
Stream-Based Data Placement for Near-
Data Processing with Extended Memory

Yiwei Li, Boyu Tian, Yi Ren, Mingyu Gao

MICRO 2024

Tsinghua University

Shanghai Qi Zhi Institute

Background

❑ Data-intensive applications grow rapidly

❑ “Memory wall” bottleneck
o Limited bandwidth scaling and excessive data migration energy

o Limited capacity scaling due to limited CPU pin counts

Computational biology Big dataSimulationMachine learning

2

Near-data processing (NDP) moves computation close to data

Compute Express Link (CXL) allows efficient memory capacity extension

❑ Near-data processing (NDP): place compute logic near data memory
o Shorter distance→ lower latency and energy

o Higher bandwidth

❑ 3D-Stacked NDP architecture:
o Incorporate compute logics inside 3D-stacked memories

o Multiple memory stacks interconnect with each other

o High bandwidth but Limited capacity

Near-Data Processing

3

NDP logic die

Memory dieHost

Interconnect

Samsung HBM-PIM (2021)
6 GB capacity each stack

1.23TB/s Off-chip bandwidth

Compute Express Link

❑ CXL outlines memory interaction between host and devices

❑ We primarily focus on CXL.mem for memory extension
o Direct load/store access in the address space

o TB-level capacity plus scalable bandwidth support

o Fewer CPU pins requirement compared to DDR controllers

4

Local Memory

Host

E.g., DDR protocol
load/store CXL switch

Exten
d

ed

M
em

o
ry

Exten
d

ed

M
em

o
ry

Exten
d

ed

M
em

o
ry

Local

Based on PCIe, load/store

Address space CXL extended memory GB/s TB

0

50

100

150

2018 2019 2020 2021 2022 2023

CXL Bandwidth ScalingGB/s

0

20

40

60

80

2018 2019 2020 2021 2022 2023

CXL Capacity ScalingTB

NDP with Extended Memory

❑ 3D stacked NDP provides TB/s bandwidth while CXL provides TB capacity

❑ We add extended memory to NDP to accelerate large-scale applications
o Host offloads large-scale data-intensive tasks to NDP accelerator

o NDP manages data between local stacks and extended CXL memory

o For simplicity we use NDP as a distributed cache of extended memory space

5
CXL Link

DDR

CXL
Ctrl.

NDP
stack

NDP Core

Priv. cache

NDP Memory

RouterMem Ctrl.

NDP unit

Endpoint

Extended Memory

Host

NUCA NDP

(a)

0.00

0.25

0.50

0.75

1.00

P
er

fo
rm

an
ce

 B
re

ak
d

o
w

n

Metadata
Cache
Memory

Interconnect

Compute

Design Challenges

❑ Existing systems already incorporate a distributed cache system: NUCA

❑ What are the differences?
o D1: Fewer misses to extended memory in NDP thanks to larger cache capacity

o D2: NDP has higher interconnect overheads due to high off-chip/on-chip latency

o D3: NDP has higher metadata overheads since tags cannot store fully on-chip

6

A

T0 T1

B

E
xten

d
ed

M
e

m
o

ry

C
C

Metadata lookup pathData access path Data migration path

A B C
T0 T1

Data

Thread

A

T0 T1

B
M

e
m

o
ry

C
C

Static NUCA system NDP with extended memory

32%

13%

10%
<1%

CPU core
cache bank

NDP core
NDP local memoryX

A

T0 T1

E
xten

d
ed

M
e

m
o

ry

C
C

Prior NUCA Solutions for Interconnect Overheads

❑ Placing common data to the
“center-of-mass”?
o Related work: Jigsaw [PACT’13]

o B’s interconnect hops are reduced

o But this scheme always favors cache
space at the center than corner ones

o Per cacheline placement is challenging

7

A

T0 T1

B

E
xten

d
ed

M
e

m
o

ry

C
C

❑ Replicating every data to units
o Related work: Nexus [PACT’17]

o B’s interconnect hops are reduced

o But this scheme usually wastes
cache space

o Metadata overheads disallow
flexible replication options

B

5 hops 4 hops

2 hops 1 hop
B B

Motivation Summary from Previous Slides

Bandwidth bottleneck

But this architecture has interconnect and metadata overheads…

We propose NDPExt to reduce above overheads

Coarse-grained stream cache organization

Optimized cache configuration schemes

8

Capacity bottleneck

Data-intensive applications suffer from memory wall bottleneck

NDP with extended memory comes to the rescue

Stream Cache Organization

❑ Observation 1: most NDP applications respect to stream access patterns

❑ Streams: coarse-grained memory access pattern abstraction
o Affine pattern, e.g., 𝑎𝑑𝑑𝑟 = 𝑎𝑥 + 𝑏
o Indirect pattern, e.g., 𝑎𝑑𝑑𝑟 = 𝑠 𝑖
o Used in prior work for prefetching [ISCA’19], instruction offloading [HPCA’22], etc.

❑ For example, parallelized graph traversal for thread 0
o Access pattern of vertex array: i
o Access pattern of edge array : j + vertex[i]
o Access pattern of visited array: edge[j + vertex[i]]

❑ We can use such programming hints for coarse-grained caching! 9

Vertex array T0 T1 T2 T3

Visited array

Edge array T0 T1 T2 T2

Affine stream

Affine stream

Indirect stream

Stream Cache Organization

❑ Observation 2: high metadata costs due to fine-grained mapping
o Storing streams instead of cachelines for NDP can reduce metadata overheads

❑ Basic access flow
o Lookup stream metadata to identify stream and element ID

o Fetch stream remap table to identify possible unit ID and DRAM location

o If hit, fetch local or remote data. If miss, refill data from extended memory.

10

Physical address
0x5CA1ABC0

from unit 0
0x1 4kB 64B

0xdeadbeef 1MB 512B

Stream ID base size elem. size

0x2

…

0x5CA1A000

Stream access
Stream ID 1

Element ID 47

Software reconfigured

3 8 0x0A00
6 0x0160
4 0x0C00
2 0x1000

Unit ID RShares RRowBase

1
6
0…

HashCheck remote memory
Unit ID 1

DRAM Row 0x0160 + Offset

Elem. 32 Elem. 47…

42 Elem. 42 7 Elem. 7 …

For affine streams

For indirect streams

Remote hit on unit 1. Fetch data…

Programmer hints

Stream Cache Organization

❑ We cache intermediate tables on-chip to reduce lookup overheads
o Stream lookahead buffer (SLB) is used to cache stream remapping information

o Affine tag array (ATA) is used to store tags for affine streams

❑ We support per-stream replication groups
o Unlike prior work, each stream can be replicated or partitioned to any unit groups

• For each stream, partial units are tagged with the same replication group (RGroups)

• Within each RGroup, stream data are partitioned using their allocation shares (RShares)

o Hardware-efficient lookup procedure

11

NDP Core 1

NDP Memory

ATA

SLB
Router

A32-A47

NDP Core 0

NDP Memory

ATA

SLB
Router

A0-A15

❶

❷a

❸a

❷b

❸b

Replication group 0
NDP Core 3

NDP Memory

ATA

SLB
Router

NDP Core 2

NDP Memory

ATA

SLB
Router

A0-A15

Replication group 1

A16-A31

0x1, Unit 0 8 0x0A00 0
6 0x0160 0
4 0x0C00 1
2 0x1000 1

Software reconfigured

sid × unit ID RShares RRowBase RGroups

0x1, Unit 1
0x1, Unit 2
0x1, Unit 3

Data partitioning
Data replication

Cache Configuration

❑ Goal
o Host determines stream placement by adjusting per-stream replication group

(RGroups) and space partitioning across units within each group (RShares)

o We sample miss rates and configure data placement periodically

❑ Prior NUCA work separates sizing and placement
o For sizing, e.g., using Lookahead in Utility-Based Cache Partitioning [MICRO’06]

o For placement, e.g., using “center-of-mass” in Jigsaw [PACT’13]

o Separated sizing and placement results in suboptimal result

12

B

A

Placement contention
after sizing

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8

Cache sizing using lookahead

A B

C
ac

h
e

m
is

se
s

Block assigned

Steepest slope
for best utility

Cache Configuration

❑ We propose a new configuration algorithm
o Simultaneous data sizing and placement

o Flexible data replication

❑ Key Ideas
o Compute the next steepest slope and immediately place it

o Prefer all replication when NDP memory is sufficient

o If NDP memory full, considering reallocation towards higher utility

13

Extending the current replication group Merging two existing groups

0

Utility = 𝑈0 + 𝑈1 = (60 + 40𝑘01) + (40 + 60𝑘10)
Unit 2

New utility = 𝑈′0 + 𝑈′1 = 60 + 40𝑘01 + 20𝑘02 +
(40 + 60𝑘10 + 20𝑘12)

Replication group

60 40

Unit 0 Unit 1

100

Unit 3

4030 30

Unit 0 Unit 1 Unit 3

Recalculate the utility accordingly
Choose the scheme with higher utility

Relates to interconnect
overheads

60 40

Unit 0 Unit 1

20

Methodology

❑ Simulated platform
o 128 NDP cores with 8 stacks

o Both HBM3-style and HMC-style NDP evaluated

❑ Evaluated designs
o Baseline: non-NDP host execution

o NUCA design: Jigsaw

o NUCA + data classification: Whirlpool

o NUCA + global data replication: Nexus

❑ Workloads
o Tensor workloads: e.g., DLRM recommendation system

o Rodinia workloads

o Graph computing benchmark GAP
14

❑ HBM-style comparison
o NDPExt outperforms SOTA by 1.41x on average and up to 2.43x over recsys

❑ Similar result trends in HMC-style NDP systems

Evaluation

15

re
cs

ys m
v

gn
n

ba
ck

pr
op

ho
ts

po
t

la
va

M
D

lu
d

pa
th

fi
nd

er bf
s pr cc bc tc

ge
om

ea
n

HBM3-style NDP memory

0

5

10

15

20

S
p

ee
d

u
p

re
cs

ys m
v

gn
n

ba
ck

pr
op

ho
ts

po
t

la
va

M
D

lu
d

pa
th

fi
nd

er bf
s pr cc bc tc

ge
om

ea
n

HBM3-style NDP memory

0

5

10

15

20

S
p

ee
d

u
p

Jigsaw Whirlpool Nexus NDPExt

Evaluation

❑ NDPExt gains speedup for two reasons
o Prior work shows low metadata hit rate for irregular graph applications, while

NDPExt avoids metadata overheads using stream programming

o Compared to a heuristic static placement (NDPExt-static), NDPExt reduces
interconnect overheads with better data placement and flexible data replication

16

mv gnn hotspot pathfinder pr cc
0

30

60

90

120

In
te

rc
o
n

n
ec

t
L

at
en

cy
 (

n
s)

0%

25%

50%

75%

100%

M
is

s
R

at
e

Nexus NDPExt Miss rate

re
cs

ys m
v

gn
n

ba
ck

pr
op

ho
ts

po
t

la
va

M
D

lu
d

pa
th

fi
nd

er bf
s pr cc bc tc

ge
om

ea
n

HBM3-style NDP memory

0

5

10

15

20

S
p

ee
d

u
p

NDPExt-static NDPExt

Summary

Bandwidth bottleneck

But this architecture has interconnect and metadata overheads…

We propose NDPExt to reduce above overheads

Coarse-grained stream cache organization

Optimized cache configuration schemes

17

Capacity bottleneck

Data-intensive applications suffer from memory wall bottleneck

NDP with extended memory comes to the rescue

Thank you!

	Slide 1: Stream-Based Data Placement for Near-Data Processing with Extended Memory
	Slide 2: Background
	Slide 3: Near-Data Processing
	Slide 4: Compute Express Link
	Slide 5: NDP with Extended Memory
	Slide 6: Design Challenges
	Slide 7: Prior NUCA Solutions for Interconnect Overheads
	Slide 8: Motivation Summary from Previous Slides
	Slide 9: Stream Cache Organization
	Slide 10: Stream Cache Organization
	Slide 11: Stream Cache Organization
	Slide 12: Cache Configuration
	Slide 13: Cache Configuration
	Slide 14: Methodology
	Slide 15: Evaluation
	Slide 16: Evaluation
	Slide 17: Summary

