
Syno: Structured Synthesis for Neural Operators
Yongqi Zhuo

∗

Tsinghua University

Beijing, China

zhuoyq21@mails.tsinghua.edu.cn

Zhengyuan Su
∗

Tsinghua University

Beijing, China

su-zy21@mails.tsinghua.edu.cn

Chenggang Zhao

Tsinghua University

Beijing, China

zhaocg21@mails.tsinghua.edu.cn

Mingyu Gao

Tsinghua University

Beijing, China

Shanghai Artificial Intelligence Lab

Shanghai, China

Shanghai Qi Zhi Institute

Shanghai, China

gaomy@tsinghua.edu.cn

Abstract
The desires for better prediction accuracy and higher exe-

cution performance in neural networks never end. Neural

architecture search (NAS) and tensor compilers are two pop-

ular techniques to optimize these two goals, but they are both

limited to composing or optimizing existing manually de-

signed operators rather than coming up with completely new

designs. In this work, we explore the less studied direction

of neural operator synthesis, which aims to automatically

and efficiently discover novel neural operators with better

accuracy and/or speed. We develop an end-to-end frame-

work Syno, to realize practical neural operator synthesis.

Syno makes use of a novel set of fine-grained primitives

defined on tensor dimensions, which ensure various desired

properties to ease model training, and also enable expression

canonicalization techniques to avoid redundant candidates

during search. Syno further adopts a novel guided synthesis

flow to obtain valid operators matched with the specified

input/output dimension sizes, and leverages efficient stochas-

tic tree search algorithms to quickly explore the design space.

We demonstrate that Syno discovers better operators with

average speedups of 1.37× to 2.06× on various hardware and

compiler choices, while keeping less than 1% accuracy loss

even on NAS-optimized models.

CCS Concepts: • Software and its engineering→ Search-
based software engineering; Compilers; • Computing
methodologies→Machine learning.

∗
Both authors contributed equally to the paper.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1080-3/2025/03

https://doi.org/10.1145/3676642.3736118

Keywords: Program Synthesis; Neural Architecture Search

ACM Reference Format:
Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao.

2025. Syno: Structured Synthesis for Neural Operators. In Proceed-
ings of the 30th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume
3 (ASPLOS ’25), March 30-April 3, 2025, Rotterdam, Netherlands.
ACM,NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3676642.
3736118

1 Introduction
Deep learning with neural networks (NNs) has been a sur-

prisingly effective algorithm breakthrough to handle many

challenging tasks in various domains. Since its emergence in

the last decade, people have been continuously seeking to im-

prove both the quality (in terms of, e.g., prediction accuracy)

and the performance (in terms of training and inference time)

of NN models, in order to adapt them to more complicated

real-world scenarios with lower computational cost.

Two complementary research paradigms have been devel-

oped. To systematically design new NN models with better

accuracy quality, neural architecture search (NAS) [10, 22,

46, 47] uses deep learning algorithms themselves to auto-

matically discover promising model structures [30–32, 40].

Given a backbone network topology, NAS explores how to

construct the basic cells in the model using combinations

of basic operators like convolutions and pooling. The opti-

mization goal is either pure accuracy, or a balance between

accuracy and speed [3, 4, 31, 40]. In contrast, to improve train-

ing and inference speeds, tensor compilers [6, 26, 39, 43, 44]

aim to optimize the implementation of low-level loop nests of

each operator in an NN model. Various general and special-

ized compile-time optimizations are applied to the operator,

without altering its functional semantics.

We notice that a new direction orthogonal to the above

two has not been fully explored, namely to synthesize novel
neural operators at a fine granularity, with the goal to au-

tomatically and efficiently discover new operators beyond

212

https://orcid.org/0009-0004-2229-2750
https://orcid.org/0009-0003-0121-2128
https://orcid.org/0009-0005-2297-0790
https://orcid.org/0000-0001-8433-7281
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676642.3736118
https://doi.org/10.1145/3676642.3736118
https://doi.org/10.1145/3676642.3736118
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676642.3736118&domain=pdf&date_stamp=2025-08-06

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao

existing standard types (e.g., convolutions), to improve accu-

racy quality and/or execution performance. NAS only com-

poses its cell structures using existing operators, and tensor

compilers only explore semantically equivalent variants of
the original operators. We envision that these three comple-

mentary approaches could be used together. For example,

starting from a NAS-discovered network topology, we syn-

thesize novel operators to replace the original ones in the

model, and finally leverage tensor compilers to optimize their

execution speeds on specific hardware backends.

Neural operator synthesis can be viewed as a domain-

specific form of program synthesis [13], a classic topic in

computer science. Generic program synthesis approaches

face the issue of scalability and do not easily allow differ-

ent target semantics from the specification. Early attempts

of program synthesis for NNs [19, 23] are still limited to

composing with coarse-grained basic operators and leave

large potentials unexploited. More specifically, to explore

a sufficiently large design space, fine-grained synthesis that
composes directly from the very basic programming lan-

guage atoms is desired. This is highly challenging. First, the

arbitrarily composed candidates would be very unlikely to

satisfy the common properties of neural operators, such as

differentiability, no replication or discard of tensor elements,

etc. Second, there will be enormous redundant synthesized

operator candidates with the same or similar semantics. Such

equivalent semantics are already efficiently explored by ten-

sor compilers, so we want to prune them out and focus on

discovering new operators. Finally, program synthesis has

complicated search spaces, and the search for neural oper-

ators has the specialized goals of better inference accuracy

and performance, which are different from the strict and

clear correctness requirement in traditional synthesis. A new

search method is thus needed.

We develop an end-to-end, automatic, and efficient neural
operator synthesis framework, Syno. It takes a given back-

bone NN topology, and searches for novel linear operators

to replace the original ones in the model, in order to improve

prediction accuracy and/or execution performance. Syno

addresses the aforementioned challenges with several key

techniques. First, it makes use of a novel set of fine-grained
primitives to synthesize new operators. The primitive seman-

tics are defined on tensor coordinates (i.e., dimensions). They

maintain tensor semantics and exhibit high-quality proper-

ties for neural operators, while not sacrificing expressive-

ness. Second, Syno leverages expression simplification and
canonicalization techniques to analyze and eliminate most

of the redundancies when synthesizing operators, especially

to avoid redoing tensor compiler optimizations. Finally, the

design space search process is made more structured, which

iteratively samples and adds new primitives to compose op-

erator candidates. We formulate it as a Markov decision

process and leverage the efficient Monte Carlo Tree Search
algorithm [8, 11, 15]. We further propose a novel metric

of shape distance to guide the synthesis towards matching

with the required input/output tensor shapes, so that the

synthesized operator candidate is valid to be used in the

backbone model. Two code generators targeting PyTorch [2]

and TVM [6] are built for accuracy and speed evaluation of

Syno-discovered operators.

Evaluated on five visionmodels and GPT-2, Syno discovers

faster operators than standard convolutions andmatrixmulti-

plications, even on NAS-optimized backbone models. Within

1% accuracy loss on CIFAR-100, using Syno-optimized opera-

tors exhibits 2.06×, 1.72×, and 1.47× speedups on average on

mobile CPUs, mobile GPUs, and server GPUs, respectively,

with the TVM backend, compared to the original models.

With torch.compile [2], the speedups are 1.37×, 1.62×, and
1.60×. On ImageNet, Syno-optimized operators achieve up

to 4.73× and 1.94× speedups when compiled with TVM and

torch.compile, respectively, with 1% to 2% accuracy loss.

Syno also accelerates GPT-2 training by 1.1× and improves

the language perplexity metric from 111 to 99. We also inves-

tigate the discovered operators and find novel and efficient

semantics with interesting neural algorithm insights.

2 Background and Related Work
In this section, we briefly introduce the three most related

concepts: neural architecture search, tensor compilers, and

program synthesis, all of which can be used to better design

and implement neural network operators.

2.1 Neural Architecture Search
As neural networks (NNs) are being applied to more and

more domains, the needs of designing specific NNmodels are

becoming increasingly prevalent. Neural architecture search
(NAS) has emerged consequently to automatically design

new model structures [10, 22, 46, 47], and indeed, many of

the recently proposedmodels that showed state-of-the-art ac-

curacy levels were discovered by NAS rather than manually

crafted [30–32, 40]. NAS typically defines a highly modular

search space by dividing the backbone model topology into

basic units (called cells) of various sizes. It then proceeds to

explore how to construct each cell by composing from sev-

eral types of basic layers (a.k.a., operators) like convolutions,
matrix multiplications (matmuls), and pooling. Throughout

the search, the accuracy levels of the candidate cell struc-

tures are continuously evaluated. With such an automated

flow, NAS is able to efficiently explore a large design space,

and hence discover NN architectures with potentially higher

accuracy than manually designed models.

Besides solely focusing on accuracy, performance-aware
NAS methods aim to strike a better balance between predic-

tion accuracy and execution speed [3, 4, 31, 40]. Specifically,

they inherit the design space from traditional NAS while in-

tegrating hardware efficiency metrics. By considering factors

such as latency alongside accuracy, the search process could

213

Syno: Structured Synthesis for Neural Operators ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

yield model architectures that are not only high-quality but

also high-performance
1
on particular hardware.

We emphasize that both traditional and performance-aware

NAS methods only compose existing operators, such as con-

volutions and matmuls, in a coarse-grained black-box way.

Thus they are limited by these computationally expensive

operators. The lack of flexibility to invent novel operators
leaves ample opportunities for further optimizations, as we

will demonstrate in this work.

2.2 Tensor Compilers
At the system level, an NNmodel is typically represented as a

tensor program, in which the input/output and intermediate

data are all cast as tensors, and a set of operators are ap-

plied to them. As a result, tensor compilers have gained great

attention to accelerate NN execution, by applying general

and specialized compile-time optimizations to compile the

operators into high-performance kernels2 [6, 26, 39, 43, 44].
Typically, kernels are written as loop nests, and each ten-

sor compiler has its own intermediate representation (IR) for

describing and optimizing kernels. We here take Halide [26]

as an example. Many tensor compilers use similar IR de-

signs [6, 17, 34, 43]. Halide provides the separation of algo-

rithm and schedule, where the algorithm is purely functional,

and the schedule dictates the concrete loop nest implemen-

tation involving tiling, vectorization, reordering, etc. For

example, Listing 1 shows how we define a convolution in

Halide, which is just simplified loop nests operating on spe-

cific coordinates (i.e., dimensions) of the tensors. With this

IR, we can flexibly express different tensor computations.

auto [r_Ci, r_K_H, r_K_W] = RDom(0, C_in, 0, K, 0, K);
out(i_N, i_Co, i_H, i_W) +=

input(i_N, r_Ci, i_H + r_K_H - K / 2, i_W + r_K_W - K / 2)
* weight(i_Co, r_Ci, r_K_H, r_K_W);

Listing 1. The conv2d operator represented in Halide.

The separation of algorithm and schedule enables tensor

compilers to explore the optimization space that is seman-
tically equivalent to the original program, i.e., the purely

functional computation description as in Listing 1. This is in

contrast to NAS-like approaches that find semantically in-
equivalent programs with better quality and/or better perfor-

mance, so the two approaches are orthogonal. A recent work,

Turner et al. [37], extended tensor compilers, relaxing the

equivalence constraint to apply inequivalent transformations

on loop nests in tensor programs to realize NAS. However,

their approach pre-defined only a few simple inequivalent

transformations, such as grouping and bottlenecking the

range of a loop, thus only exploring a limited search space

still in the scope of traditional operators.

1
Throughout this paper, we use “quality” for model accuracy, and “perfor-

mance” for execution speed.

2
We use kernel to represent a concrete implementation of an operator.

2.3 Program Synthesis
Program synthesis is an approach that automatically gen-

erates a program that complies with several specifications,
such as a set of input and output example pairs, or a set

of assertions [13]. Theoretically speaking, the general con-

cept of program synthesis can be applied to design new NN

operators, but there exist several practical gaps. Traditional

program synthesis only treated correctness as the target, such
as TF-Coder [29] which synthesizes TensorFlow code to help

programmers write correct code. But NN models, which are

known to tolerate small errors, do not have a clear notion of

correctness, while the goal is to improve inference accuracy

and/or execution speed. Also, existing program synthesis

approaches can hardly scale, currently limited to considering

a highly constrained program space. The complexity of loop

nests in typical NN operators is well beyond their capabilities.

We discuss these challenges in more detail in Section 3.

𝛼NAS [19] relaxed the correctness objective to apply goal-

directed program synthesis for NAS. They applied transfor-

mations to subgraphs in the model, which could generate

new operators beyond traditional NAS. But they are still

constrained by traditional operators like convolutions and

matmuls, so the potential of intra-operator program synthe-

sis remains unexploited. As a result, their speedups were

light, as Section 9 will show. Ma et al. [23], on the other

hand, pre-defined some fine-grained primitives common in

traditional demosaicking pipelines to perform NAS; however

they did not allow freely exploring new operators, either.

3 Motivation and Challenges
In this work, we aim to automatically and efficiently synthe-

size novel NN operators from the very basic atoms in pro-

gramming languages, in hope of discovering new operators

that have both high accuracy quality and high execution per-

formance. Such automatic neural operator synthesis is highly
profitable. State-of-the-art models today such as transform-

ers and convolutional networks rely heavily on operators

like attention and convolution that are constructed based on

human insights. Automatic discovery of such operators can

potentially create more promising model architectures.

Comparison with existing paradigms. Neural opera-
tor synthesis has a similar goal to performance-aware NAS,

but aims to synthesize tensor programs at a much more

fine-grained level rather than directly composing known

operators like convolutions and matmuls. More specifically,

operator synthesis involves writing various loop nests and

the tensor expressions in the loop body. For example, for the

convolution in Listing 1, the loops are implicitly defined by

the iterators (i_Co, r_Ci, etc.), and the tensor expressions

are realized with coordinate expressions. Coordinate expres-
sions are key to an operator because they specify how tensor

elements are arranged and which are involved in the compu-

tation. Here, the simple addition of iterators (i_H + r_K_H)

214

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao

implies convolution, and the repeated uses of the reduction it-

erator (r_Ci) in two tensors imply contraction (a.k.a., tensor

multiplication). The rich semantics of coordinate expressions

can be exploited to synthesize novel operators. We note that

such operator synthesis is impossible under existing NAS.

Although it is always possible to lower existing operators

to nested loops, it is not always possible to do the inverse.

If a loop nest cannot be decomposed into several existing

operators, it is likely we have discovered a novel operator.

On the other hand, operator synthesis is also significantly

different from tensor compilers. Existing tensor compilers

mostly preserve semantic equivalence as discussed in Sec-

tion 2.2. Thus they are unable to discover new operators.

Actually, in operator synthesis, we deliberately avoid the

exploration of semantically equivalent operators (see Sec-

tion 6). If we synthesize equivalent operators, we would be

very likely to redo existing optimizations in tensor compil-

ers. In this sense, tensor compilers and operator synthesis are
orthogonal. We first synthesize novel operators, and then

leverage tensor compilers to optimize their execution per-

formance on the particular hardware.

We view neural operator synthesis as a specialized form

of program synthesis in the NN domain. While traditional

synthesis methods are limited to simple programs, we need

to handle more complex operators with various nested loop

structures and coordinate expressions. On one hand, the de-

gree of freedom in directly writing loop nests and tensor

expressions is huge, leading to an extremely large search

space. On the other hand, as in performance-aware NAS, for

each candidate operator, we need to assess both its accuracy

level and execution speed, both of which require substantial

time. To measure the accuracy, we have to use real datasets

to train the full NN model for several epochs at least. Sev-

eral theoretical metrics are proposed to predict the accuracy

potential with minimum training cost [1, 21, 38, 45], but we

find them to perform poorly in reality, especially for irreg-

ular operators we aim to construct. To evaluate the speed,

we need to generate an optimized implementation of the

operator on real hardware. This could also cost significant

time in state-of-the-art tensor compilers [6, 26, 44].

Challenges.We highlight three main challenges in neural

operator synthesis that distinguish it from traditional pro-

gram synthesis. First, with traditional program synthesis, the

loop nest (e.g., Listing 1) can be enumerated with bottom-up

search, building the coordinate expressions from the atoms

such as iterators and constants [13]. The main issue with this

generic approach is the difficulty of ensuring high quality
for NN operators, due to the lack of high-level semantics.

For example, if we fill the indices of input with all 0s, all

the other elements would be discarded, which is not at all

reasonable. An NN operator is usually expected to satisfy

certain properties, such as differentiability, full utilization of

input data elements, etc., so that it can be trained in an NN

model and achieve good accuracy. Encoding such constraints

as inputs to an SMT solver may be possible, but would be

too slow when searching over many operator candidates.

Second, a major issue of exploring the search space is

redundant operators, which exhibit the same or similar se-
mantics and consequently show similar quality and perfor-

mance. For example, in integer arithmetic, there is an identity

(B*i)%(B*C)=B*(i%C). Our synthesis needs to skip these

equivalent coordinate expressions. Moreover, even inequiva-

lent expressions can induce similar computations: consider-

ing iterators i, j with domains B, K where B > C ≫ K, then
(i+j)/C=i/C holds for almost every point. Traditionally, the

redundancy can be handled with term rewrite systems [24]

and equality saturation [35], but this slows down the search,

and cannot prune away inequivalent but similar expressions.

Third, conventional program synthesis has developed mul-

tiple approaches to guide the synthesis with user-provided

specifications to eliminate illegal candidates [13]. With neu-

ral operators, the only correctness constraint is that the input

and output tensor shapes must match with those specified

by the model. However, under the aforementioned quality

constraints, the domains of coordinate expressions cannot be

freely altered to match the input and output shapes, making

randomly sampled operators almost always illegal in terms

of tensor shapes. Thus, we need a specially designed novel

approach to guide the synthesis process.
In summary, to realize practical neural operator synthesis,

we must design a framework with the following properties.

• High quality. Synthesized operators need to satisfy

certain properties (e.g., differentiability, full data uti-

lization), similar to existing NN operators.

• No redundancy. Repeated evaluation of operators

with the same or similar semantics should be avoided.

Particularly, we should not redo the optimizations in

existing tensor compilers.

• Guided search.The synthesis process should be guided
by the input and output tensor shapes to improve the

search efficiency.

4 Design Overview
We propose Syno, an end-to-end, automatic, and efficient

framework for neural operator synthesis. Given a backbone

NN model, Syno is able to synthesize novel linear opera-

tors with high quality (for accuracy) and high performance

(for speed), which can be drop-in replacements for the orig-

inal operators (convolution, matmul, etc.) with the same

input and output tensor shapes. The model topology and

the non-linear activation layers are unaltered. Specifically,

given the input and output tensor shapes, e.g., [N,Cin,H,W]
and [N,Cout,H,W] for convolution, or [M,K] and [M,N] for
matmul, Syno discovers novel operators that satisfy the accu-

racy and performance requirements, e.g., best performance

with less than 1% accuracy loss. Note that the tensor shapes

are specified as symbolic variables to allow one operator to

215

Syno: Structured Synthesis for Neural Operators ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

CanonicalizationPrimitives

Prune

Structured Search Space

Reduce

Share

W

K

Generate

Evaluator

Search
Algorithm

MCTS
Shape Distance

Sample

Accuracy
Latency

Kernels with low latency and high accuracy

Figure 1. The overall architecture of Syno.

Algorithm 1 The workflow of Syno.

1: procedure Search(𝑚𝑜𝑑𝑒𝑙, 𝑑𝑚𝑎𝑥)

2: 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 ← ExtractOperators(𝑚𝑜𝑑𝑒𝑙)
3: 𝑠𝑢𝑏𝑠𝑡𝑠 ← SynthesizeSubstitutions(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠, 𝑑𝑚𝑎𝑥)
4: for all 𝑠𝑢𝑏𝑠𝑡 ∈ MCTS(𝑠𝑢𝑏𝑠𝑡𝑠) do
5: 𝑚𝑜𝑑𝑒𝑙 ′ ← Replace(𝑚𝑜𝑑𝑒𝑙, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠, 𝑠𝑢𝑏𝑠𝑡)
6: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← TrainWithPyTorch(𝑚𝑜𝑑𝑒𝑙 ′)
7: if IsWithinAccuracyMargin(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) then
8: 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ← TuneWithTVM(𝑚𝑜𝑑𝑒𝑙 ′)
9: output 𝑠𝑢𝑏𝑠𝑡, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒

10: function SynthesizeSubstitutions(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠, 𝑑𝑚𝑎𝑥)

11: ⊲ Search on symbolic shapes, e.g., [N, C, H, W]. ⊳

12: 𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡 ← SymbolicShape(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠)
13: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← {}
14: procedure Enumerate(𝑑, 𝑛)
15: if HasMatchingShape(𝑛, 𝑖𝑛𝑝𝑢𝑡) then
16: Add 𝑛 to 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 if within budgets

17: if 𝑑 ≥ 𝑑𝑚𝑎𝑥 then return
18: for all 𝑛′ ∈ EnumerateChildren(𝑛) do
19: ⊲ Backtrack with shape distance. ⊳

20: if ShapeDistance(𝑛′, 𝑖𝑛𝑝𝑢𝑡) > 𝑑𝑚𝑎𝑥 −𝑑 − 1 then
21: continue
22: Enumerate(𝑑 + 1, 𝑛′)
23: Enumerate(0, RootNode(𝑜𝑢𝑡𝑝𝑢𝑡))
24: return 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

25: function EnumerateChildren(𝑛)

26: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← {}
27: for all 𝑝𝑟𝑖𝑚 ∈ EnumeratePrimitives(𝑛) do
28: if IsCanonical(𝑛, 𝑝𝑟𝑖𝑚) then ⊲ Canonicalize.
29: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ {Add(𝑛, 𝑝𝑟𝑖𝑚)}
30: return 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

fulfill different tensor sizes. The framework also supports

a rich set of user-defined budgets such as FLOPs, memory

usage, and number of parameters.

We limit our search in Syno to linear operators. First, lin-

ear operators are usually the performance bottleneck in NNs,

constituting most of the computations, so reducing their

complexity can have great gains. Second, activation layers

like ReLU provide the non-linearity needed in NNs, so we

keep them unaltered in the backbone model. Their perfor-

mance impact is negligible because they can be readily fused

into their preceding operators by existing tensor compilers.

Algorithm 1 outlines the overall workflow of Syno, which

is also illustrated in Figure 1. Syno relies on a library of fine-
grained primitives that operate on specific tensor coordinates,
i.e., dimensions (Section 5). A new operator candidate is

synthesized by iterative sampling and adding new primitives

(Algorithm 1 Lines 27 to 29), until reaching a maximum

size (Line 17). Compared to directly composing arbitrary

coordinate expressions, using these primitives ensures high

quality with tensor semantics and enables efficient structured

search, while not sacrificing expressiveness.

Since our primitives are defined on tensor coordinates, we

can directly apply expression simplification and canonicaliza-
tion techniques for coordinate expressions to quickly elimi-

nate redundant candidates (Algorithm 1 Line 28), enabling

efficient search space exploration. Our canonicalization rules

not only remove most of the equivalent operators during

the search, but can also prune those operators with similar

semantics (Section 6).

To efficiently discover valid operators, we guide the syn-

thesis flow (Algorithm 1 Line 20) using a novel metric of

shape distance, which is the distance between the current

partial operator and a complete operator that has the same

input/output shapes as the one in the original model. We

then leverage the intrinsic structure of the search space and

formalize the search as a stochastic decision process, in order

to apply the Monte Carlo Tree Search algorithm (Section 7).

The discovered operators are then fed to the two code gen-

erators targeting PyTorch [2] and TVM [6] for accuracy and

performance evaluations (Section 8).

Syno is implemented as a distributed infrastructure, which

could leverage multiple GPUs across several server nodes

to conduct search, parallelizing the model training required

in the accuracy evaluation. Syno has 19K lines of C++ code

and 11.5K lines of Python code. Syno is open sourced at

https://github.com/tsinghua-ideal/Syno.

5 Primitives
Syno adopts a novel approach to synthesize candidate oper-

ators from a set of fine-grained primitives, whose semantics

are defined with tensor coordinate expressions in a bottom-up

way, as shown in Table 1. Compared with directly enumerat-

ing arbitrary raw arithmetic expressions as abstract syntax

trees (ASTs) of integer expressions, this allows us to perform

synthesis and search with the primitives in a more structured

manner to ensure high quality.

5.1 Structured ASTs
Synthesizing expressions in a bottom-up way, i.e., first spec-

ifying the innermost atoms and then composing them, is

216

https://github.com/tsinghua-ideal/Syno

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao

Table 1. Syno primitives that transform coordinate expressions and their domains in a bottom-up way. For example, Unfold

combines two coordinates with domains N and K, and obtains an expression of domain N (with out-of-bound elements clipped).

Class Primitive Parameter Bottom Top Top-Down Semantics

Views

1-to-1

Split - [i, j]: [G, B] ← [B * i + j]: [G * B] Partition into blocks

Merge B [i]: [N] ← [i / B, i % B]: [N / B, B] Flatten two dimensions

Shift - [i]: [N] ← [(i + 1) % N]: [N] Shift along a dimension

1-to-many
Expand - [i]: [C] ← []: [] Repeat or up-sample

Unfold - [i, j]: [N, K] ← [i + j - K/2]: [N] Extract sliding windows

many-to-1 Stride S [i]: [K] ← [S * i]: [S * K] Strided access

Contractions
Reduce N []: [] ← Σi [i]: [N] Reduce a dimension

Share - [i]: [N] ← ([i], [i]): ([N], [N]) Element-wise product

common in program synthesis [13]. This is also a natural

choice for NN operators. As can be seen in Listing 1, each

element of the output tensor is calculated through certain

arithmetic operations on some elements of the input tensors,

which are indexed by some expressions on the indices of

the output element. Here the output tensor indices, e.g., i_H,
are termed the output iterators. They are also the implicitly

defined loops in Halide. The expressions consisting of out-

put iterators and constants are termed coordinate expressions.
They are used to index the input and output tensors. For

example, i_H is a coordinate expression to index out, and
i_H + r_K_H - K/2 is also a coordinate expression to index

input. Following the bottom-up approach, we use the out-

put iterators as atom coordinate expressions (the “bottom”),

and enumerate over the diverse combinations of coordinate

expressions for the input tensor indices (the “top”). By doing

so we can synthesize novel operators beyond our current

knowledge, and this is the design space we hope to explore.

However, operators synthesized with such straightfor-

ward bottom-up enumeration tend to have low quality. For
example in Listing 1, if i_Co were only used in an expres-

sion i_Co / 2, then every two consecutive channels of

out would have identical feature maps. This means tensor

elements are replicated, and we perform redundant compu-

tations. To avoid this, we can require that i_Co % 2 must

also be present in the enumerated coordinate expressions.

This example inspires us to design a high-quality primitive

that transforms a coordinate expression [i] with domain

[N] to two coordinate expressions [i / B, i % B] of do-
mains [N / B, B] where B divides N. Formally we write:

[i]: [N] ← [i / B, i % B]: [N / B, B]. The notation
here uses an inverse arrow to point from the “top” to the

“bottom”, in order to highlight the dataflow direction from

the input tensors to the output.

Furthermore, this bottom-up primitive also has top-down
semantics, namely to flatten a tensor of shape [N / B, B]
into [N] by merging the two dimensions. We name it as

Merge, which is actually a common tensor view operation. A

view is just another way of accessing a tensor. Various arith-

metic operations (+, *, /, etc.) on tensor coordinates actually

correspond to views. For example, the addition of coordinate

expressions is equivalent to extracting neighboring elements,

which is Unfold. Similarly, adding a constant is Shift, multi-

plication is Split and Stride, and discarding an expression is

Expand. We summarize them in the class of views in Table 1.

All of them do not discard or replicate elements and thus

have high quality, except Expand and Stride, which could

be useful for special cases such as up-sampling and dilated

convolution. For semantic completeness, we keep them but

limit their occurrences in each synthesized operator.

Aside from coordinate expressions that extract elements

from tensors, we need primitives to actually perform com-

putations. For now, we only support linear operations in

Syno, so elements from multiple tensors are multiplied and

summed up. The reduction (RDom in Listing 1) can be ab-

stracted to a primitive Reduce, which adds a sum reduction

loop. Meanwhile, a Share primitive indexes two tensors with

the same coordinate expression, and performs multiplication

between the two tensors. The top-down semantics of Re-

duce and Share are mainly tensor contraction operations. A
contraction involves combining two tensors along a certain

dimension [12]; e.g., the input channels of input and weight

tensors are contracted in Listing 1.

With this approach, we propose a structured way of using

the Syno primitives to build coordinate expression ASTs for

neural operators. An operator composed in this way has a

very similar structure to common ASTs, except that instead

of trees, expressions are now determined by directed acyclic

primitive graphs (pGraphs). Figure 2 shows how to compose

a 2D convolution of Listing 1 using the Syno primitives. The

vertices are the primitives, while the edges are (possibly

intermediate) coordinate expressions, and can be evaluated

in the same way as we evaluate ASTs.

217

Syno: Structured Synthesis for Neural Operators ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Unfold Unfold

Share ShareShare

Reduce(Cin)

CinN H W
i_N

CoutN H W Reduce(K) Reduce(K)

CinCout K K
in_Ci in_H in_W

i_Co
i_H

i_W

i_Co

i_N

w_Ci w_K_H w_K_W

window_H window_W

r_Ci r_K_H r_K_W

Figure 2. The pGraph of conv2d in Syno. Each edge is a

(sub-)coordinate expression. The bottommost orange box

is the output tensor of the operator, which comprises the

innermost atom coordinate expressions, e.g., i_H: H. The
blue boxes are Syno primitives, each of which transforms

the coordinate expressions corresponding to its out edges to
those corresponding to its in edges as specified in Table 1.

The topmost orange box is the input tensor to the operator,

which comprises the full coordinate expressions. The yellow

box is the weight tensor.

5.2 Advantages
The structured bottom-up primitives in Syno present several

advantages. First, they ensure high quality of synthesized op-

erators, in that they are differentiable [16] and do not discard

input data or replicate data. The only exceptions Expand and

Stride are restrictively used and Stride is required to be

paired with 1-to-many primitives to ensure the high-quality

property. Second, they allow structured search. With the prim-

itives, similar pGraphs are likely to share a subgraph, which

makes the search space highly structured and enables the

use of effective search algorithms (Section 7.2). Third, the

primitives are expressive, as they are devised based on the

most basic arithmetic operations on coordinate expressions.

5.3 Semantics and Examples
To construct an operator from a pGraph like Figure 2, we

evaluate the expressions bottom-up using Table 1, and use

them to index the input tensors. To better illustrate the se-

mantics, we provide examples for several operators: matrix

multiplication, pooling, and pixel shuffle in Table 2, in addi-

tion to the convolution example in Figure 2 and Listing 1.

For example, to obtain a PyTorch operator torch.mm for
matrix multiplication, Syno starts with the bottom coordinate

expressions that index the output tensor, i.e., [i. j]: [M,
N] for mm. It gradually applies the primitives Reduce(K)
and Share, to compose a valid pGraph. The top coordinate

expressions can be used to directly index the input tensors

input(i, r_K) and weight(r_K, j). More specifically,

after Reduce(K) is applied to introduce a reduction, Share

is applied to assign one r_K: K to index the input, and one

r_K: K to index the weight. A subtle detail here is that,

without further restriction, i: M and j: N can be used to

index either the input or weight tensor, but here we want

exactly j: N to index the weight. So an implicit Match step is
done along with Share to assign j: N to the weight tensor.

It tracks all the coordinate expressions to be assigned to

the new weight tensor created by a Share, and is always

applied right after the Share. Thus we treat Match as an

implementation detail of Share, and do not place too much

emphasis on it. The other two example operators and the

convolution in Figure 2 are similar.

5.4 Design Details
To match operators with different concrete input/output ten-

sor shapes, and to support additional parameter variables

in some primitives (e.g., Merge needs a factor B), Syno uses

symbolic shapes when synthesizing operators. We further

split the symbols into two classes. Primary variables are for
input/output dimensions, e.g., Cout, H. They are relatively

large and thus are not allowed to appear in the denominator

of a coordinate expression. Coefficient variables are only in-

troduced by primitives, and are relatively small and allowed

to appear in denominators. When enumerating the applica-

ble primitives on a partial pGraph, the primitive parameters

are represented by monomials of primary variables and co-

efficient variables, with the degrees (i.e., powers) limited

within a user-specified range. Syno replaces the variables

with concrete sizes at code generation.

In the current prototype of Syno, we only consider opera-

tors that process a single input tensor (not including weights)

and produce a single output tensor, and disallow multiple

uses of the same (input or intermediate) tensors such as

residual links [14]. This restriction seems strict, but in fact

existing operator types like convolution, matmul, and pool-

ing all satisfy it. We argue that the lost flexibility is usually

more critical at the full model graph level rather than at

the operator level. Our operators can still be plugged into

arbitrary model topologies including ResNet [14], where the

residual links are realized outside the operators. We plan to

extend Syno to support multiple input tensors in the future.

6 Canonicalization
The design space of synthesizing operators from our prim-

itives is extremely large, with a lot of redundant operator

constructs, especially those that can be readily discovered by

tensor compilers. Take the partial pGraph in Figure 3(a) as an

example. On the left side, the topmost coordinate expressions

are given by [i, j]: [A*B, C]
Split←− [C*i+j]: [A*B*C]

Merge(B*C)
←− [(C*i+j)/(B*C), (C*i+j)%(B*C)]: [A, B*C].

However, this simplifies to [i/B, C*(i%B)+j], correspond-

ing to the right side [i, j]: [A*B, C]
Merge(B)
←− [i/B, i%B,

j]: [A, B, C]
Split←− [i/B, C*(i%B)+j]: [A, B*C].

To improve search efficiency, Syno uses a set of canon-
icalization rules to filter out uncanonical redundant candi-

dates on the fly when new primitives are added to partial

pGraphs (IsCanonical in Algorithm 1 Line 28). Syno does

218

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao

Table 2. Example operators that can be composed with Syno primitives.

PyTorch Operator Constituent Primitives pGraph Halide Code

mm(input, weight)

[i, j] : [M, N]
Reduce(K)
←− [i, j, r_K] : [M, N, K]
Share←−
(Match)

([i, r_K], [r_K, j]) : ([M, K], [K, N])
Reduce(K)

Share

M K K N

M N

auto [r_K] = RDom(0, K);

out(i, j) +=

input(i, r_K)

* weight(r_K, j);

nn.AvgPool1d(s)(input)

[i] : [s−1 ∗ H]
Reduce(s)
←− [i, r_s] : [s−1 ∗ H, s]
Split←− [s ∗ i + r_s] : [H]

H

Reduce(s)

Split

s‐1*H

auto [r_s] = RDom(0, s);

out(i) +=

input(s*i+r_s);

nn.PixelShuffle(B)(input)

[i] : [H]
Merge(B)
←− [i/B, i%B] : [B−1 ∗ H, B]
Split←− [(H/B) ∗ (i%B) + i/B] : [H]

H

Split

Merge

H

out(i) =

input((H/B)*(i%B)+i/B);

B

B*C

C

B*CB*C

ShareSplit

Share

B C

Share Split

B C

(a) MERGE cannot be above SPLIT. (b) Push down 1-to-1 views after contractions. (c) Approximate simplification when B≫K.

Merge(B)

Merge(B)

A B

A*B K

A B

A*B K

Unfold

Unfold
Merge(B*C)

Split Merge(B)

Split

A B*C

A*B C

A B*C

A*B C

Figure 3. Examples of some canonicalization rules used in Syno.

not aim to eliminate all redundancies, which is highly chal-

lenging, if not impossible, considering the rich primitive

semantics. Also, comprehensive canonicalization checks are

extremely expensive and sometimes undecidable [24]. On the

other hand, semantically similar models have similar quality

and performance, so Syno supports canonicalization rules

to mark only one operator as canonical among the many

ones in the class that have similar computation results. We

also note that the canonicalization rules in Syno are easily

extensible. Developers can define new rules and plug them

into the framework.

Contractions. Since weight tensors can be arbitrarily

reshaped offline, there is no need to apply views to weights.

Thus weight coordinates are directly used in Shares for

contractions
3
. Moreover, we always put weight coordinates

as the right-hand-side inputs of the symmetric Shares.

Between views and contractions. We enforce a canoni-

cal order between views and contractions. The 1-to-1 views

do not involve actual computations so they can be freely

3
This also implies that the coordinate expressions assigned to weights

by the Match step mentioned in Section 5.3 can be removed from the set

of coordinate expressions that can be further transformed and matched

against the desired topmost shape, simplifying the synthesis algorithm in

Section 7.1.

swapped with contractions. We thus push down all 1-to-1

views after contractions, as in Figure 3(b).

For the others, we apply rules to avoid doing futile work.

For example, we disallow combining Expand and Reduce

because this only changes a multiplier of the result; Unfold

allows at most one output coordinate to be Reduced.

Between two views.Most redundancies exist between

views because of the many primitive types. The key to their

canonicalization is to apply expression simplification tech-
niques. In many tensor compilers such as Halide [26] and

TVM [6], expressions are simplified before analysis and low-

ering. In Syno, as our primitive definitions are based on coor-

dinate expressions, we can similarly simplify the coordinate

expressions corresponding to the (sub)pGraph consisting of

view primitives, and the fully simplified expression gives the

canonical form. For example, the aforementioned Figure 3(a)

is one such example, where the right side is simplified and

thus canonical, corresponding to the rule that a Merge can-

not be above a Split.

We design expression simplification in Syno by referring

to Halide’s term rewrite system (TRS) [24]. TRS sequentially

substitutes the terms in an AST from bottom to top with

pattern matching in expressions, in order to obtain the sim-

plified form [24]. In Syno, rather than actually rewriting

219

Syno: Structured Synthesis for Neural Operators ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

the pGraph, canonicalization is applied on-the-fly when

we add new primitives to the partial pGraph, by discard-

ing candidates that create uncanonical forms (so we need

not worry about the termination of rewrites). In our pGraph,

each coordinate (edge) is like an AST node. We treat the

bottom outputs of a subgraph as wildcards and match the

top input expressions against the patterns. Again look at Fig-

ure 3(a). The bottom outputs are marked as [#0, #1]. Then
the substitution can be formulated as [(C*#0+#1)/(B*C),
(C*#0+#1)%(B*C)] -> [#0/B, C*(#0%B)+#1], which is a

pattern-matching-based rewrite rule. To choose the canoni-

cal (i.e., “simplest”) form among equivalent expressions, we

empirically define simplicity as removing parentheses as

much as possible by applying distribution laws of multiplica-

tion, division, and modulo. We can see Figure 3(a) removes

one level of parentheses. Following this approach, we derive

a series of rewriting rules involving multiple primitives.

In addition, it is better to not just canonicalize semantically

equivalent subgraphs, but also eliminate candidates with

only slightly different semantics, so that a wider range of

semantics can be explored with fewer samples. In Figure 3(c),

on the left side, with [i, j]: [A*B, K] as the output coor-

dinates, the inputs are [(i+j-K/2)/B, (i+j-K/2)%B]: [A,
B]. If B is much larger than K as in most convolutions

4
, then

j-K/2 is much less than B. So we can simplify the expres-

sions to [i/B+j-K/2, i%B+j-K/2] as the right side, which

is equal to the left side at almost every point. Other similar

rules are devised based on the principle of removing paren-

theses, and these approximately equivalent rules can also be

implemented as TRS-based rules as above. They effectively

enable us to only synthesize operators that are significantly

distinct.

7 Guided Search
We next describe the overall synthesis and search process

in Syno. Section 7.1 discusses the bottom-up synthesis ap-

proach. A critical challenge is how to ensure the exact match

of the input/output tensor dimensions with the given specifi-

cation.We propose a novel concept of shape distance to guide

the search. Section 7.2 explains our specific search algorithm

based on Monte Carlo Tree Search (MCTS) [8, 11, 15].

7.1 Bottom-Up Synthesis with Shape Distance
As mentioned in Section 5, Syno performs bottom-up synthe-

sis, starting from the output coordinates and iteratively ap-

plying sampled primitives for a limited number of steps. For

example, as a subgraph of Figure 2, from the output [i_H]:

[H], we can get [i_H]: [H]
Reduce(K)
←− [i_H, r_K_H]: [H,

K]
Share←− ([i_H, r_K_H], [r_K_H]): ([H, K], [K])

Unfold←−
4
While we are using symbolic shapes during synthesis (Section 5.4), we also

extract all possible concrete values for each symbolic shape from the input

backbone NN model. Symbolic B ≫ K is true if for every valuation of B and

K we have B ≫ K.

([i_H + r_K_H - K / 2], [r_K_H]): ([H], [K]). The
weight ([K] here) does not need to be transformed further

(Section 6), so we use the term shape to refer to the shape of

the first tensor (data input tensor), which is [H] in this case.

The data tensor shape of a complete pGraph should match

exactly with the desired shape (the shape of 𝑖𝑛𝑝𝑢𝑡 in Algo-

rithm 1 Line 12). While synthesizing with primitives ensures

high quality, it also becomes hard to control the dimensions
(sizes of tensor coordinates) after applying primitives on a

partial pGraph. Ideally, after flexibly exploring various primi-

tives, when the partial pGraph gets close to its maximum size

limit, the last few primitives need to move towards exactly

matching with the desired dimensions. For example, if the

shape of the current partial pGraph is [Cin, s-1*H, s*W,

k], we can apply [Cin, s-1*H, s*W, k]
Merge←− [Cin, s-1*H,

s, W, k]
Split(s)
←− [Cin, H, W, k]

Unfold←− [Cin, H, W].
We propose a novel metric named shape distance as the

minimum number of required primitives added onto the

current pGraph to reach the desired shape. In the above

example, the shape distance of [Cin, s-1*H, s*W, k] is 3.
If the remaining allowed number of primitives is less than the

shape distance, we can immediately terminate the current

pGraph and backtrack (Algorithm 1 Line 20). This avoids

deviating too far from the desired dimensions.

We design a systematic method in Syno to compute the

shape distance between the current shape and the desired
shape. We first divide the dimensions in the two shapes into

reshape groups, where future primitives are only applied

to the dimensions within each group to match them, but

not across groups. In the above example, we can have three

reshape groups, as {Cin} <- {Cin}, {s
-1*H, s*W} <- {H,

W}, {k} <- {}. Reshape groups can be decided by comparing

the primary variables in the coordinate expressions. When

there exist multiple possible grouping schemes (but usually

only a few), we enumerate all and find the least distance.

We then compute the distance within each reshape group.

We identify the helpful primitives that will help in shape

matching: reshape primitives (i.e., Merge, Split) which re-

group dimensions, and 1-to-many primitives (i.e. Unfold,

Expand) which eliminate dimensions. If the left-hand side

and the right-hand side of the reshape group have the same

size of domains, e.g., {s-1*H, s*W} and {H, W} have do-

mains of H*W, then we only need to regroup dimensions,

using Split and Merge. In this case we only need 2 steps:

[s-1*H, s*W]
Merge←− [s-1*H, s, W]

Split(s)
←− [H, W]. We can

prove a generalized conclusion of #𝑙ℎ𝑠 +#𝑟ℎ𝑠−2 steps, where
#𝑙ℎ𝑠 and #𝑟ℎ𝑠 are the numbers of dimensions in the left-hand

and right-hand sides of the reshapes (both are 2 in this ex-

ample). On the other hand, if the two sides have different

sizes of domains, then at least one 1-to-many primitive is

required, counting as 1 extra step. We sum up the bounds

(#𝑙ℎ𝑠 + #𝑟ℎ𝑠 − 2) of all the reshape groups, adding 1 if the

220

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao

domain of the current shape is different from the desired

shape, and use it as an upper bound for shape distance. Then,

all grouping schemes are enumerated to find the minimum

of the upper bounds, which yields the final shape distance.

When the desired shape involves repeated dimensions, e.g.,

[Cin, H, H] for square images, we enumerate all possible

permutations, allowing tensor transpose during the final

matching.

7.2 MCTS-Based Search
Our search algorithm is based on MCTS [8, 11, 15]. We for-

mulate our search problem as a Markov decision process,

where we transit from one partial pGraph to another in the

search space, with the action space being the primitives. The

final states are complete pGraphs. The optimization goal is

operators with both high accuracy and high inference speed.

As the FLOPs of operators are much easier to compute than

the inference accuracy which requires extensive training,

we set a hard upper limit for FLOPs and use accuracy as the

reward for MCTS to guide it to learn how to find expres-

sive operators within a given FLOPs budget. We record all

MCTS samples and filter out operators with bad accuracies

to obtain the final result.

8 Code Generation
We implement two code generators for accuracy and speed

evaluations. First, a PyTorch code generator is built to make

use of the already highly-tuned operator libraries for train-

ing. Using the top-down semantics, each view primitive is

lowered to its counterpart in PyTorch, and each contraction

primitive is lowered to an einsum [27] expression, which is

a general method for performing tensor contractions. The

primitives are lowered in topological order to ensure that

dependencies are satisfied. We further use TorchInductor [2]

for compile-time optimizations such as fusion and tiling.

However, PyTorch and TorchInductor are mainly opti-

mized for existing workloads and tuned on a limited set of

operators such as convolution and matrix multiplication. To

better support the novel opeartors discovered by Syno, we

further build a TVM TE (Tensor Expression) code generator,
to utilize the more general-purpose compiler, TVM [6]. It

follows the bottom-up semantics to evaluate all coordinate

expressions according to the pGraph, and leverages TVM

for extensive compiler optimizations on specific hardware,

e.g., our mobile CPUs and GPUs in Section 9. The TVM TE

syntax is very close to that of Halide as we mentioned earlier,

so we skip the technical details.

Some optimization passes unique to Syno are designed.

An important one aims to automatically insert intermediate

stages (materializations) to eliminate redundant computa-

tions. Consider the example in Figure 4. A trivial code gener-

ator creates a loop nest of (H/s)*k*s iterations computing

Y[i] =
∑

ik

∑
isX[i + ik - k/2 + s*is] as on the left side.

H

s‐1*H

H

s‐1*H Reduce(k)

Unfold Reduce(s)

Split
Reduce(s)

Split

Reduce(k)

Unfold

s‐1*H

s‐1*H

Figure 4. An example of the materialized reduction opti-

mization in Syno.

But this is mathematically equivalent to Z[i′] =
∑

isX[i
′ +

s*is], Y[i] =
∑

ikZ[i + ik - k/2], which corresponds

to the partitioned subgraphs on the right. By doing so we

reduce the FLOPs from k*H to (1+k/s)*H.
Generally speaking, the FLOPs depend only on the output

iterators and the Reduces, which are the spatial loops and

reduction loops in the loop nest. The number of iterations is

their product. In the case of 1-to-many primitives like Un-

fold, the output dimensions are increased, so if we perform

any Reduce after this, FLOPs are unnecessarily increased

because we are evaluating k copies for each element.

This issue is unique to the Syno IR. To deal with it, we pro-

pose an optimization named materialized reduction, which
materializes the bottom (output tensor) of a sub-pGraph

that performs reductions. We enumerate the order of per-

forming reductions, i.e., the order of lowering each Reduce.

If a Reduce is lowered, only the primitives that can reach

that Reduce are required to be lowered. In the example, the

Split and the Unfold primitives can both reach the bottom

Reduce, but only the 1-to-many Unfold cannot reach the

upper Reduce. So the upper Reduce is prioritized to form a

sub-pGraph, materializing the bottom.

9 Evaluation
9.1 Experimental Setups
Hardware configurations. Our operator search and accu-

racy validation are done on a cluster with NVIDIA A100

GPUs. For performance in edge-device inference scenarios,

we test the end-to-end latency on NVIDIA Jetson Orin Nano

8 GB, which features a 6-core Arm Cortex-A78AE mobile

CPU and a 1024-core NVIDIA Ampere GPU with 32 tensor

cores. For performance on server-grade GPUs, we evalu-

ate the end-to-end latency on an NVIDIA A100 GPU. In

summary, we evaluate performance on three platforms: (1)

mobile CPU, (2) mobile GPU, and (3) A100.

Compilers. To demonstrate the orthogonality of Syno to

tensor compilers and its wide applicability, we evaluate on

two compilers: (1) TVMMetaSchedule [28], a state-of-the-art

tuning-based tensor compiler widely adopted by the research

community; (2) TorchInductor, the default torch.compile

221

Syno: Structured Synthesis for Neural Operators ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

backend of PyTorch 2 [2], widely adopted by the industry,

with its max-autotune mode enabled.

Workloads. We mainly focus on vision tasks with five

popular visionNNs: ResNet-18 [14], ResNet-34 [14], DenseNet-

121 [18], ResNeXt-29-2x64D [42], and EfficientNet-V2-S [33].

We aim to substitute all standard convolutions in them. To

prove the wide adaptability of Syno, we also test GPT-2 [25]

(117M parameters with 12 layers, 12 heads, and 768 embed-

ding dimensions) by substituting its QKV projections.

Baselines.We use three baselines for the comparison of

vision tasks. The main baseline is the original models with

standard convolutions. We target the latency-accuracy trade-

off, so we expect to reduce the end-to-end latency at the cost

of minor accuracy degradation. Turner et al. [37] (labeled as

NAS-PTE) are the first to introduce loop-level transforma-

tions into NAS, and 𝛼NAS [19] is the first attempt to apply

program synthesis for NAS albeit at a coarse granularity.

Because the search and tuning methods of NAS-PTE are not

open-source, we compare with their operators on individual

layers instead of full models. 𝛼NAS is neither open-source

nor provides inference performance data, so we only com-

pare against their FLOPs and training speedups reported in

the original paper. For GPT-2, we evaluate the training speed

relative to the original model.

Datasets and training configurations. ImageNet [9] is

unsuitable for direct search because of its large size, so we

use the smaller yet still challenging CIFAR-100 [20] as the

proxy dataset. Specifically, during the search Syno trains the

NN model using each candidate operator for 100 epochs on

CIFAR-100. The selected best operators are then fully trained

on ImageNet for 90 epochs for accuracy and performance

evaluations. We scale the CIFAR-100 images to the same size

as ImageNet to ensure the same inference performance. For

GPT-2, we employ the language perplexity (PPL) metric on

the lm1b benchmark [5]. The data type for both training

and inference is FP32. The training hyperparameters for the

optimizer and learning rate scheduler are dataset-dependent

to ensure reasonable accuracy, but they are not heavily tuned.

Computation cost. Training a model on CIFAR-100 for

100 epochs takes two to three hours. In our experiments, we

terminate early when the accuracy is not as high as expected,

thereby reducing the average evaluation computation cost

to 0.1 GPU hours per sample. We spend roughly 300 GPU

hours per model.

9.2 Results on Vision Tasks
For vision tasks, we search for the fastest operators in each

model with less than 1% accuracy loss, a commonly used

threshold. We separately target both CPUs and GPUs.

CIFAR-100 results. Figure 5 shows the best operators
we find in terms of inference latency within the accuracy

loss limit. On the mobile CPU, the mobile GPU, and A100,

respectively, Syno achieves 2.06×, 1.72×, and 1.47× end-to-
end inference speedups over the original models on average

0
1
2
3
4

M
ob

ile
 C

PU 3.41× 3.33×

1.44× 1.69× 1.35×1.67× 1.24× 1.37×
1.58×

1.08×

ResNet-18
ResNet-34

DenseNet-121
ResNeXt-29

EfficientNet-V2-S
0
1
2
3

M
ob

ile
 G

PU 2.66× 2.45×

1.27× 1.53× 1.19×

2.32×
1.57×

1.67× 1.45× 1.25×

ResNet-18
ResNet-34

DenseNet-121
ResNeXt-29

EfficientNet-V2-S
0
1
2
3
4

A1
00 2.02× 1.56× 1.28× 1.52× 1.12×

1.99×
1.48× 1.96×

1.68×

1.07×

Sp
ee

du
p

TVM Syno w/ TVM TorchInductor Syno w/ TorchInductor

Figure 5. End-to-end performance speedup of Syno on

CIFAR-100. The bars of each model are normalized to TVM

for direct comparison across different compilers.

(geomean) when compiled with TVM, and 1.37×, 1.62×, and
1.60× when compiled with TorchInductor. Syno performs

better on traditional NNs like ResNet-18 with the discovered

novel operators. Even for NAS-optimized models such as

EfficientNet-V2, Syno can still achieve a performance gain up

to 1.35×. We perform more detailed analysis on the benefits

of our newly discovered operators later.

It is interesting to compare the two compiler backends,

TVM and TorchInductor. We find that for the FP32 data type

we use, TVM cannot make use of the tensor cores (which re-

quires TF32), so it is generally slower than TorchInductor on

GPUs. However, TVM tunes over a much larger search space

and performs code generation for every operator, whereas

TorchInductor can only select from several templates and

would conservatively fall back to PyTorch ATen kernels for

small GPUs or if the few templates are too slow. Therefore

TorchInductor yields more unstable performance than TVM.

For instance in Figure 5, TorchInductor performs poorly on

EfficientNet-V2-S when using the mobile CPU. Profiling in-

dicates that TorchInductor falls back to use ATen grouped

convolution in most cases, which has terrible performance

for the many depth-wise convolutions in this model.

ImageNet results. For every model, we select some dis-

covered operators that have comparable accuracy with the

baseline and re-evaluate them on ImageNet. We plot the

Pareto optimal curves of accuracy vs. inference time in Fig-

ure 6. Most of our operators exhibit a minor 1% to 2% accu-

racy loss, while enabling up to 4.73× and 1.94× speedups

when compiled with TVM and TorchInductor, respectively.

If more accuracy loss is acceptable, then going along the

Pareto curves further boosts performance.

222

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao

0.68
0.70
0.72
0.74
0.76

To
p-

1
Ac

cu
ra

cy

Mobile CPU Mobile GPU

TVM

A100

0 20 40 60 80 100 120

0.68
0.70
0.72
0.74
0.76

To
p-

1
Ac

cu
ra

cy

0 5 10 15 20 0.0 0.5 1.0 1.5 2.0 2.5

TorchInductor

Inference time (ms)

ResNet18 ResNet34 DenseNet121 ResNeXt29-2x64d EfficientNet-V2-S

Figure 6. Pareto optimal curves of accuracy vs. inference time between the original and the Syno-optimized models on

ImageNet. For each model, the hollow point is the baseline, and the connected solid points are discovered by Syno.

H W k1 g g-1*s-1*CoutH W k1 g g-1*s-1*Cout k1Cout g-1*s-1*Coutg k1k1Cout g-1*s-1*Coutg k1

H CoutWH CoutW

Unfold

Reduce(k1)

Share

Reduce(g)

Share ShareShare

k1Cin g-1*s-1*Coutk1Cin g-1*s-1*CoutH CinWH CinW

H W k1 g g-1*s-1*CoutH W k1 g g-1*s-1*Cout

Split

Reduce(g-1*Cin)

Unfold
Share

Share

k1

Reduce(g-1*s-1*Cout)Reduce(k1)

Figure 7. Operator 1 discovered by Syno.

We highlight a comparison between our optimized ResNet-

34 and the baseline ResNet-18. Replacing the standard con-

volutions with our operators in ResNet-34 results in a model

with both higher accuracy and better inference time than the

ResNet-18 baseline. This observation implies a potentially

promising direction to extend Syno to accuracy-preserving

NN optimization: users can stack more layers and then com-

press the model with Syno, which might result in better

accuracy and lower latency at the same time.

Case studies.Among all the operators discovered, we find

two convolution-like operators with outstanding accuracy

and inference performance.

Operator 1 shown in Figure 7 achieves 2.68×, 2.04×, and
1.28× speedups on the three hardware platforms, with less

than 1% ImageNet accuracy degradation. Its PyTorch code

is shown in Listing 2. After the materialized reduction op-

timization during code generation (Section 8), it becomes a

def __init__(self):
self.w1 = randn([C_out//g//s, C_in, k_1])
self.w2 = randn([C_out, k_1*k_1*C_out//s])

def forward(self, x):
N, C_in, H, W = x.shape
x = nn.functional.unfold(x, [1, k_1], padding=[0, k_1//2])
x: [N, C_in*k_1, H, W]
x = reshape(x, [N, C_in, k_1, H, W])
x = einsum("nckhw, dck -> ndckhw", x, self.w1)
x: [N, C_out//g//s, C_in, k_1, H, W]
x = reshape(x, [N, C_out//g//s, g, C_in//g, k_1, H, W])
x = sum(x, 3) # x: [N, C_out//g//s, g, k_1, H, W]
x = reshape(x, [N, k_1*C_out//s, H, W])
x = nn.functional.unfold(x, [k_1, 1], padding=[k_1//2, 0])
x: [N, k_1*k_1*C_out//s, H, W]
x = einsum("nchw, dc -> ndhw", x, self.w2)
return x # x: [N, C_out, H, W]

Listing 2. PyTorch code for Operator 1.

stack of two stages similar to 1D and 2D grouped convolu-

tions, but is not expressible in NAS. NAS can only sample

traditional (grouped) convolutions, which always perform

contractions between Unfolded windows of spatial dimen-

sions and weights (the standard Σj X[i + j - K / 2]
* W[j] pattern). However, in Operator 1, the first stage

breaks this limitation. See the pattern underscored and itali-

cized in Figure 7, which comprises 2 Shares, 1 Reduce, and

3 coordinates with domain 𝑘1. The Share in the first stage

would have been Reduced, had it been a traditional convo-

lution. But the Unfolded window remains and is passed to

the second stage to be contracted with the weight.

To seewhy such a pattern is effective, we stack two grouped

convolutions into an operator, which is just Operator 1 with

the Shared k_1 in stage 1 Reduced and the W in stage 2 Un-

folded again (hence might be discoverable under traditional

NAS schemes). As in Figure 8, although having the same

223

Syno: Structured Synthesis for Neural Operators ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0 10 20 30 40
0.69

0.70

0.71

To
p-

1
Ac

cu
ra

cy

Mobile CPU

0 2 4 6 8

Mobile GPU

0.0 0.3 0.6 0.9

A100

Inference time (ms)

Original
INT8 Quantized

Stacked Convolution
Operator 1

Figure 8. Comparison between Operator 1 and other opti-

mizations, evaluated on ImageNet with TVM.

FLOPs and similar latency, the stacked convolution doubles

the accuracy degradation, which we attribute to the differ-

ence in the receptive field in Operator 1 (3 × 3 vs. 3 × 5)

that eases training of the model. This may provide insights

for the machine learning community.

Since our design objective of trading accuracy for latency

is the same as quantization, we further compare Syno with

INT8 quantization. We obtain the quantized model from

torchvision.models.quantization.resnet18 using the
QNNPACK configuration, and import it to TVM for inference

optimizations. As in Figure 8, Operator 1 has slightly better

accuracy than INT8 quantization, as well as lower latency

on the CPU. Note that Syno-synthesized operators can also

be quantized, so the two techniques can be applied jointly

to further enhance performance. Likewise, Syno can be com-

bined with other similar techniques to achieve potentially

more speedups.

Operator 2 is a variant of Operator 1, and resembles two

1D convolutions with weights connected using Share in a

similar manner. Benefiting from the weight Share-ing, Oper-

ator 2 yields 6.19×, 3.27×, and 2.61× speedups on the three

hardware platforms, within 1.5% accuracy loss on CIFAR-

100. We attribute the substantial performance speedups to its

fewer parameters (less than 1/4 of standard 2D convolution)

that can fit in the limited caches on edge devices.

Commonpatterns.We identify several common patterns

from the novel operators discovered by Syno. Aside from

the convolution and grouping patterns visible in Operator

1, another common pattern is two weight tensors Share-ing

one or more dimensions, similar to low-rank decomposition,

which is highly effective in reducing the number of parame-

ters and FLOPs. Also, we find multiple operators replacing

one Unfold on a spatial dimension with a Shift, which can

substantially reduce computations while still providing some

extent of information mixture along this spatial dimension,

similar to the idea in ShiftNet [41]. More patterns are unique

to individual operators.

Comparison with NAS-PTE. Figure 9 shows the layer-
wise performance of Operator 1 and Operator 2 compared

to the original convolution and all the three operators pro-

posed by NAS-PTE, when used in ResNet-34. On the mobile

CPU, the mobile GPU, and A100, compared to NAS-PTE, the

speedups of our best operators over their best ones are 2.13×,
1.68×, and 1.63× on average when both are compiled with

TVM, and 0.83×, 0.84×, and 1.38× when both are compiled

with TorchInductor. Our best operators reduce the FLOPs

by 1.76× to 4.32×, and reduce the number of parameters by

1.80× to 9.50×. The improvements are achieved without any

layer-wise tuning like NAS-PTE but by a fully automated

workflow in Syno.

Note that when compiled with TorchInductor, Syno un-

derperforms NAS-PTE on the mobile CPU and GPU, despite

the reduction on FLOPs and number of parameters. We find

that TorchInductor often falls back to ATen kernels instead

of generating native code for mobile hardware, as opposed

to on A100 where it can emit efficient Triton code [36] in

most of the time. The pre-compiled ATen kernels are less

suitable for the novel Syno-generated operators. Actually,

TorchInductor has mainly been optimized for large GPUs.

Most of its templates target large GPUs, while smaller GPUs

are neglected to keep the number of templates small and

the compilation fast [7]. Thus, we attribute the slowdown to

the immaturity of TorchInductor on mobile CPUs and GPUs

rather than the inability of Syno. The more generic compiler

TVM is able to deliver consistent speedups.

Comparison with 𝛼NAS. 𝛼NAS reported FLOPs reduc-

tion ratios and training speedups for some variants of ResNet

and EfficientNet. Within 2% ImageNet accuracy drop, 𝛼NAS

achieves 25% fewer FLOPs and about 12% TPU-v3 train-

ing speedup on both ResNet-50 and EfficientNet-B0, while

Syno achieves 63% and 37% fewer FLOPs and 56% (48%) and

12% (7%) A100 inference speedup when compiled with TVM

(TorchInductor) on ResNet-34 and EfficientNet-V2-S, respec-

tively. This qualitatively shows Syno’s advantages.

9.3 Results on GPT-2
We follow Primer [30] to allocate a 30-minute training period

on GPT-2 for each searched operator and compare their fi-

nal language perplexity results. We then extend the training

for the best-performing operator and the original model to

reach 100,000 steps as shown in Figure 10. When searching

for substitutions for the QKV projections, our best operator

achieves a 1.1× training speedup and reduces the perplex-

ity to 99, outperforming the original model’s perplexity of

111. More specifically, our operator constructs the original

projections by groups, which allows the QKV matrices used

in the attention modules to learn from different features of

input tokens, thereby improving the training efficiency.

9.4 Ablation Studies
Canonicalization. To show the effectiveness of Syno canon-

icalization rules, we draw 6452 samples without canonical-

ization, among which only 86 are canonical. This implies that

224

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao

0.0

2.5

5.0

7.5

10.0

M
obile CPU

10.55×

4.
45

×

9.58×

0.
66

×

3.
61

×

7.
33

×

0.
34

× 1.
42

×

4.
18

×

0.
22

×

23.20× 10.02× 22.52×

1.
26

×

6.
43

×

14.02×

0.
87

×

5.
96

×

11.05×

0.
57

×

0.
72

×

2.
66

×

6.
12

×

0.
10

×

7.
61

×

6.
02

×

0.
26

×

5.
75

×

1.
09

×

0.
26

×

3.
77

×

6.
97

×

6.
53

×

0.
26

×

7.
51

×

4.
11

×

0.
26

×

4.
64

×

0.
56

×

0.
22

×

L1 L7 L8 L9 L16 L17 L18 L29 L30 L31
0

2

4

6

M
obile GPU2.

23
×

1.
50

×

3.
62

×

0.
43

×

2.
02

×

3.
78

×

0.
44

× 1.
35

×

2.
59

×

0.
24

×

6.11×

3.
49

×

6.75×

0.
65

×

4.
10

×

7.02×

0.
86

×

3.
60

×

6.79×

0.
61

×

0.
96

×

1.
14

×

1.
28

×

0.
27

× 1.
53

× 1.
71

×

0.
22

× 2.
37

× 3.
10

×

0.
24

×

2.
01

×

0.
63

×

0.
51

×

0.
15

× 1.
22

×

0.
93

×

0.
18

× 2.
38

×

2.
55

×

0.
25

×

L1 L7 L8 L9 L16 L17 L18 L29 L30 L31
0

1

2

3

4

A1001.
73

×

0.
94

×

2.
08

×

0.
38

×

1.
28

×

2.
19

×

0.
41

×

1.
47

×

2.
87

×

0.
14

×

1.
72

×

1.
79

×

3.
21

×

0.
59

×

1.
77

×

3.87×

0.
61

×

3.
51

× 5.91×

0.
56

×

1.
07

×

1.
06

× 1.
32

×

0.
64

× 1.
32

× 1.
45

×

0.
58

×

1.
76

×

1.
83

×

0.
62

×1.
26

×

1.
02

× 1.
31

×

0.
63

× 1.
43

× 1.
45

×

0.
64

×

1.
73

×

1.
75

×

0.
59

×

Sp
ee

du
p

TVM
NAS-PTE Seq 1 w/ TVM
NAS-PTE Seq 2 w/ TVM

NAS-PTE Seq 3 w/ TVM
Syno Operator 1 w/ TVM
Syno Operator 2 w/ TVM

TorchInductor
NAS-PTE Seq 1 w/ TorchInductor
NAS-PTE Seq 2 w/ TorchInductor

NAS-PTE Seq 3 w/ TorchInductor
Syno Operator 1 w/ TorchInductor
Syno Operator 2 w/ TorchInductor

Figure 9. Layer-wise performance comparison between Syno and NAS-PTE on ResNet-34. The bars of each model are

normalized to TVM.

0 20000 40000 60000 80000 100000
Steps

100

200

300

400

500

Pe
rp

le
xi

ty

GPT-2
Syno

Figure 10. Comparison of language perplexity vs. training

steps between Syno and the original GPT-2.

Table 3. Canonical rates of different sampled pGraph sizes.

2 3 4 5 6 7 ≥8

100.00% 18.18% 13.97% 4.40% 1.22% 0.08% 0.00%

canonicalization cuts more than 70× redundancy. Table 3

shows the canonical rates for different pGraph sizes.

Shape distance. To verify the effectiveness of the shape

distance metric, we evaluate the successful rates of random

sample trials with and without the guidance of shape dis-

tance, respectively. On a server machine with 192 virtual

cores, 253 distinct operators are found after 5 million tri-

als in 68.33 seconds, with shape distance enabled. However,

without using shape distance, 500 million trials in 180.51

seconds yield no valid operators. Thus, shape distance is

vital for avoiding useless synthesis.

10 Conclusions
This paper advocates the paradigm of neural operator synthe-

sis, which automatically discovers novel NN operators with

good inference accuracy and/or execution speed. A practical

framework named Syno has been implemented, using a rich

set of fine-grained primitives to construct operators, apply-

ing canonicalization to eliminate redundancy, and guided by

a novel operator shape distance metric to improve synthe-

sis efficiency. Syno is able to discover better NN operators

than existing ones on various models, with higher execution

performance and minor accuracy loss.

Acknowledgments
The authors thank the anonymous reviewers and our shep-

herd, Shoaib Kamil, for their valuable suggestions, and the

Tsinghua IDEAL group members for constructive discussion.

Mingyu Gao is the corresponding author.

225

Syno: Structured Synthesis for Neural Operators ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

References
[1] Mohamed S. Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and

Nicholas Donald Lane. 2021. Zero-Cost Proxies for Lightweight NAS.

In 9th International Conference on Learning Representations (ICLR).
OpenReview.net. https://openreview.net/forum?id=0cmMMy8J5q

[2] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh

Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni

Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban

Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong,

Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalam-

barkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang,

Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian

Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen

Suk, Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang,

Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, William

Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. 2024. Py-

Torch 2: Faster Machine Learning Through Dynamic Python Bytecode

Transformation and Graph Compilation. In Proceedings of the 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), Volume 2 (La Jolla,
CA, USA). Association for Computing Machinery, New York, NY, USA,

929–947. https://doi.org/10.1145/3620665.3640366
[3] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail

Niar, Martin Wistuba, and Naigang Wang. 2021. A Comprehensive

Survey on Hardware-Aware Neural Architecture Search. arXiv preprint
arXiv:2101.09336 (2021).

[4] Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neu-

ral Architecture Search on Target Task and Hardware. In 7th Interna-
tional Conference on Learning Representations (ICLR). OpenReview.net.
https://openreview.net/forum?id=HylVB3AqYm

[5] Ciprian Chelba, TomásMikolov, Mike Schuster, Qi Ge, Thorsten Brants,

Phillipp Koehn, and Tony Robinson. 2014. One Billion Word Bench-

mark for Measuring Progress in Statistical Language Modeling. In

15th Annual Conference of the International Speech Communication
Association, (INTERSPEECH). 2635–2639. https://doi.org/10.21437/
INTERSPEECH.2014-564

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie

Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An

Automated End-to-End Optimizing Compiler for Deep Learning. In

Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation (OSDI) (Carlsbad, CA, USA). USENIX Association,

USA, 579–594.

[7] PyTorch community members. 2023. Investigate Strictness of

torch.compile is_big_gpu. https://github.com/pytorch/pytorch/
issues/109489.

[8] Rémi Coulom. 2007. Efficient Selectivity and Backup Operators in

Monte-Carlo Tree Search. In Computers and Games. Springer, Berlin,
Heidelberg, 72–83.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

2009. ImageNet: A Large-Scale Hierarchical Image Database. In 2009
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
248–255. https://doi.org/10.1109/CVPR.2009.5206848

[10] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neu-

ral Architecture Search: A Survey. The Journal of Machine Learning
Research 20, 1 (Jan. 2019), 1997–2017.

[11] Romaric Gaudel and Michele Sebag. 2010. Feature Selection as a One-

Player Game. In Proceedings of the 27th International Conference on
International Conference on Machine Learning (ICML) (Haifa, Israel).
Omnipress, Madison, WI, USA, 359–366.

[12] W.H. Greub. 2012. Multilinear Algebra. Springer Berlin Heidelberg.

[13] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program

Synthesis. Foundations and Trends® in Programming Languages 4, 1–2
(July 2017), 1–119. https://doi.org/10.1561/2500000010

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

Residual Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 770–778. https:
//doi.org/10.1109/CVPR.2016.90

[15] Yu-Jhen Hsu and Diego Perez Liebana. 2020. MCTS Pruning in Turn-

Based Strategy Games. In Joint Proceedings of the AIIDE 2020Workshops
co-located with 16th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE) (CEUR Workshop Proceedings,
Vol. 2862). CEUR-WS.org. https://ceur-ws.org/Vol-2862/paper27.pdf

[16] Shi-Min Hu, Dun Liang, Guo-Ye Yang, Guo-Wei Yang, and Wen-Yang

Zhou. 2020. Jittor: A Novel Deep Learning Framework with Meta-

Operators and Unified Graph Execution. Science China Information
Sciences 63 (2020), 1–21.

[17] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley,

and Frédo Durand. 2019. Taichi: A Language for High-Performance

Computation on Spatially Sparse Data Structures. ACM Transactions
on Graphics (TOG) 38, 6, Article 201 (Nov. 2019), 16 pages. https:
//doi.org/10.1145/3355089.3356506

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-

berger. 2017. Densely Connected Convolutional Networks. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
4700–4708. https://doi.org/10.1109/CVPR.2017.243

[19] Charles Jin, Phitchaya Mangpo Phothilimthana, and Sudip Roy. 2022.

Neural Architecture Search using Property Guided Synthesis. Proceed-
ings of the ACM on Programming Languages (PACMPL) 6, OOPSLA2,
Article 166 (Oct. 2022), 30 pages. https://doi.org/10.1145/3563329

[20] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers

of Features from Tiny Images. (2009).

[21] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. 2019.

Snip: Single-Shot Network Pruning based on Connection Sensitivity.

In 7th International Conference on Learning Representations (ICLR).
OpenReview.net. https://openreview.net/forum?id=B1VZqjAcYX

[22] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua,

Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy.

2018. Progressive Neural Architecture Search. In Computer Vision –
ECCV 2018, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,

and Yair Weiss (Eds.). Springer International Publishing, Cham, 19–35.

[23] Karima Ma, Michael Gharbi, Andrew Adams, Shoaib Kamil, Tzu-Mao

Li, Connelly Barnes, and Jonathan Ragan-Kelley. 2022. Searching for

Fast Demosaicking Algorithms. ACM Transactions on Graphics (TOG)
41, 5, Article 172 (May 2022), 18 pages. https://doi.org/10.1145/3508461

[24] Julie L. Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik,

and Shoaib Kamil. 2020. Verifying and ImprovingHalide’s Term Rewrit-

ing System with Program Synthesis. Proceedings of the ACM on Pro-
gramming Languages (PACMPL) 4, OOPSLA, Article 166 (Nov. 2020),
28 pages. https://doi.org/10.1145/3428234

[25] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. 2019. Language Models are Unsupervised Multitask

Learners. (2019).

[26] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-

guage and Compiler for Optimizing Parallelism, Locality, and Re-

computation in Image Processing Pipelines. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (Seattle, Washington, USA). Association

for Computing Machinery, New York, NY, USA, 519–530. https:
//doi.org/10.1145/2491956.2462176

[27] Alex Rogozhnikov. 2021. Einops: Clear and Reliable Tensor Manip-

ulations with Einstein-like Notation. In International Conference on
Learning Representations (ICLR).

[28] Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai,

Hongyi Jin, Wuwei Lin, Masahiro Masuda, Cody Hao Yu, and Tianqi

Chen. 2022. Tensor Program Optimization with Probabilistic Programs.

226

https://openreview.net/forum?id=0cmMMy8J5q
https://doi.org/10.1145/3620665.3640366
https://openreview.net/forum?id=HylVB3AqYm
https://doi.org/10.21437/INTERSPEECH.2014-564
https://doi.org/10.21437/INTERSPEECH.2014-564
https://github.com/pytorch/pytorch/issues/109489
https://github.com/pytorch/pytorch/issues/109489
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1561/2500000010
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://ceur-ws.org/Vol-2862/paper27.pdf
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1145/3563329
https://openreview.net/forum?id=B1VZqjAcYX
https://doi.org/10.1145/3508461
https://doi.org/10.1145/3428234
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao

In Proceedings of the 36th International Conference on Neural Informa-
tion Processing Systems (NeurIPS) (New Orleans, LA, USA). Curran

Associates Inc., Red Hook, NY, USA, Article 2593, 14 pages.

[29] Kensen Shi, David Bieber, and Rishabh Singh. 2022. TF-Coder: Program

Synthesis for Tensor Manipulations. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 44, 2, Article 10 (May 2022),

36 pages. https://doi.org/10.1145/3517034
[30] David R. So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer,

and Quoc V. Le. 2021. Primer: Searching for Efficient Transformers for

Language Modeling. In Proceedings of the 35th International Conference
on Neural Information Processing Systems (NeurIPS). Curran Associates

Inc., Red Hook, NY, USA, Article 460, 13 pages.

[31] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-

dler, Andrew Howard, and Quoc V. Le. 2019. MnasNet: Platform-

Aware Neural Architecture Search for Mobile. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2815–2823.
https://doi.org/10.1109/CVPR.2019.00293

[32] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model

Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, (ICML), Vol. 97. PMLR,

6105–6114. http://proceedings.mlr.press/v97/tan19a.html
[33] Mingxing Tan and Quoc V. Le. 2021. EfficientNetV2: Smaller Models

and Faster Training. In Proceedings of the 38th International Conference
on Machine Learning (ICML), Vol. 139. PMLR, 10096–10106. http:
//proceedings.mlr.press/v139/tan21a.html

[34] Shizhi Tang, Jidong Zhai, Haojie Wang, Lin Jiang, Liyan Zheng, Zhen-

hao Yuan, and Chen Zhang. 2022. FreeTensor: A Free-Form DSL with

Holistic Optimizations for Irregular Tensor Programs. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI) (San Diego, CA, USA).

Association for Computing Machinery, New York, NY, USA, 872–887.

https://doi.org/10.1145/3519939.3523448
[35] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009.

Equality Saturation: A New Approach to Optimization. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL) (Savannah, GA, USA). Association
for Computing Machinery, New York, NY, USA, 264–276. https://doi.
org/10.1145/1480881.1480915

[36] Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An Intermedi-

ate Language and Compiler for Tiled Neural Network Computations.

In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (MAPL) (Phoenix, AZ,
USA). Association for Computing Machinery, New York, NY, USA,

10–19. https://doi.org/10.1145/3315508.3329973
[37] Jack Turner, Elliot J. Crowley, and Michael F. P. O’Boyle. 2021. Neu-

ral Architecture Search as Program Transformation Exploration. In

Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS)
(Virtual, USA). Association for Computing Machinery, New York, NY,

USA, 915–927. https://doi.org/10.1145/3445814.3446753
[38] Jack Turner, Elliot J. Crowley, Michael F. P. O’Boyle, Amos J. Storkey,

and Gavin Gray. 2020. BlockSwap: Fisher-Guided Block Substitu-

tion for Network Compression on a Budget. In 8th International Con-
ference on Learning Representations (ICLR). OpenReview.net. https:
//openreview.net/forum?id=SklkDkSFPB

[39] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang,

Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao

Jia. 2021. PET: Optimizing Tensor Programs with Partially Equiva-

lent Transformations and Automated Corrections. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
USENIX Association, 37–54. https://www.usenix.org/conference/
osdi21/presentation/wang

[40] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun,

Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt

Keutzer. 2019. FBNet: Hardware-Aware Efficient ConvNet Design via

Differentiable Neural Architecture Search. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 10726–10734.
https://doi.org/10.1109/CVPR.2019.01099

[41] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah

Golmant, Amir Gholaminejad, JosephGonzalez, and Kurt Keutzer. 2018.

Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolu-

tions. In 2018 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 9127–9135. https://doi.org/10.1109/CVPR.2018.00951

[42] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.

2017. Aggregated Residual Transformations for Deep Neural Networks.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 5987–5995. https://doi.org/10.1109/CVPR.2017.634

[43] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao,

Bin Cheng, Chen Wu, Yun Cheng, Zheng Li, Peng Di, Kun Zhang,

and Xuefeng Jin. 2021. AKG: Automatic Kernel Generation for Neural

Processing Units using Polyhedral Transformations. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI) (Virtual, Canada). Asso-
ciation for Computing Machinery, New York, NY, USA, 1233–1248.

https://doi.org/10.1145/3453483.3454106
[44] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,

Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,

Joseph E. Gonzalez, and Ion Stoica. 2020. Ansor: Generating High-

Performance Tensor Programs for Deep Learning. In Proceedings of
the 14th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI). USENIX Association, USA, Article 49, 17 pages.

[45] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy,

Shuai Yi, Xuesen Zhang, and Wanli Ouyang. 2020. EcoNAS: Finding

Proxies for Economical Neural Architecture Search. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 11393–
11401. https://doi.org/10.1109/CVPR42600.2020.01141

[46] Barret Zoph and Quoc V. Le. 2017. Neural Architecture Search with

Reinforcement Learning. In International Conference on Learning Rep-
resentations (ICLR). https://openreview.net/forum?id=r1Ue8Hcxg

[47] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018.

Learning Transferable Architectures for Scalable Image Recognition. In

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 8697–8710. https://doi.org/10.1109/CVPR.2018.00907

A Artifact Appendix
A.1 Abstract
This artifact appendix helps the readers reproduce the main

evaluation results of this paper. The artifact evaluation in-

cludes the instructions on how to synthesize operators with

Syno, obtain the accuracy and performance results of the

models with the novel operators, and plot Figures 5, 6, 8,

9, and 10. Our GitHub repository also provides a README

containing detailed instructions.

A.2 Artifact check-list (meta-information)
• Algorithm: Syno’s operator synthesis algorithm.

• Compilation: GCC 13 and CUDA Toolkit 12.9.

• Models: ResNet-18, ResNet-34, DenseNet-121, ResNeXt-29-
2x64D, EfficientNet-V2-S, and GPT-2.

• Data sets: CIFAR100, ImageNet, and lm1b.

• Run-time environment: Linux Ubuntu 24.04. We provide

a Dockerfile for the environment setup.

• Hardware: NVIDIA Jetson Orin Nano 8 GB board, and

NVIDIA A100 GPUs.

227

https://doi.org/10.1145/3517034
https://doi.org/10.1109/CVPR.2019.00293
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v139/tan21a.html
http://proceedings.mlr.press/v139/tan21a.html
https://doi.org/10.1145/3519939.3523448
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3445814.3446753
https://openreview.net/forum?id=SklkDkSFPB
https://openreview.net/forum?id=SklkDkSFPB
https://www.usenix.org/conference/osdi21/presentation/wang
https://www.usenix.org/conference/osdi21/presentation/wang
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2018.00951
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1145/3453483.3454106
https://doi.org/10.1109/CVPR42600.2020.01141
https://openreview.net/forum?id=r1Ue8Hcxg
https://doi.org/10.1109/CVPR.2018.00907

Syno: Structured Synthesis for Neural Operators ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

• Metrics: Model inference accuracy and execution latency.

• Output: The key results are a list of synthesized operators

discovered by Syno, plus five plots summarizing their per-

formance.

• Experiments: The workflow is introduced in AE/README.

• Howmuchdisk space required (approximately)?: 500GB
(For ImageNet).

• How much time is needed to prepare workflow (ap-
proximately)?: Docker images can be built within 30 min-

utes.

• How much time is needed to complete experiments
(approximately)?: Searching for operators requires around

300 GPU hours per model. Accuracy re-evaluation takes

about 900 GPU hours for all models. Tuning for performance

on the A100 and Jetson Orin Nano GPUs takes about 700

GPU hours each, and tuning on the Jetson Orin Nano CPU

takes 700 hours. Plotting can be done within several minutes.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT.

A.3 Description
A.3.1 How to access.
• Source code: https://github.com/tsinghua-ideal/Syno.
• Artifact evaluation data: https://github.com/Yongqi-
Zhuo/Syno-AE, which is a git submodule of the above

repository, so you need not separately clone it.

A.3.2 Hardware dependencies.
• Searching for operators requires A100GPUs (an 8×A100
machine is recommended).

• Performance tuning requires at least an A100 GPU and

an NVIDIA Jetson Orin Nano 8 GB board.

A.3.3 Software dependencies. We provide a Dockerfile

in our repository for easy reproduction, and the detailed

software dependencies are listed there.

A.3.4 Data sets. The search and evaluation require three

datasets: CIFAR100, ImageNet, and lm1b. CIFAR100 and lm1b

will be automatically downloaded from TorchVision and

Huggingface when executing our scripts. ImageNet requires

some manual preparation, for which the detailed steps can

be found in the README.

A.3.5 Models. Our experiments are conducted with six

models: ResNet-18, ResNet-34, DenseNet-121, ResNeXt-29-

2x64D, EfficientNet-V2-S, and GPT-2. Note that you do not

need the pre-trained weights for those models.

A.4 Installation
Clone the repository and build the Docker image using the

Dockerfile inside the repository.

git clone --recursive \
https://github.com/tsinghua-ideal/Syno.git

docker build -t syno Syno

The experiments will need preprocessed ImageNet. Down-

load the dataset, format it into a PyTorch-style dataset, follow

the instructions in FFCV-ImageNet to prepare the dataset

with bash write_imagenet.sh 400 0.10 90, and finally

set the directory in Syno with bash set_imagenet_dir.sh
$WRITE_DIR.

A.5 Experiment workflow
On a high level, our experiments can be decoupled into four

steps:

1. Searching: search for efficient operators to be substi-

tuted into the neural network models using the Syno

operator synthesis algorithm.

2. Accuracy Evaluation: evaluate the accuracy of themod-

els optimized by Syno on ImageNet.

3. Tuning: tune the Syno-optimized models with tensor

compilers to obtain the performance numbers.

4. Plotting: plot the accuracy and performance results of

the optimized models to visualize the tradeoff achieved

with Syno.

Since these steps can take very long time, to facilitate eas-

ier reproduction, we provide our data in AE/data as drop-in

replacements for the results of each step, so the reproduction

can start from any intermediate step.

A.5.1 Searching. Please use search.sh for the search.

Specifically, run bash search.sh $MODEL, where $MODEL is
the model to search with. The supported models include

• resnet18
• resnet34
• resnext29_2x64d
• densenet121
• efficientnet_v2_s
• gpt2

A.5.2 Accuracy Evaluation. The search on the vision

models will produce a list of operators with their CIFAR-100

accuracies and FLOPs, saved in AE/results/$MODEL-session.
After picking operators with good accuracies, you need to

re-evaluate them on ImageNet by reevaluate_vision.sh.
The detailed instructions can be found in AE/README.md.

The search on GPT-2 will also produce a list of operators

with their perplexity results after training for 30 minutes.

After picking the best operator, re-evaluate it with 100,000

steps using reevaluate_gpt.sh.
Finally, we provide two scripts — train_baseline.sh

and train_custom.sh, with which you can obtain the accu-

racies for the baselines and the operators we picked for the

case studies.

A.5.3 Tuning. You need to set up the host, one or more

A100 GPUs, and one or more NVIDIA Jetson Orin Nano’s.

Make sure the devices can access the host via internet con-

nection. Also set up the TVM RPC trackers and servers ac-

cording to AE/README.md. Then run the grid tuners. Refer

to AE/README.md for detailed instructions.

On host

228

https://github.com/tsinghua-ideal/Syno
https://github.com/Yongqi-Zhuo/Syno-AE
https://github.com/Yongqi-Zhuo/Syno-AE
https://github.com/libffcv/ffcv-imagenet

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yongqi Zhuo, Zhengyuan Su, Chenggang Zhao, and Mingyu Gao

python grid_tune.py \
--config /workspace/Syno/AE/grid_tune.json \
--rpc-host $TRACKER_HOST \
--rpc-port $TRACKER_PORT

On A100
python grid_torch.py \
--config /workspace/Syno/AE/grid_tune.a100.json
On NVIDIA Jetson Orin Nano
python grid_torch.py \
--config /workspace/Syno/AE/grid_tune.mdev.json

A.5.4 Plotting. After the above steps, you can plot the

figures with the experiment results.

First, copy the tuning results:

bash copy_perf.sh mdev
bash copy_perf.sh a100

Then run bash plot.sh to produce the figures.

The script will produce 5 figures in AE/plots:
1. end-to-end-performance.pdf: Figure 5.
2. imagenet-performance.pdf: Figure 6.
3. case-study.pdf: Figure 8.
4. kernel-performance.pdf: Figure 9.

5. gpt-loss.pdf: Figure 10.

A.6 Evaluation and expected results
We provide our experiment results in AE/data. If you use our
data, then you should see exactly the same figures as in our

paper. Otherwise, the numbers might be slightly different

due to the randomness introduced by operator searching

and the fluctuations of performance during tuning, but the

overall trend should be the same.

A.7 Experiment customization
You can write your own configuration files other than the

provided AE/grid_tune.json for performance tuning to

use other hardware and other synthesized operators. See

AE/README.md for more details.

A.8 Notes
A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
and-badging-current
• https://cTuning.org/ae

229

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Neural Architecture Search
	2.2 Tensor Compilers
	2.3 Program Synthesis

	3 Motivation and Challenges
	4 Design Overview
	5 Primitives
	5.1 Structured ASTs
	5.2 Advantages
	5.3 Semantics and Examples
	5.4 Design Details

	6 Canonicalization
	7 Guided Search
	7.1 Bottom-Up Synthesis with Shape Distance
	7.2 MCTS-Based Search

	8 Code Generation
	9 Evaluation
	9.1 Experimental Setups
	9.2 Results on Vision Tasks
	9.3 Results on GPT-2
	9.4 Ablation Studies

	10 Conclusions
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

