37] D. Sanchez and C. Kozyrakis. ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-core Systems.
In 40th International Symposium on Computer Architecture
(ISCA), pages 475-486, 2013.

[38] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry. RowClone: Fast and Energy-
efficient in-DRAM Bulk Data Copy and Initialization. In 46th
Annual ACM/IEEE International Symposium on Microarchi-
tecture (MICRO), pages 185-197, 2013.

[39] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry. Fast Bulk Bitwise
AND and OR in DRAM. Computer Architecture Letters, 14
(2):127-131, 2015.

[40] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar.
ISAAC: A Convolutional Neural Network Accelerator with
In-situ Analog Arithmetic in Crossbars. In 43rd International
Symposium on Computer Architecture (ISCA), pages 14-26,
2016.

[41] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. arXiv preprint
arXiv:1409.1556, 2014.

[42] H. Singh, M.-H. Lee, G. Lu, N. Bagherzadeh, F. J. Kurdahi,
and E. M. C. Filho. MorphoSys: An Integrated Reconfigurable
System for Data-Parallel and Computation-Intensive Applica-
tions. IEEFE Transactions Computers, 49(5):465-481, 2000.

[43] T. Vogelsang. Understanding the Energy Consumption of Dy-
namic Random Access Memories. In 43rd Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO),
pages 363-374, 2010.

[44] C. Weis, N. Wehn, L. Igor, and L. Benini. Design Space
Exploration for 3D-stacked DRAMSs. In Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1-0,
2011.

[45] X. Yang, J. Pu, B. B. Rister, N. Bhagdikar, S. Richardson,
S. Kvatinsky, J. Ragan-Kelley, A. Pedram, and M. Horowitz.
A Systematic Approach to Blocking Convolutional Neural
Networks. arXiv preprint arXiv:1606.04209, 2016.

[46] M. D. Zeiler and R. Fergus. Visualizing and Understanding
Convolutional Networks. In 13th European Conference on
Computer Vision (ECCV), pages 818-833, 2014.

[47] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Op-
timizing FPGA-based Accelerator Design for Deep Convolu-
tional Neural Networks. In 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA),
pages 161-170, 2015.

