GO g FAE TR 1 0 0 7
"l..“ I SHANGHAI QI ZHI INSTITUTE

nstitute for Interdisciplinary Information Sciences, Tsinghua University

Stream-Based Data Placement for Near-
Data Processing with Extended Memory

Yiwei Li, Boyu Tian, Yi Ren, Mingyu Gao

Tsinghua University
Shanghai Qi Zhi Institute

MICRO 2024

singhua University

Background

a Data-intensive applications grow rapidly

P
B @

VISUALIZATION

RRRRRRR

Computational biology Machine learning Simulation Big data

|II

“Memory wall” bottleneck

o Limited bandwidth scaling and excessive data migration energy
‘ Near-data processing (NDP) moves computation close to data

o Limited capacity scaling due to limited CPU pin counts
‘ Compute Express Link (CXL) allows efficient memory capacity extension

Near-Data Processing

a Near-data processing (NDP): place compute logic near data memory

o Shorter distance = lower latency and energy
o Higher bandwidth

o 3D-Stacked NDP architecture:

o Incorporate compute logics inside 3D-stacked memories P
o Multiple memory stacks interconnect with each other Samsung HBM-PIM (2021)
o High bandwidth 6 GB capacity each stack

1.23TB/s Off-chip bandwidth

/% /% ! ! 1l Interconnect

/[1/ Host /[1/ Memory die g
/1 /1M / | A LWALV/ F F F

AVAvya / Y/ '/ NDP logic die - - -

Compute Express Link

a CXL outlines memory interaction between host and devices

a We primarily focus on CXL.mem for memory extension
o Direct load/store access in the address space
o TB-level capacity plus scalable bandwidth support
o Fewer CPU pins requirement compared to DDR controllers

GB/s CXL Bandwidth Scaling
Address space |_Loca CXL extended memory §
Based on PCle, load/store
Host
E.g., DDR protocol l’____"_-_;__\
load/store | : CXL switc : CXL Capacity Scaling
¥ , 3
Local Memory]| 1 '
U e MR B o
D o] | ol |2 o] |
S s 13 3113 I
LR
< gl K aoal K o I
\ /

NDP with Extended Memory

a 3D stacked NDP provides TB/s bandwidth while CXL provides TB capacity

o We add extended memory to NDP to accelerate large-scale applications
o Host offloads large-scale data-intensive tasks to NDP accelerator
o NDP manages data between local stacks and extended CXL memory

o For simplicity we use NDP as a distributed cache of extended memory space
NDP Core
L 2

Priv. cache
2 2

Mem Ctrl.||Routerfe
v

Host fp-----

NDP Memory

~< NDPunit -

D o
7/

—>CXL Link
—>DDR

&
&
]
g

Performance Breakdown

Design Challenges

o Existing systems already incorporate a distributed cache system: NUCA

o What are the differences?
o D1: Fewer misses to extended memory in NDP thanks to larger cache capacity

o D2: NDP has higher interconnect overheads due to high off-chip/on-chip latency
o D3: NDP has higher metadata overheads since tags cannot store fully on-chip

1.004-
0.757
0.504-{

0.257

0.00-

Data(A] (B 10 N T1 CPU core 10 NDP core
Thread 6024 < cache bank m —\NDP local memory
3 lr 3 3 v
/<1% >] | =z % g
""" [m—Metadata ¥] ¥ ¥ 3 33
Cache o o = o o =
""" (L }—Memory L_C_.*N\ 2 ‘\,<-°-
----- 0% Interconnect v J—& ¥ ¥ :
l <> B <>
— Compute Static NUCA system NDP with extended memory
NUCA NDP — Data access path - —> Data migration path — Metadata lookup path 6

(a)

Prior NUCA Solutions for Interconnect Overheads

a Placing common data to the
“center-of-mass”?
o Related work: Jigsaw [PACT’13]
o B’s interconnect hops are reduced

o But this scheme always favors cache
space at the center than corner ones

o Per cacheline placement is challenging

11

op

AlC oy
papua1x3

g

TO\

ST I
gEZhops- hop
sal el Tl 1
3 S5hops & 4h

(—)-I\(-) Ir"}(__
T

ol b raide]

a Replicating every data to units

o Related work: Nexus [PACT’17]
o B’s interconnect hops are reduced

o But this scheme usually wastes
cache space

o Metadata overheads disallow
flexible replication options

T0> 1_T1
BN\ [[76
) \\@))
(—) <> € > Zg
) 3) ® o
{ 3 5
- o o
C7- = &

)
/
)
—A
L 2
o]l
A
L7
®

)
T
T/

~

Motivation Summary from Previous Slides

[Data-intensive applications suffer from memory wall bottleneck]

Y v

[Bandwidth bottleneck] [Capacity bottleneck]
[NDP with extended memory comes to the rescue
[But this architecture has interconnect and metadata overheads...

> Coarse-grained stream cache organization

|—> Optimized cache configuration schemes

[We propose NDPEXxt to reduce above overheads]

Stream Cache Organization

a Observation 1: most NDP applications respect to stream access patterns

a Streams: coarse-grained memory access pattern abstraction
o Affine pattern, e.g., addr = ax + b
o Indirect pattern, e.g., addr = s]i]
o Used in prior work for prefetching [ISCA’19], instruction offloading [HPCA'22], etc.

a For example, parallelized graph traversal for thread O

o Access pattern of vertex array: 1 |Affine stream
o Access pattern of edge array : j + vertex[1i] |Affinestream
o Access pattern of visited array: edge[j + vertex[i]] [indirect stream

T1 12 13

TO
TO

Vertex array

Edge array Tl | T2 T2

Visited array

a We can use such programming hints for coarse-grained caching! 5

Stream Cache Organization

a Observation 2: high metadata costs due to fine-grained mapping
o Storing streams instead of cachelines for NDP can reduce metadata overheads

o Basic access flow
o Lookup stream metadata to identify stream and element ID
o Fetch stream remap table to identify possible unit ID and DRAM location

o If hit, fetch local or remote data. If miss, refill data from extended memory.
Programmer hints

|Phy5|cal address. < > : g | 3 I Y : _St_re_ar?w;\c_ce_s;.:
[| ream ase Slze |elem. size I
! @;(SCMAE%@ ! Ox1 akB | 648 = | Stream D1
L _romunt Y 0x2__ |oxdeadbeef| 1IMB | 512B ElementiD 47
Remote hit on unit 1. Fetch data...
, ﬁ @Softwa re reconflgu red
For affine streams
Elem.32] .. [Elem. 47 | Check remote memory | , [Hash | [Unit ID RShares| RRowBase
. = 3 8 0x0A00
For indirect streams | UnitID 1 | <:| o 1 6 ox0160
42|Elem. 42| 7 | Elem. 7 |... | DRAM Row 0x0160 + Offset I 6 4 0x0C0o0
%] 2 ©x1000

10

Stream Cache Organization

o We cache intermediate tables on-chip to reduce lookup overheads

o Stream lookahead buffer (SLB) is used to cache stream remapping information
o Affine tag array (ATA) is used to store tags for affine streams

a We support per-stream replication groups

o Unlike prior work, each stream can be replicated or partitioned to any unit groups
* For each stream, partial units are tagged with the same replication group (RGroups)
* Within each RGroup, stream data are partitioned using their allocation shares (RShares)

o Hardware-efficient lookup procedure

=== -Replication group 0 - - - ., —— —-Replication group 1- = = =~
([NDP Core 0 NDP Core1 |y ! [NDP Core2 NDP Core3 | | Software reconfigured
| 1 | Y Y Y
' SL [SLB SLB I |sid X unit ID| RShares| RRowBase [RGroups
! @b [Router] | | [Router [Routed ! ["0xT, Unit 0 3 O0x0A00 0
e 5 R Ll | [0x1,Uniti]| 6 | 0x0160 | 0
I NDP Memory NDP Memory I 1| NDP Memory NDP Memory | ! [.Ox1, Unit?2 4 0x0CO00 1
‘L[AD-A15 | [A32-A47] | A16-A31] [A0-A15 1] ' | 0Ox1,Unit3 2 0x1000 1
-_——-rm—_—_————-—r D - e LT == === - -_———
ata partitioning Data replication 11

Cache Configuration

o Goal

o Host determines stream placement by adjusting per-stream replication group
(RGroups) and space partitioning across units within each group (RShares)

o We sample miss rates and configure data placement periodically

a Prior NUCA work separates sizing and placement
o For sizing, e.g., using Lookahead in Utility-Based Cache Partitioning [MICRO’06]
o For placement, e.g., using “center-of-mass” in Jigsaw [PACT’13]
o Separated sizing and placement results in suboptimal result

Cache sizing using lookahead —
100 8 g < vd N \
90
wn 80 A+ B)) 0 ¢
i
3 3 ment contention
% gg \/S eepest s © \E ter sizing
S5 for best'utility — —— o %
0
0 1 3 Racdonsy 6 7 8 < g]
Block assigned

Cache Configuration

o We propose a new configuration algorithm
o Simultaneous data sizing and placement
o Flexible data replication

a Key ldeas
o Compute the next steepest slope and immediately place it
o Prefer all replication when NDP memory is sufficient
o If NDP memory full, considering reallocation towards higher utility

Extending the current replication group Merging two existing groups
Replication group == ===~ X ll """""""" \l
! I € >
L60<+40<; {20 | 3030 101
Unit0_Unit1l, _ _Unit2' WUnit0_Unitl __ _Unit3,

Utility = Uy + Uy = (60 4+ 40ky1) + (40 4+ 60k4y)
New utility = U'g + U’y = (60 + 40k + 20koz) + |
(40 4+ 60kqy + 20k,>5) Relates to interconnect

Recalculate the utility accordingly
Choose the scheme with higher utility

LI
overheads

Methodology

a Simulated platform
o 128 NDP cores with 8 stacks
o Both HBM3-style and HMC-style NDP evaluated

o 4 x 2 inter-stack mesh, 16 NDP cores per stack:
. NDP system 128 NDP cores 1n total
| Eva I u ate d d es Ig n S NDP core 2 GHz, in-order
L1l 2-way, 32kB per core, 64B cachelines, LRU
. . LiD 4-way, 64kB per core, 64B cachelines, LRU
o Baseline: non-NDP host execution 16GB HEM 30, 1600 MHz, 256 Milun:

NDP HEM RCD-CAS-RP: 24-24-24;

@) NUCA dESign‘ JigsaW RD/WR: 1.7 pJ/bit, ACT/PRE: 0.6n]

16 GB HMC 2.1, 1250 MHz, 256 MB/unit;

o NUCA + data classification: Whirlpool et

DDR5-4800, 4 channels = 2 ranks x 16 banks:
Extended memory RCD-CAS-RP: 40-40-40;

o NUCA + global data replication: Nexus RDIWR: 3.2plbi, ACTIPRE: 330

Intra-stack network 128-bit link, 1.3 ns'hop [65]. [69]; 0.4 pl/bit
Inter-stack network 32 GB/s per dir., 10ns/hop [20], [22], [69]; 4 pJ/bit
CXL link 16-lane; 200 ns link latency; 11.4 pl/bit

2 Workloads

o Tensor workloads: e.g., DLRM recommendation system
o Rodinia workloads

14
o Graph computing benchmark GAP

Evaluation

I Jigsaw [—1 Whirlpool [Nexus [NDPExt

$§ & & <
oF

& & 8§ 4
& ;r‘&&f;

gy ~ =

HBM3-style NDP memory HMC2-gtyle NDP memuory

a HBM-style comparison
o NDPExt outperforms SOTA by 1.41x on average and up to 2.43x over recsys

a Similar result trends in HMC-style NDP systems

15

Evaluation

[1 NDPExt-static B NDPExt

I Nexus [NDPExt ¢ Miss rate

[SR AN - 100%

- 75%

[{e}
o

- 50%

Miss Rate

Interconnect
Latency (ns)
3

- 25%

w
o

- 0%

o
T

athfinder pr cc

HBM3-style NDP memory

a NDPExt gains speedup for two reasons
o Prior work shows low metadata hit rate for irregular graph applications, while
NDPExt avoids metadata overheads using stream programming
o Compared to a heuristic static placement (NDPExt-static), NDPExt reduces
interconnect overheads with better data placement and flexible data replication

Summary

[Data-intensive applications suffer from memory wall bottleneck]

Y v

[Bandwidth bottleneck] [Capacity bottleneck]
[NDP with extended memory comes to the rescue
[But this architecture has interconnect and metadata overheads...

> Coarse-grained stream cache organization

|—> Optimized cache configuration schemes

[We propose NDPEXxt to reduce above overheads]

Thank you!

17

	Slide 1: Stream-Based Data Placement for Near-Data Processing with Extended Memory
	Slide 2: Background
	Slide 3: Near-Data Processing
	Slide 4: Compute Express Link
	Slide 5: NDP with Extended Memory
	Slide 6: Design Challenges
	Slide 7: Prior NUCA Solutions for Interconnect Overheads
	Slide 8: Motivation Summary from Previous Slides
	Slide 9: Stream Cache Organization
	Slide 10: Stream Cache Organization
	Slide 11: Stream Cache Organization
	Slide 12: Cache Configuration
	Slide 13: Cache Configuration
	Slide 14: Methodology
	Slide 15: Evaluation
	Slide 16: Evaluation
	Slide 17: Summary

