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ABSTRACT

Machine Learning as a Service (MLaaS) is becoming a highly avail-
able and cost-efficient way to embrace machine learning techniques
in various domains. But it suffers from data privacy risks as user
data must be uploaded to untrusted clouds. We propose a trusted
and efficient MLaaS system, Temper, based on secure hardware
enclaves such as Intel SGX. Temper significantly improves the per-
formance without sacrificing the data security guarantees or the
model inference accuracy. With the two key techniques of enclave
reuse and model partitioning, it reduces the enclave initialization
and model loading costs, and alleviates the secure paging overheads
due to the limited hardware-protected memory capacity in SGX.
We also provide rigorous security guarantees for enclave sharing
and batched processing, by ensuring stateless, non-interference,
and data-oblivious processing and data transfers across model par-
titions. Temper achieves on average 2.2× and 1.8× improvements
over the state-of-the-art designs for latency and throughput, respec-
tively, and within 2.1× slowdown of untrusted native execution.
Its distributed paradigm provides a more scalable way for future
MLaaS with large models.
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1 INTRODUCTION

Machine learning (ML) has become an important and ubiquitous
technique in modern data-driven applications [54]. However, both
developing a well-tunedML algorithm and deploying an end-to-end
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hardware/software ML system are difficult and burdensome, espe-
cially for general practitioners in other domains. As a result, with
the benefits in availability, usability, and cost efficiency, Machine
Learning as a Service (MLaaS) becomes popular [1, 3–5, 7], which
provisions ML as cloud services and allows customers to process
data without algorithmic expertise or local system infrastructures.

However, existingMLaaS offerings pull user data to cloud servers
for storing and processing. This raises serious privacy concerns and
critical security risks if the data are sensitive, such as medical or
financial records. For example, the data may not be allowed to leave
the user’s machine due to policy restrictions; the user may worry
about the cloud platforms being compromised; or even the user is
not willing to trust the service provider in the first place. Any of
these privacy reasons could become a showstopper for MLaaS.

To realize secure MLaaS, currently there are two major direc-
tions. Cryptographic algorithms such as homomorphic encryption
and multi-party computation can be applied for privacy-preserving
ML [11, 15, 24, 49, 59, 64, 68, 72]. But their extremely high com-
putation cost limits the capability and the performance, making
them impractical for latency-sensitive MLaaS. The alternative ap-
proach, which relies on hardware-based trusted execution environ-
ments (TEEs) like Intel SGX or ARM TrustZone [9, 20], processes
private data inside trusted hardware enclaves on untrusted plat-
forms [32, 34, 43, 44, 52, 53, 55, 57, 61, 68, 85, 95]. As the computa-
tions running inside the enclaves are unchanged, the performance
is close to native execution, making it promising for secure MLaaS.

Nevertheless, existing TEE-based MLaaS frameworks still suf-
fer from several performance inefficiencies. Since different users
are mutually distrusted, each user must request a separate enclave
and establish trust with it through remote attestation. The newly
constructed enclave also needs to spend substantial time in build-
ing up the ML model and loading the weight data. These enclave
initialization and model loading costs are significant, especially
compared with ML inference tasks on small and medium models.
On the other hand, for large ML models, the runtime data volume
typically exceeds the available hardware-protected memory capac-
ity, and results in excessive secure paging operations that swap the
confidential data to the untrusted memory space with expensive
encryption, authentication, and data copy. While model quantiza-
tion [53] and careful memory planning [52, 57] may help alleviate
these overheads, ML is likely to continuously use larger models [14],
and eventually requires a more fundamental solution.
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In this paper, we propose Temper, a trusted and efficient MLaaS
system based on Intel SGX processors, with two key techniques:
enclave reuse and model partitioning. Temper optimizes the perfor-
mance of cloud-side MLaaS processing, without sacrificing the data
security guarantees or the model inference accuracy. Temper creates
multiple long-running enclaves and shares them across different
users, rather than repetitively launching new ones. The model is
divided among these enclaves, and all partitions together process in
a pipelined manner. We use efficient partitioning strategies that op-
timize for either throughput or latency based on system loads. Both
the computation latency impact due to enclave secure paging and
the communication latency overheads between separate enclaves
in different machines are considered and balanced using an accu-
rate latency estimation model and a lightweight optimizer. Temper
also utilizes the state-of-the-art TVM compiler [18] to generate
high-performance programs. In these ways, Temper significantly
improves performance.

To guarantee security, Temper uses a customized yet lower-cost
attestation protocol between the user and a special leader enclave in
each model. The leader is responsible for initializing and attesting
all partition enclaves, and collecting requests from the same or dif-
ferent mutually-distrusted users to form data batches. The partition
enclaves enable faithful sharing between users through stateless,
non-interference, and oblivious processing. We ensure Temper is
free of common side-channel attacks, by enforcing data-oblivious
processing and transfers in the partition enclaves, and making the
leader enclave program not depend on private user data except for
encryption/decryption which has well-studied secure implemen-
tations. We also minimize trusted components in the system by
cautiously offloading request scheduling, resource management,
and fault tolerance to the untrusted domain.

We evaluate Temper on a wide range of small and large deep
neural network models. Compared with state-of-the-art SGX-based
designs [44, 57], Temper improves the cloud-side inference latency
at batch size 1 by 2.2×, and achieves within 2.1× slowdown of un-
trusted native execution. The throughput improves by 1.8× and
2.1× when using batch sizes of 1 and 4, respectively. These benefits
come from both reduced initialization and model loading costs, as
well as reduced securing paging overheads. We also demonstrate
that the attestation protocol and the partitioning strategies in Tem-
per are efficient. In summary, Temper makes a significant step
towards trusted and efficient MLaaS, and the distributed nature in
Temper represents a more scalable way to support even larger ML
models in the future [14].

2 BACKGROUND AND MOTIVATION

This work focuses on performance optimizations of secure machine
learning inference on public clouds that utilize trusted processors
such as Intel SGX [20]. We first introduce relevant background to
motivate our work, followed by a detailed summary of the target
threat model.

2.1 Machine Learning and Neural Networks

Machine learning (ML) is one of the most rapidly developing fields
today. Typical ML techniques train statistical models for specific ap-
plications on pre-collected datasets to update the model parameters,

a.k.a., weights, until convergence. The trained models are then used
for inference, i.e., predicting results for new data. During training
and inference, multiple input data could be combined into batches
to improve the convergence speed and processing throughput.

In recent years, deep learning with neural networks (NNs) has be-
come the most widely used ML algorithm because of their supreme
efficacy [54]. An NN model is a directed acyclic graph (DAG) of
multiple layers. The model hyperparameters, such as the layer types
and their topologies, depend on the target applications. There are
usually convolution, matrix multiplication, pooling, batch normal-
ization, and various element-wise layers, which are connected as a
linear chain [79] or with complex patterns such as branches [81]
and residual links [36].

The capability and the accuracy of NNs normally improve with
deeper topologies and larger layers [36, 79], but come with the
cost of higher execution latency. Numerous frameworks have been
designed to address the performance challenge caused by larger
and more complex models, to bridge the gap between productivity-
centric high-level interfaces and performance-oriented low-level
implementations. These frameworks include TensorFlow [8], Py-
Torch [71], MXNet [17], TVM [18], and many more. To support
large NN models that do not fit in a single compute device, model
parallelism partitions a model into multiple smaller parts. There are
mainly two categories. Tensor partitioning splits each tensor in the
model along specific dimensions and deploys them onto different de-
vices, e.g., Tofu [90], Megatron-LM [77], and FlexFlow [47]. Graph
partitioning, on the other hand, groups adjacent layers in the model
and applies pipelining between them, such as PipeDream [67],
GPipe [41], RaNNC [82], and DNN-Partition [83].

2.2 MLaaS and Data Privacy Concerns

While ML is now ubiquitous in nearly all application domains,
neither developing a customized algorithm nor deploying a hard-
ware/software system is easy for non-experts. To alleviate such
burdens, ML as a Service (MLaaS) emerges as a new paradigm that
relies on public clouds to provide training and/or inference services,
currently offered by Amazon AWS [4], Google Cloud [5], Microsoft
Azure [7], Alibaba Cloud [1] and Baidu AI cloud [3]. In common
scenarios, the cloud service providers train the models with their
intelligent properties such as private datasets, and offer the infer-
ence services to which the users can simply send their data and
obtain results. MLaaS saves the users from the burdens of building
ML models and maintaining computer servers locally, therefore
greatly reducing the cost of embracing ML.

However, one major obstacle for MLaaS is the concern of data
privacy. The service providers own the MLaaS platforms, and care
about their intelligent properties such as the trained model weights.
On the other hand, the users would worry about leaking their
sensitive data, such as medical documents and financial records, if
sending to the clouds. Even if the service providers themselves may
not have direct commercial interests in these data, the public cloud
platforms are currently experiencing various attacks every day [33].
Therefore the MLaaS platforms are fundamentally untrusted to the
users (detailed threat model in Section 2.5).

Secure MLaaS can now be realized in two different ways. First,
there are a wide range of solutions based on modern cryptographic
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Figure 1: An SGX enclave on the untrusted cloud and the

remote attestation procedure.

primitives such as homomorphic encryption and multi-party com-
putation [11, 15, 24, 49, 59, 64, 68, 72]. But their performance over-
heads are extremely large, usually several orders of magnitude
slower than the equivalent insecure computations, making them
impractical. The alternative approach leverages trusted execution
environments (TEEs) provided by hardware [32, 34, 35, 43, 44, 52,
53, 55, 57, 61, 69, 85]. The TEEs are able to isolate the sensitive
data from the untrusted cloud platforms. This approach can avoid
the high overheads from the cryptographic primitives and achieve
reasonable performance, promising for secure MLaaS. Next we
introduce them in more details.

2.3 Trusted Processors: Intel SGX

Various TEE techniques have been proposed on CPUs, GPUs and
FPGAs [2, 6, 9, 20, 21, 26, 42, 46, 89, 96]. Among them, Intel Software
Guard Extensions (SGX) is the most prevalent, and available since
the Skylake architecture [20, 45]. SGX introduces a set of instruc-
tions to create enclaves [38, 63], which ensure confidentiality and
integrity of the code and data inside them from all external, un-
trusted privileged and unprivileged software, including operating
systems, hypervisors, and other user programs.

SGX provides attested, isolated, and sealed computations on the
processor, thus creating a trusted environment to the remote user
on an untrusted cloud server (Figure 1). A remote attestation pro-
cedure first establishes the trust between a remote user and the
enclave by checking whether the enclave is launched on a genuine
processor and cryptographically measuring the integrity of each
component inside the enclave. A secure communication channel
is also constructed between the two parties. More specifically, as
shown in Figure 1, the remote user starts the attestation by issuing
a challenge to the processor, including the key exchange message
and a nonce for freshness ➀. The enclave calculates a couple of
SHA-256 hash values of its initial code and data contents, and of
its author (e.g., Intel). These measurements of the enclave, known
as MRENCLAVE and MRSIGNER, together with the key exchange mes-
sage responded by the enclave, are put into a report and signed
by the processor’s private attestation key ➁.1 The signed report
is sent back to the user, with a certificate that authenticates the
public attestation key ➂. The user can verify the attestation key
by querying the Intel Attestation Service (IAS) which acts as a
certificate authority (CA) ➃. Then the user verifies the report and
1The measurement is actually calculated and signed with the help of a special “Quoting
Enclave”, which is a detail not affecting our system [20].

MobileNet
V1

ResNet
18

ResNet
50

ResNet
152

0

1000

2000

3000

La
te

nc
y 

(m
s)

0

100

200

300

M
em

or
y 

U
sa

ge
 (M

B
)

Init - Report
Init - Model
Init - Others
Inference
Untrusted
Memory

Figure 2: Performance overheads of baseline secure MLaaS.

checks whether the enclave has been initialized into a trusted state
➄. If the integrity check passes, the user sends her private input to
the enclave through the newly established secure communication
channel, and starts the processing ➅.

Once initialized, the enclave’s execution is protected by the pro-
cessor hardware, and isolated from the operating system (OS) and
other software. The enclave uses a special hardware-guarded mem-
ory space, called enclave page cache (EPC). This ensures that any
untrusted software, even privileged on the same physical processor,
cannot read or modify the contents of the enclave. If the data exceed
the EPC size, SGX uses secure paging to evict less often accessed
pages into the untrustedmemory, similar to classical OS paging. The
data are automatically encrypted and authenticated when swapped
out of the enclave, ensuring confidentiality and integrity. Secure
paging results in large performance penalty and causes several
times of slowdown [10, 91]. Hence, it is highly desired to fit the
enclave data within the EPC capacity.

This work primarily focuses on Intel SGX1 with a limited EPC
capacity. Newer TEE technologies start to support larger EPC sizes,
but have additional security issues [56, 65, 66]. Intel TDX [6] and
AMD SEV [2, 50, 51] provide basic integrity protection without data
freshness checks, so they may suffer from hardware-based memory
replay attacks. PENGLAI proposed a scalable memory integrity
solution using hardware-assisted mountable Merkel trees [26], but
relied on RISC-V processors which are not yet widely available for
MLaaS clouds. Generally speaking, supporting large EPC sizes on a
single machine incurs significant overheads and is not scalable to
larger ML models, which may need to be distributed over multiple
machines anyway.

2.4 Performance Challenges and Motivations

While trusted processors like Intel SGX provide a substrate to realize
secure MLaaS with much lower cost than pure cryptographic algo-
rithms, there are several inefficiencies that require careful perfor-
mance optimizations. Since different users are mutually untrusted, a
common approach in previous designs is to build a new enclave for
each user separately [32, 34, 52]. Figure 2 shows the latency break-
down for the execution on the cloud server side using Myelin [44],
comparing to the native, untrusted execution (detailed setup in
Section 7.1). We do not consider the latencies on the user side, since
we focus on optimizing cloud MLaaS performance. We highlight
several critical overheads below, as our motivation to develop a
new secure MLaaS system that offers the same level of security
guarantees with better performance.
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First, enclave initialization is slow, but is an extra cost that
must be paid for every user in the baseline. As Figure 2 shows, the
attestation process, including the report generation in the enclave,
takes a few hundreds of milliseconds.2 This is usually several factors
longer than the actual inference task to perform, if with a medium-
size NN such as MobileNetV1 [39].

Second, as another step during constructing a new enclave for
each user, model loading also introduces substantial latency [52].
Many NNs use up to hundreds of MB of model weights, which
require long time to be copied into the enclave [91, 92]. For exam-
ple, Figure 2 shows that for large NNs like ResNet152 [36], model
loading is actually the largest latency contributor, even slower than
the actual inference task. If the model weights are stored in the
encrypted form, decryption would further add more overheads.

Third, the limited EPC size is a well-known performance issue
for SGX [10, 52, 91]. If the MLmodel cannot fit in the EPC, excessive
secure paging would lead to substantial performance degradation
due to data copy and encryption [10, 91]. This is not an uncommon
problem for today’s MLaaS, as many large NN models already use
several hundreds of MB weights [36, 79], exceeding the EPC size.
In Figure 2, the inference latencies for small NNs like MobileNetV1
and ResNet18 are similar in the trusted and untrusted scenarios.
However, ResNet50 and ResNet152 use over 100MB memory and
exhibit more than 3× slowdown due to secure paging when running
inside the enclave. Moreover, when processed with batches, the
user data and the intermediate results also take significant EPC
space, making the situation even worse.

To summarize, the enclave initialization and model loading in-
troduce huge extra cost for small ML models (Figure 2 MobileNetV1
and ResNet18), while the limited EPC size results in excessive se-
cure paging for large models (Figure 2 ResNet50 and ResNet152).
These overheads lead to 5× to 25× slowdown overall, which our
work aims to alleviate.

2.5 Threat Model

Our work targets to offer the same level of security as previous
MLaaS designs, and therefore uses a similar threat model [32, 52].
We assume that the ML model structure and the hyperparameters
are public information. However, both the service provider’s model
weights and the users’ data are private and sensitive. The protection
of the model weights is ensured by the fact that the service provider
owns the platform and controls what computations can run and
what communication can happen. We do not consider algorithm-
level attacks like model stealing, model inversion, backdoor, and
membership inference [25, 28, 78, 86]. There exist orthogonal de-
fenses that can be applied [13, 19, 48, 60, 74]. SGX can help alleviate
some of these attacks like model replacement and gradient poi-
soning through attestation and isolation. We mainly focus on the
protection of user data, including the input, the output, and any
intermediate data through the ML models.

Relying on SGX, the processors of theMLaaS platform are trusted.
Except that, the adversaries fully control any untrusted software
including the OS and the hypervisor. They also physically control
other hardware devices. For example, they can access data stored

2The end-to-end remote attestation is usually a few seconds long with communication
to users. Here we only consider the server’s computations.

in the memory and the disks, or configure the network cards and
switches to manipulate communication packets (e.g., replay at-
tacks). Recent studies show that SGX is vulnerable to side-channel
attacks [16, 30, 62, 76, 93, 97]. We consider the adversaries can ob-
serve and infer valuable information from the timing and volumes
of data transfers between enclaves. Hence these data streams must
be oblivious to defend against these side channels. We discuss the
details in Section 4.3.

We do not consider denial-of-service attacks because they are
contradictory to the business incentive of MLaaS providers.

3 TEMPER OVERVIEW

To optimize the performance of SGX-based MLaaS while not sacri-
ficing the security, we propose Temper, which leverages enclave
reuse with solid security guarantees to reduce the initialization and
model loading overheads, and model partitioning across multiple en-
claves to overcome the EPC size limitation on a single machine. Our
goal is to improve the cloud side performance. The computations on
the user side, as well as the communication among the servers, the
users, and the IAS, stay unchanged. Moreover, the computations in
Temper are equivalent to the original ML models when executed
natively. Thus the inference accuracy is not affected.

Figure 3 illustrates the overview of Temper. The initialization
of Temper happens offline without interaction with any user. It
constructs a number of model instances. Each instance provides the
inference service of a specific ML model, and one model could be
deployed to multiple instances to leverage request-level parallelism.
Within each instance, we partition the ML model into multiple par-
titions that run on multiple SGX-enabled processors. Each partition
contains a subset of the ML model, e.g., a few layers of an NN, that
fit within the processor EPC limit to avoid excessive secure pag-
ing. Such partitioning has no impact on accuracy. Different from
traditional per-user enclave provisioning, the model instances in
Temper will persist and reuse the same enclaves to serve different
users without violating security.

At runtime, each user request is assigned to a specific model
instance by the untrusted scheduler, based on the requested model
type and the load balance decision. The user verifies the model
instance with a special leader through a customized protocol. After
establishing trust, the user sends the encrypted data. The leader
could securely batch a pre-determined and fixed number of requests
from the same or different users, and forward them to the parti-
tions. All data transfers between the partitions are encrypted and
authenticated through data-oblivious streams in a pipelined man-
ner. In addition, we rely on the untrusted cloud infrastructure for
resource management, fault tolerance, load balancing, auto-scaling,
and other administration tasks, to be fully compatible with and bene-
fit from state-of-the-art cluster management systems [12, 22, 37, 88].
These untrusted components can at most cause denial of service,
but never compromise privacy (Section 4.3).

We highlight the two key innovations in Temper that overcome
the three challenges described in Section 2.4.

Enclave reuse (Section 4). The enclaves of each model instance
are reused to serve different users, therefore Temper avoids the
high costs of enclave initialization and model loading. To also
guarantee security, the leader enclave handles attestation with
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the users in a customized way, and the partition enclaves ensure
stateless processing and non-interference between different users.
Scheduling and resourcemanagement are offloaded to the untrusted
cloud platform to minimize our Trusted Computing Base (TCB).

Model partitioning (Section 5). To cope with the limited EPC

size of an enclave, the actual ML model is partitioned into multiple
enclaves to alleviate secure paging overheads. Temper supports dif-
ferent partitioning strategies to optimize either the overall through-
put or the single-user latency, with the help of careful choices of
partitioning granularities and an effective latency estimation model.
Different from previous work [52, 57] that reused a shared memory
space and repetitively loaded the model weights of different layers,
our model partitioning technique transfers intermediate activation
data between layers. In large NNs, usually the weights are much
larger than the activations, and therefore Temper achieves lower
communication cost.

4 SECURE ENCLAVE REUSE

While reusing the same set of enclaves for different users avoids
the repetitive initialization and data loading overheads, it raises
security challenges. First, in a multi-tenant scenario, each user still
needs to attest these enclaves and individually establishes trust.
Second, since there might be quite a few enclaves in an instance
of a large ML model, we should avoid separately verifying each of
them, and instead run a single combined attestation only. Third, we
need to faithfully ensure that no data leakage and interference could
happen across different users, regardless of whether their private
data are processed in a batch or sequentially through the same
enclaves. Fourth, the dataflow across enclaves should preferably
be data oblivious to avoid timing side channels of communication.
Finally, for long-running MLaaS, it is necessary to provide fault
tolerance, by detecting failures or attacks, and reconstructing model
instances if needed.

Temper addresses these issues using two types of enclaves in
each model instance. The leader enclave handles initialization, at-
testation, key management and fault tolerance (Section 4.1). The
multiple partition enclaves run stateless and non-interference infer-
ence on the private data (Section 4.2). Section 4.3 comprehensively
summarizes the security guarantees of the whole system.

4.1 Leader Enclave

Each model instance has a special leader enclave with three respon-
sibilities. First, it initializes and attests all the partition enclaves into
trusted states, so that users do not need to attest them separately.

Algorithm 1: Leader program.
Input :The topology of 𝑛 model partitions topo.

A list of partition measurements𝑀 [0 : 𝑛].
// Generate attestation report.

1 { 𝑘s,pub , 𝑘s,priv }← KeyGen()

2 report← GenerateReport(USERDATA = 𝑘s,pub)
// Construct and attest each partition enclave.

3 for 𝑖 ← 0 until 𝑛 do

4 𝑃 [𝑖 ] ← BuildEnclaveUntrusted(𝑖)

5 if Attest(𝑃 [𝑖 ],𝑀 [𝑖 ]) succeeds then
6 DistributeKey(𝑃 [𝑖 ])
7 BuildConnectionWithPredecessor(𝑃 [𝑖 ], topo)
8 else

9 Terminate()

// Process user requests.

10 foreach user 𝑢 do

// Attestation to user.

11 SendTo(𝑢, { report,𝑀 [0 : 𝑛] })
12 BuildTrustedConnectionWith(𝑢, 𝑘s,priv)

// Process data.

13 { 𝑘sym , data }← RecvFrom(𝑢)

14 batch.Append({ 𝑘sym , data })

15 SendTo(𝑃 [0], batch)
// Monitor status using a separate thread.

16 while true do
17 for 𝑖 ← 0 until 𝑛 do

18 if Heartbeat(𝑃 [𝑖 ]) times out then Terminate()

19 if predefined time duration elapsed then

20 RevocateKey(𝑃 [𝑖 ])
21 DistributeKey(𝑃 [𝑖 ])

Second, it establishes users’ trust in both itself and all the partition
enclaves. Third, it continuously monitors the status of the entire
model instance, periodically revocates and distributes the symmet-
ric keys between the partition enclaves, and handles reconstruction
after failure. Algorithm 1 describes the leader program.

The leader enclave starts by generating a pair of asymmetric keys
{𝑘s,pub, 𝑘s,priv} that are later used to communicate with users. It
then generates a normal attestation report containing the measure-
ments of its own states. Particularly, it sets USERDATA in the report
to the public key 𝑘s,pub (Lines 1 to 2). It then requests the untrusted
cloud platform to build the partition enclaves, and attests them
using a list of expected measurements. If the attestation passes, the
leader distributes symmetric keys to the partitions and asks them
to connect with each other according to the model topology, with
secure communication channels (Lines 3 to 9).



ACSAC ’23, December 04–08, 2023, Austin, TX, USA Fabing Li, Xiang Li, and Mingyu Gao

Untrusted
Cloud

Leader
Enclave

User

① Request

② Report

MAC

MRENCLAVE
MRSIGNER

……
𝑘!,#$%

④ 𝑘$,#$% ,
Enc&!,#$%(nonce)

⑥ Enc&$,#$% (nonce)

⑦ Verify nonce⑧ Enc&!,#$%(𝑘!'()&
Enc&!&' (data)

Intel
Attestation
Service
(IAS)

③
Contact
IAS and
Verify
Report⑤ Decrypt

nonce

Figure 4: Building trust with the leader.

When a user is assigned to the model instance, the leader follows
the procedure in Figure 4 and Algorithm 1 Lines 10 to 15. It directly
replies to the user with its attestation report ➀➁, which the user
can verify using the IAS ➂. Since the report is pre-generated, it
can be stored in the untrusted environment and returned without
entering the enclave, with the help of a nonce check described
shortly. This is much faster than the original report generation.
Note that different from the standard attestation in Figure 1, the
report does not include the user’s nonce, so the user needs to further
verify that the enclave is indeed the one that generates the report,
rather than an adversary. The user uses 𝑘s,pub extracted from the
report to encrypt a nonce, and sends to the leader together with
her public key 𝑘u,pub ➃. An authentic leader can use its private key
to decrypt the nonce ➄. It then returns the encrypted nonce under
the user’s public key to the user ➅. If the returned nonce is correct,
the user can trust the leader ➆. At the same time, the leader also
sends the list of partition enclave measurements to the user, so that
the user can verify the partition enclave contents. Finally, the user
sends the encrypted data to the leader to add into the current batch
➇, and the leader periodically forwards the batched data to the
first partition enclave and subsequently to other partitions.

The leader enclave may batch multiple data from different users.
The leader receives the data from users, decrypts the data and forms
the batch, which is forwarded to the later partition enclaves through
their secure channels. After the batch results are returned, they are
decomposed into individual results and forwarded back to the users
separately. The enclave protection and the leader program integrity
guarantee neither the individual users nor the outside attackers
can access the user keys stored in the leader enclave.

The leader also continuously tracks the status of the entire model
instance (Lines 16 to 21). After initialization, the leader keeps the
communication channels with all the partition enclaves and re-
ceives regular heartbeat messages, to prevent any attacker from
replacing them. The leader also regularly updates the symmetric
keys between the partitions to enhance security.

We adopt a simple and flexible recovery strategy. If the leader
shuts down or fails, the entire model instance is closed and waits
to be restarted, because all credentials and sensitive data are gone.
If any partition enclave becomes unreachable, the leader stops
accepting requests, closes the connections to users, and notifies
the scheduler, which tears down the entire instance. The scheduler

should re-dispatch the incomplete request to another instance. Note
that it is also possible to keep the good enclaves in the instance
and only restart the failed ones. However we find that the saved
initialization and attestation cost is insignificant compared to the
sufficiently long time of normal processing. Moreover, it would be
difficult for the stateless partition enclaves to track and restore the
partially processed data from the failed enclaves.

To summarize, the use of a leader improves performance by (1)
reusing the report to different users to avoid the report generation
latency; (2) allowing users to only attest once for all the enclaves.

4.2 Partition Enclaves

The partition enclaves of a model instance are organized as a DAG
following the original model topology, and sequentially process the
private user data batch in a pipelined manner. The model weights
are preloaded and stay in the enclaves. While eliminating the data
loading overheads for each user, enclave reuse has security impli-
cations. The enclave programs must be stateless and satisfy non-
interference, so that processing different users’ data in a parallel
batch or sequentially through the same enclaves does not leak
any sensitive information. Also, the data communication between
enclaves should be oblivious to avoid timing side channels.

Fortunately, such requirements are naturally satisfied by most
ML algorithms, including NNs. Typical inference tasks treat the
model weights as read-only, and the private input data are only
used to compute the output results without any side effects (state-
less). Different data in a batch are also fully independent (non-
interference). The amount of data to communicate across partitions
are determined by the model hyperparameters, such as the number
of channels and the feature map dimensions, which are all public
constant values. The data streams flow between enclaves with de-
terministic sizes and at fixed time, regardless of the data values
(oblivious). Nevertheless, we still need to ensure that the actual
implementation does not have covert channels and backdoors. After
computations, we carefully zero out all registers and memories
before reuse or deallocation to prevent use-after-free attacks. All
messages across enclaves are encrypted and authenticated, with
unique sequence numbers for freshness.

4.3 Security Arguments

Establishing trust in multiple enclaves. We emphasize that the
security guarantees of the multi-enclave Temper are equivalent to a
single-enclave scenario provided by Intel SGX. We start by arguing
that the user can establish trust with the leader enclave using the
above design. The returned report follows the same format as in
the standard SGX remote attestation in Figure 1 and can be verified
by the IAS. The USERDATA field can be freely set without impacting
security. The report convinces the user that the leader enclave is
genuine and the program running inside it follows Algorithm 1. The
leader program is designed to not leak secrets intentionally, and
also to cleanse sensitive data after processing. The additional round
of nonce verification in Figure 4 ensures that only the enclave
that generates the report and knows 𝑘s,priv can pass the check,
protecting against man-in-the-middle attacks.

To also trust the partition enclaves, the trusted and legitimate
leader program attests all the partition enclaves on behalf of the
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user. The list of partition enclave measurements is returned to the
user, and can be verified against the open-source programs or a
trusted public repository at the user side.

Side-channel attacks at runtime. Side-channel attacks are
well known but hard to defend, stealing private information at the
microarchitectural [16, 76, 93] (e.g., TLB, cache, DRAM, or page
table) and physical (e.g., temperature [62], power [97], acoustical
emanations [30], or electromagnetic signals [29]) levels. Compre-
hensive defense against side-channel vulnerabilities remains an
open problem that is orthogonal to the Temper design. Neverthe-
less, we notice that typical NN layers processed in the partition
enclaves are data oblivious, with no data access pattern leakage.
For the leader enclave, the program in Algorithm 1 only involves
encryption/decryption that has well-studied secure implementa-
tions. We also see from Section 4.2 that the communication between
enclaves is oblivious, with deterministic sizes and at fixed time [42].
Therefore, Temper is free of these common side channels.

Impacts of malicious schedulers and managers. It is worth
noting that in Temper, the global scheduler and the resource man-
ager are untrusted. An attacker controlling those components may
at most deny service to users, but never compromises sensitive data.
Specifically, a corrupted scheduler may direct a user to a malicious
model instance leader, but the attestation process is able to discover
such hazards. The resource manager may kill any leader or partition
enclave at any time, which would cause the entire model instance
to be teared down, and the sensitive data inside the enclaves are
cleared without leaking. When a new model instance is created, it
will use newly generated keys. So replay attacks are not possible.

Minimizing TCB. Temper is designed to minimize the neces-
sary TCB. Compared with other hardware TEE techniques such
as ARM TrustZone [9], the TCB of Intel SGX does not include the
OS. Furthermore, all cloud platform software, including the fron-
tend, the scheduler, and the resource manager, does not need to be
trusted. In Temper, other than the ML models themselves, the only
additional trusted code is the leader program (Algorithm 1). We
keep the leader to the minimal functionalities and exclude more
complex tasks.

5 EFFICIENT MODEL PARTITIONING

To eliminate the large overheads of SGX secure paging without
affecting the inference accuracy, Temper divides the many layers in
an ML model into multiple smaller subsets that each fits in the EPC
size limit of a single enclave. This section discusses the partitioning
strategies in Temper to achieve high throughput and/or low latency.

5.1 Comparing with Prior Approaches

As introduced in Section 2.1, there have been a large body of model
parallelism methods, including tensor partitioning [47, 77, 90] and
graph partitioning [41, 67, 82, 83]. For our scenario, tensor parti-
tioning is less suitable because it may introduce significant data du-
plication or communication across partitions. Therefore, we mostly
focus on graph partitioning.

However, previous graph partitioning algorithms are not directly
applicable to Temper (a quantitative comparison is in Section 7.4).
First, existing approaches either assume unlimited memory space

(e.g., CPUs) or strict capacity constraints (e.g., GPUs and accelera-
tors) for each partition. In contrast, with SGX, performance exhibits
a drastic change once crossing the EPC limit. Nevertheless, we ac-
tually may allow sometimes exceeding the EPC limit and tolerating
the slowdown, especially when there are too many partitions dom-
inated by the communication cost. Therefore, the partition sizes
should not be treated as constraints, but they affect the computation
latencies, which are more difficult to model accurately and require
specific estimation models. Second, existing methods mostly fo-
cus on fine-grained partitioning that aims to maximize parallelism
and to improve pipeline efficiency. In Temper, however, we are
concerned about the EPC size limit, and thus only require suffi-
cient numbers of partitions rather than the maximum. This requires
us to use different optimization goals of throughput and latency,
which lead to different solution strategies. Third, communication
across distributed enclaves involves data encryption/decryption,
data copying into and out of enclaves, and data transfers across
networks. These all have much higher cost than traditional set-
tings where partitioning happens mostly across multiple GPUs
on a single machine with high-bandwidth PCIe or NVLinks. Our
partitioning strategy needs to focus more on communication.

5.2 Optimization Goals

In typical cloud scenarios like MLaaS, the service providers would
like to optimize the overall throughput of the system under a fixed
budget of resources (e.g., number of servers), while ensuring that the
user latencies are within a preset service-level objective (SLO) [88].
The partitioning strategies of Temper focus on providing high
performance for each model instance. A large body of work on clus-
ter management, including load balancing, auto-scaling, resource
scheduling, etc. [12, 22, 37, 88], can be applied on top of Temper
by the untrusted platform software.

We support two different optimization goals in Temper, high-
throughput and low-latency. An ML model is partitioned to maxi-
mize the overall throughput under a fixed total number of servers
using the high-throughput strategy, or to minimize the latency for
a single user under the low-latency strategy. The two strategies
for each ML model are solved offline and stored. At runtime, the
cloud resource manager can auto-scale the numbers of instances
under the two strategies based on the request load and the user
requirements. For example, we can launch more high-throughput
instances if the system load is high, and use low-latency instances
when the load reduces. Temper does not support directly switching
an instance between the two modes; the resource manager has to
end the old instance and launch a new one. Such a coarse-grained,
sub-minute-level switch is acceptable for MLaaS and comparable
to typical cloud resource elasticity granularities.

More specifically, a partitioning strategy divides a model into 𝑛
partitions, each with computation and communication latencies of
𝑡comp,𝑖 and 𝑡comm,𝑖 , 𝑖 = 0, . . . , 𝑛 − 1. We then have

min
{
𝑛 ×max

𝑖
{𝑡comp,𝑖 , 𝑡comm,𝑖 }

}
← high-throughput (1)

min

{∑︁
𝑖

𝑡comp,𝑖 + 𝑡comm,𝑖

}
← low-latency (2)
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Notice that under the high-throughput strategy, we assume fully
pipelined processing across the𝑛 enclaves, and also between compu-
tation and communication of each enclave. So the overall through-
put is determined by the slowest stage.

Model partitioning has no security impact. Different partition-
ing goals may result in different computation and communication
latencies, but this does not exhibit any timing side channel; these
latencies are still oblivious to input data. The model structure is
public, so it is fine to expose the partitioning scheme.

5.3 Basic Units for Partitioning

When partitioning an ML model, a too coarse granularity may miss
potential opportunities and fail to bring the memory usage below
the EPC size, while overly fine-grained partitioning makes it slow
to search for the best strategy. In NNs, it is natural to choose the
layer as the basic granularity. Each partition contains one or more
layers with their total memory usage no more than the EPC size.

Furthermore, we make some special adjustments as needed. We
fuse small layers, such as pooling, batch normalization, and ReLU
activation, with their neighbor layers [18, 84], to reduce the num-
ber of basic units and thus the partitioning complexity. We also
split very large layers (e.g., a matrix multiplication with numerous
weights) into multiple smaller sublayers that could be separately
processed by different enclaves [52]. For complex NN topologies
that contain branches, Temper marks each branch as an individ-
ual partition unit, i.e., each partition enclave can contain one or
multiple branches. When calculating the performance, we slightly
modify Equations (1) and (2) so that the latencies of these parallel
branch units depend on the slowest one.

5.4 Latency Estimation Model

From Equations (1) and (2) we see that, in order to solve the best
partitioning, it is crucial to obtain accurate estimation of the compu-
tation and communication latencies for each possible combination
of layers that may run together in the same enclave. Such latencies
are highly sensitive to the actual memory usage due to potential
secure paging, and the input/output data volumes due to transfer,
copy, and encryption/decryption. Traditional NN model partition-
ing approaches usually profile and measure each layer in isolation
and assume the execution time stays unchanged [47, 67]. However,
for in-enclave execution, the execution time of a layer highly de-
pends on which other layers (and thus their data) are in the same
enclave, and so cannot be measured independently.

For computation latencies, we make a key empirical observation
that, if the total memory usage of a group of layers exceeds the EPC
size, then every layer in this groupwill suffer from significant secure
paging. In another word, the performance degradation happens for
all the layers rather than a subset. This allows us to record only
two latency profiles for each layer, i.e., with and without secure
paging. First, we separately compile and measure the performance
of each partitioning unit (Section 5.3) in two situations: alone (no
secure paging), and with a simple memory ballooning module that
eats up most of the EPC space (with secure paging). Second, we
calculate the memory usage of each unit. NN layers have very regu-
lar program semantics. The memory layout is mainly composed of
model weights, intermediate activation results, and inputs/outputs,

where the model weights account for the largest share. Third, for
any given combination of units, we sum up their memory usage,
and compare with the enclave EPC size to determine whether se-
cure paging happens for all or none of them. The corresponding
latencies are then summed up as the total computation latency.

The communication latencies mainly involve decrypting and
encrypting data before and after processing, copying data into and
out from the enclaves, and transferring data over the network. All
these overheads are roughly proportional to the corresponding
input/output data volumes. So we use simple linear regression to
calculate 𝑡comm = 𝛼×data size. The parameter 𝛼 is empirically mea-
sured, and is typically around 17ms/MB on our system (Table 2).

5.5 Solving Optimized Partitioning

With the determined basic units in Section 5.3 and the latency esti-
mation in Section 5.4, solving for the best partitioning strategy for a
given model under the goals in Section 5.2 becomes straightforward.
According to Equations (1) and (2), the key tradeoff is to balance
between the computation and communication latencies. More par-
titions (a larger 𝑛) reduce secure paging overheads and thus the
computation time, but also introduce more communication.

The complexity of these optimizations is modest. Typically, we
partition ℓ (10s to 100s) units into 𝑛 (1 to 10) enclaves. The number
of possible strategies is 𝑂 (ℓ2). It is worth noting that evaluating
each strategy does not involve any compilation or execution; we
simply accumulate the pre-collected memory sizes and latencies
of the basic units. Such a very fast procedure is enabled by our
novel latency estimation approach. Therefore for simplicity, we use
a simple exhaustive search.

6 IMPLEMENTATION

Temper is implemented in Rust [73], which is memory safe and
avoids vulnerabilities like buffer overflow. We use the Fortanix
Rust enclave development platform (EDP) [27] with Intel SGX SDK
v2.9 [45] on Linux. We manually write the leader program as in
Algorithm 1, with about 410 lines of Rust code. Such a small size
of trusted code allows thorough inspection to eliminate potential
bugs and vulnerabilities. We use TVM v0.7 [18] to compile high-
performance NN kernels, leveraging both of its graph-level and
operator-level optimizations. The Fortanix Rust EDP is able to inte-
grate the TVM kernels into the partition enclaves. Communication
between enclaves happens through sockets. Data are encrypted
and authenticated with AES-256-GCM.

Model partitioning. We import the NNs using PyTorch, and
implement the partitioning algorithms in Section 5 in Python. We
output the partitioned models in the ONNX format [70], which are
accepted as input to TVM. We use 32-bit floating-point precision.
Both the basic unit memory and latency estimation and the final
code generation of partitioned models follow this procedure.

Leader enclave. The leader enclave does not process the data,
and occupies minimum EPC space. To reduce resource consumption
and communication overheads, we co-locate the leader with the first
partition on the same server, but they still use separate enclaves.

Multi-threading. We enable multi-threading in TVM to im-
prove performance. On our eight-core processors, we can achieve
almost linear scaling up to six threads. We suspect that when the
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number of threads approaches or exceeds the number of physical
cores, more frequent context switches would occur, which are par-
ticularly expensive for enclave execution due to swapping in/out
sensitive contexts.

7 EVALUATION

We now evaluate the overall performance of Temper in terms of
latency and throughput, as well as the effectiveness of its attestation
protocol and partitioning strategies.

7.1 Experimental Setup

Platform. We evaluate Temper on four desktop machines, each
with an Intel Core i7-9700 3.0 GHz CPU and 32GB main memory
running Ubuntu 18.04, and connected through 1Gbps Ethernet.
The SGX available EPC size to user applications is 93.5MB. While
1Gbps bandwidth is low, the data encryption/decryption and the
data transfers between enclaves and untrusted memory also con-
tribute to the communication cost besides the network bandwidth
(Table 2). Also, this configuration biases the baselines which use
no networking. When executing models requiring more than four
machines, we fold them onto our testbed and run each group of en-
claves individually one after another, and conservatively aggregate
the results.

Workloads.WeevaluateMobileNetV1 [39], ResNet18/50/152 [36],
VGG19 [79], InceptionV3 [81], and DenseNet201 [40], all with the
ImageNet dataset [23]. The default batch size is 1, and we also eval-
uate larger batch sizes of 4 and 16 in Figure 6 when optimizing
Temper for high-throughput.

Baselines. We use three prior SGX-based MLaaS designs as our
baselines, which adopt the similar threat model. TensorSCONE [53]
uses a shim layer for OS support [10], which is more efficient than
libOS approaches. Myelin [44] also uses TVM to generate efficient
kernels, but does not apply any other optimizations to deal with
the model loading overheads or the limited EPC size. With a similar
principle of careful scheduling on model parameters, Lasagna [57]
is the state-of-the-art. It uses a local task scheduler with three ring
buffers to pipeline the stages of on-demand data loading, layer ini-
tialization, and layer processing. This design allows it to reduce the
overall memory footprint and also (partially) hide the data load-
ing cost, thus effectively alleviating the secure paging cost. Due
to lack of open source and for fair comparisons, we reimplement
the Lasagna techniques in our system, so it can also benefit from
the high-performance TVM-generated kernels. We also include
untrusted inference with TVM as the ideal upper bound. This un-
trusted baseline does not partition the NN models. The full model
runs completely in the untrusted environment of a single machine,
because there is sufficient memory.

7.2 Overall Performance

We first compare the latencies across all the systems at batch size 1,
when optimizing for low-latency in Temper (Equation (2)). Figure 5
illustrates the results. We exclude the attestation latencies here, and
evaluate them in Section 7.3. TensorSCONE (S) not only increases
the TCB, but also causes substantial performance degradation of
over 10×. For Myelin (M), Lasagna (L), and Temper (T), we break
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Figure 5: Comparison when optimizing for low-latency.

down the latencies into computation and communication. Commu-
nication includes loading and decrypting model weights in Myelin
and Lasagna, and data transfers between enclaves through network-
ing in Temper. Note that the communication cost of Lasagna is
partially hidden by its pipeline, and the communication parts in the
figure only show the portions that cannot be fully hidden. For the
computation parts, Myelin suffers from serious secure paging for
large models. Lasagna can effectively reduce this cost and result in
lower latencies than Myelin in general, but introduces extra over-
heads with its shared memory buffers for MobileNetV1, which is a
small model designed for mobile platforms and entirely fits within
one enclave. However, both Myelin and Lasagna suffer from large
data loading costs. The on-demand data loading in Lasagna can-
not be hidden perfectly, since the pipeline stages are not balanced
and weight loading can sometimes be the dominant bottleneck. In
contrast, Temper can alleviate the secure paging issues and get
similar computation latencies to Lasagna, while avoiding repetitive
data loading for each user through enclave reuse. The network
transfers between enclaves have only small overheads, typically
on the order of tens of milliseconds, and can be overlapped with
computations. Moreover, in large NNs, many layers would have
much more weight data (repetitively loaded by Lasagna) than inter-
mediate activation results (transferred across network in Temper),
so the communication cost is smaller in Temper. On average, Tem-
per achieves 4.9× and 2.2× latency reduction against Myelin and
Lasagna across all the evaluated ML models. Even compared to the
untrusted upper bounds U, Temper only introduces an average 2.1×
slowdown, which is a reasonable price for privacy.

Next, we evaluate Temper in terms of throughput. Figure 6 com-
pares Temper against Lasagna under the high-throughput goal
(Equation (1)). We omit the other baselines as they are constantly
inferior to Lasagna. Although Temper requires multiple enclaves
on separate machines, partitioning ensures balanced pipeline stages
with little resource idleness. Overall, Temper achieves 1.8×, 2.1×,
and 1.2× higher throughput on average over Lasagna with batch
size 1, 4, and 16. It is also interesting to see that, different from
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Figure 6: Comparison when optimizing for high throughput.

Temper uses batch sizes 1, 4, and 16.

Table 1: Absolute performance summary of Temper.

Model High-Throughput Low-Latency
Throughput

(img/sec/server)
Latency
(msec)

Latency
(msec)

MobileNetV1 41.57 24.06 24.06
ResNet18 23.96 55.20 50.17
ResNet50 9.42 177.85 135.25
ResNet152 1.89 394.35 349.27
VGG19 0.60 1246.28 815.51
InceptionV3 4.39 203.95 144.82
DenseNet201 4.62 218.32 207.75

native execution, increasing batch sizes in Temper will not always
result in throughput improvements. Larger data batches consume
more EPC space, either increasing secure paging in each enclave,
or being partitioned across more machines with higher communi-
cation cost and less balanced pipelines. Lasagna also suffers from
such inevitable secure paging when increasing the batch size.

Table 1 summarizes the absolute performance of Temper under
the two modes. Although the high-throughput strategy tends to
use deeper pipelines, the latencies are still reasonable, within 2× of
the low-latency results.

We also compare Temper with LoLa [15], a recent cryptographic
approach for MLaaS that uses homomorphic encryption. LoLa de-
signs a customized yet very small model for the MNIST dataset,
which trades off accuracy for performance. We port this model into
Temper, and see a 1607× speedup. Note that the main bottlenecks
of LoLa are the sizes of weight matrices and data vectors. Therefore,
its performance will be even worse if we evaluate it using complex
NNs like those in Temper.

7.3 Attestation and Communication Cost

In Temper, the attestation with the leader enclave reuses the pre-
generated report for all users to reduce the initial trust setup latency.
Table 2 compares this customized protocol with the standard SGX
attestation process. We exclude the communication delay between
the user and the IAS. On the server side, the report generation
inside the enclave takes non-negligible time, close to half a second.
Temper eliminates this cost, but has another round of public key

Table 2: Attestation and communication delays in Temper.

Attestation (msec) Server User Total

Standard 462.43 111.25 573.68
Temper 30.48 112.97 143.45

Communication
(ms/MB)

Encryption Transfer Decryption

2.40 12.82 2.19

Table 3: Comparison of Temper and DNN-Partition, both

under high-throughput partitioning.

Model
Temper

(img/sec/server)
DNN-Partition [83]
(img/sec/server)

MobileNetV1 41.57 41.53
ResNet18 23.96 15.37
ResNet50 9.41 2.47
ResNet152 1.89 2.67
VGG19 0.60 0.39
InceptionV3 4.39 1.06
DenseNet201 4.62 2.74

exchange (Figure 4). This key exchange is lightweight and only
costs 30ms. On the other hand, the report verification by the user
remains the same. Overall, Temper attestation is about 4× faster.

One potential overhead in Temper is the data transfer latencies
between partition enclaves, including encrypting and decrypting
data as well as copying into and out of the enclave and transferring
data over the network. Table 2 shows each MB of data needs about
17ms to transfer on our 1Gbps network, where the actual network
transfer takes about 13ms. With typical intermediate data across
partitions of a fewMB, the communication latencies are much lower
than those for computation, which are usually several hundreds of
milliseconds. High-speed networks at 10 to 100 Gbps may further
bring the cost down. But note that the data copies into and out of
enclaves and the encrypting/decrypting cost depend on the CPUs
instead of the network.

7.4 Partitioning Strategies

We compare our partitioning strategy against a recent NN model
parallelism approach, DNN-Partition [83]. The same pre-processing
like operator fusion and splitting in Section 5.3 is applied to both.
Table 3 shows the results. Temper substantially outperforms DNN-
Partition in large NN models like InceptionV3 and DenseNet201.
The main reason is that DNN-Partition assumes relatively cheap
communication across heterogeneous devices in the same machine,
aims to optimize for maximum parallelism, and enforces more strict
partition size constraints. Hence, it has too many partitions for
large models, resulting in higher data communication overheads.

When searching for the best partitioning strategies, the domi-
nant cost is to build the latency estimation model using 2ℓ times
of compilation and execution with and without secure paging, for
each of the ℓ basic units in the model (Section 5.4). Each compi-
lation and execution usually need tens of seconds. Table 4 shows
the overheads for several representative models, where the total
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Table 4: Compilation and execution time to build the latency

estimation model for partitioning.

Model MobileNetV1 ResNet50 ResNet152

Time (sec) 1363.4 1843.1 5269.5

overheads are measured to be within half an hour for MobileNetV1
and ResNet50, and up to 1.5 hours for ResNet152. The actual solving
process (Section 5.5) only takes several seconds, since it directly
uses the estimated latency values without additional measurements.
Nevertheless, both of them are just offline, one-time overheads.

8 RELATEDWORK

In this section we present related work about secure ML inference
with cloud computing. Note that there also exist other proposals that
deploy ML models on the user side while protecting the intellectual
property (IP) of the service provider [58, 80]. This approach ships
the performance problem to the users, who may not have enough
resources or their computing resources may not be as cost-efficient
as cloud computing. We believe the two approaches are orthogonal
and each could be preferred in different cases depending on the
requirements and constraints.

Cryptographic approaches.Modern cryptographic theories
have enabled privacy-preserving computations. Fully homomor-
phic encryption (FHE) [31] allows us to do operations like addition
and multiplication on ciphertext equivalently to those on plaintext.
Multi-party computation (MPC) [94] enables mutually-distrusted
parties to complete a joint computation while protecting the pri-
vacy of each other’s input. NN models can be seen as a collection
of linear and non-linear functions. CryptoNets [24] was the first
to use FHE to build a nine-layer NN. However, FHE has several
fundamental issues limiting the capability and the performance.
First, it usually works with integers but not floating-point numbers.
Second, ciphertext multiplication sharply increases the noise and
limits the model depth. Third, non-linear activation functions are
hard to realize. LoLa [15], as the successor of CryptoNets, solved
part of the problems above and achieved higher accuracy and effi-
ciency. It was even faster than HCNN [11], a GPU-accelerated FHE
solution. Nevertheless, Temper achieves over 1600× speedup over
LoLa. Other proposals like MiniONN [59] and Chameleon [72] used
MPC for ML inference. Gazelle [49] and DELPHI [64] combined
FHE and MPC. GForce [68] designed special ciphertext transfor-
mations to compute non-linear layers without approximation, and
accelerated linear layers by offline computations.

TEE-based approaches. Hardware-based TEEs, such as Intel
SGX [20] and ARM TrustZone [9], provide strongly isolated envi-
ronments and guarantee the confidentiality and/or integrity of the
code and data inside. Many designs like SCONE [10], Occlum [75],
Graphene-SGX [87] integrated libraries into Intel SGX to ease ap-
plication porting and development. This method can be applied to
MLaaS, but often comes with substantial performance degradation,
e.g., TensorSCONE [53], S3ML [61], PPML [55]. So it is desired to di-
rectly develop NN kernels in SGX for better efficiency. Privado [32]
realized input-oblivousML inferencewith SGX. Chiron [43] enabled
distributed ML training. MLCapsule [34] instead ran inference on

the user side and offered privacy guarantees to the service provider.
Myelin [44] used TVM to reduce the runtime memory usage and
the computation latency. Vessels [52] and Lasagna [57] aimed to
address secure paging under the limited EPC size, by reusing a
shared memory pool for the weights across different parts of the
model, or smartly pipelining data loading with layer processing
and hiding the overheads of the former. Instead, Temper alleviates
secure paging by partitioning a model into multiple enclaves, and
is demonstrated to be more efficient.

There are also TEE proposals on GPUs [42, 46, 89] and FP-
GAs [96], but not yet commercially available. Slalom [85] and DarK-
night [35] used encrypted and verifiable linear computation out-
sourcing from CPU TEEs to untrusted GPUs, which significantly
reduced the computation cost but at the expense of high communi-
cation overheads.

9 CONCLUSIONS

The privacy and security concerns now become a practical obstacle
for MLaaS systems. Although existing TEE-based approaches offer
better performance than cryptographic algorithms, they still sacri-
fice substantial performance for security due to the initialization
overhead and the limited memory resources. We propose Temper,
a secure MLaaS framework that optimizes performance and keeps
security and accuracy guarantees. Temper integrates hardware
TEEs like Intel SGX and high-performance ML software like TVM,
and leverages novel techniques including enclave reuse and model
partitioning. Temper outperforms the state-of-the-art baseline by
over 2× in terms of latency and throughput.
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A APPENDIX

A.1 Abstract

We provide the source code of Temper in this artifact, including
the real runtime of partitioned models (Section 4) and the partition
and search algorithms (Section 5).

A.2 Artifact check-list (meta-information)

(1) Runtime environment: Linux Debian 5.4.0-54-generic; rust
toolchain: nightly-2021-04-15-x86_64-unknown-linux-gnu,
Python 3.6.9

(2) Hardware: Intel Core i7-9700 3.0 GHz CPU, 32GBmainmem-
ory, and 1Gbps Ethernet

(3) Experiments: Described in Section 7
(4) Workflow frameworks used: Pytorch, ONNX, Fortanix, TVM
(5) How much time is needed to prepare workflow: The model

partition is time-consuming due to the execution of the ba-
sic units of the networks, which may take several hours.
Therefore, we provide some of the discovered best parti-
tion strategies under our settings. The compilation of the
enclaves will take some minutes.

(6) How much time is needed to complete experiments (approx-
imately)?: The execution time is at the level of seconds.

A.3 Description

A.3.1 How to access. The source code for the end-to-end Temper
workflow, as well as the benchmarks, is archived at https://github.
com/tsinghua-ideal/TEMPER-Secure-MLaaS.

A.3.2 Hardware dependencies. This artifact depends on the Intel
CPU platform with SGX. We need SGX v1 which has limited EPC.
Refer to https://github.com/intel/linux-sgx for more information.

A.3.3 Software dependencies. This artifact depends on the follow-
ing software libraries:
• Intel SGX SDK 2.9
• Python 3 and the following packages are required:
– torch
– ONNX
• TVM 0.7
• Fortanix
• Clang 3.8 or older for building rust-mbedtls.

A.4 Installation

Follow the instructions below to install and set up the artifact:
(1) Install the required Python packages listed in the file of

requirements.txt. Use the following command:
pip3 install -r requirements.txt

If some packages cause errors, use this command instead:
while read requirement;

do sudo pip3 install $requirement;
done < requirements.txt

Note that the TVM packages should be installed separately
as compiled packages in the next step.

(2) Install TVM v0.7 from the GitHub repository: https://github.
com/grief8/tvm.git. You can refer to the TVM documenta-
tion at https://tvm.apache.org/docs/install/index.html for in-
stallation instructions. You can also refer to the following
commands:

git clone --recursive \
https://github.com/grief8/tvm.git tvm

sudo apt-get update
sudo apt-get install -y \

python3 python3-dev \
python3-setuptools gcc \
libtinfo-dev zlib1g-dev \
build-essential cmake \
libedit-dev libxml2-dev

mkdir build
cp cmake/config.cmake build
cd build
cmake ..
make -j4

cd ../python
python setup.py install --user
cd ..

After compilation, install the required Python packages. We
prepare the script of install_tvm.sh for it.

(3) Prepare the Rust environment by executing the following
commands:

sudo apt install -y build-essential
curl --proto '=https' \

--tlsv1.2 https: //sh.rustup.rs \
-sSf | sh

This will download a script and start installing the rustup
tool, which installs the latest stable version of Rust. If the in-
stallation succeeds, you will see a message: “Rust is installed
now. Great!”
Then switch the rustup toolchain to nightly by installing
the nightly version:

rustup install nightly

Finally, switch to the nightly version of cargo. We recom-
mend the following one:

rustup default \
nightly-2021-04-15-x86_64-unknown-linux-gnu

(4) Install Fortanix by following the official documentation at
https://edp.fortanix.com/docs/installation/guide/. Note that
Intel SGX SDK is required for this installation. You can also
install it by install_fortanix.sh. Additionally, run the
following command to get llvm-ar and llvm-objcopy:

rustup component add llvm-tools-preview

A.5 Experiment workflow

To evaluate the model partition and inference process, follow the
instructions below:

https://github.com/tsinghua-ideal/TEMPER-Secure-MLaaS
https://github.com/tsinghua-ideal/TEMPER-Secure-MLaaS
https://github.com/intel/linux-sgx
https://github.com/grief8/tvm.git
https://github.com/grief8/tvm.git
https://tvm.apache.org/docs/install/index.html
https://edp.fortanix.com/docs/installation/guide/
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A.5.1 Model Partition. To run model partition, execute the follow-
ing command:

python auto_model_partition.py \
--model <your_model> \
--input_size <data_size> \
--build_dir <generated_model_path>

Replace <your_model>with the model name, <data_size>with
the desired input size, and <generated_model_path> with the di-
rectory where the enclave libraries will be stored. The model will
be partitioned into several TVM submodels, and the submodels will
be compiled into libraries and parameters which are compatible for
SGX. The names include the models in Table 1, including ResNet18,
ResNet50, ResNet152, VGG19, DenseNet201 and InceptionV3. The
data size is set to 3×224×224 by default.

A.5.2 Model Inference. In the directory of cluster-inference/,
there are dependencies: attest-client as the user, ra-sp as the
attestation agent, sgx-task-enclave as the template of worker

enclaves, and scheduler as the leader enclave. A worker gener-
ator script worker_generator.py will be used to generate actual
worker enclaves on demand.

First, configure the inference instances as below.
Attestation: Set the contents or paths of SPID, keys, and cer-

tificates under ra-sp/examples/data/setting.json. The details
are in https://github.com/ndokmai/rust-sgx-remote-attestation.We
have already set the default configurations.

Network: For easy testing, we set the default configurations
available for a single machine, i.e., localhost. You can modify the
configurations in each enclave project to run the instance across
multiple machines. For worker enclaves, you will have to modify
worker_generator.py and re-generate the instances to make the
changes take effect.

Worker generation: Use worker_generator.py to generate
worker enclaves with different partitioned models after the con-
figuration. The following command imports the submodels from
<generated_model_path> in A.5.1 and produces the worker en-
clave projects to <target_instance_dir>.

python worker_generator.py \
<generated_model_path> \
<target_instance_dir>

Now, we can performmodel inference by executing the following
commands:

# Setup environment
cd cluster-inference
source environment.sh

# Generate instances
python worker_generator.py \

<the path of generated models> \
<the path of target instance dir>

# Build and run
./clean.sh <the path of target instance dir>
./build.sh <the path of target instance dir>
./run.sh <the path of target instance dir>

If you test the benchmark on a single machine, just run run.sh
to build and run all the modules above. The results will be shown
on the terminal.

A.6 Evaluation and expected results

The client will output the total cost, and every worker enclave will
also output the latency of the submodels. The results will be printed
with text explanations on the terminal, and we can collect them to
calculate the throughput and other metrics. For example, we can
collect the latency and latency breakdown data of different models
to get similar results of Figures 5 and 6, and Table 1.

https://github.com/ndokmai/rust-sgx-remote-attestation

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Machine Learning and Neural Networks
	2.2 MLaaS and Data Privacy Concerns
	2.3 Trusted Processors: Intel SGX
	2.4 Performance Challenges and Motivations
	2.5 Threat Model

	3 Temper Overview
	4 Secure Enclave Reuse
	4.1 Leader Enclave
	4.2 Partition Enclaves
	4.3 Security Arguments

	5 Efficient Model Partitioning
	5.1 Comparing with Prior Approaches
	5.2 Optimization Goals
	5.3 Basic Units for Partitioning
	5.4 Latency Estimation Model
	5.5 Solving Optimized Partitioning

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Overall Performance
	7.3 Attestation and Communication Cost
	7.4 Partitioning Strategies

	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results


