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Background

a Data-intensive applications grow rapidly
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“Memory wall” bottleneck

o Limited bandwidth scaling and excessive data migration energy
‘ Near-data processing (NDP) moves computation close to data

o Limited capacity scaling due to limited CPU pin counts
‘ Compute Express Link (CXL) allows efficient memory capacity extension




Near-Data Processing

a Near-data processing (NDP): place compute logic near data memory

o Shorter distance = lower latency and energy
o Higher bandwidth

o 3D-Stacked NDP architecture:

o Incorporate compute logics inside 3D-stacked memories P
o Multiple memory stacks interconnect with each other Samsung HBM-PIM (2021)
o High bandwidth 6 GB capacity each stack

1.23TB/s Off-chip bandwidth
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Compute Express Link

a CXL outlines memory interaction between host and devices

a We primarily focus on CXL.mem for memory extension
o Direct load/store access in the address space
o TB-level capacity plus scalable bandwidth support
o Fewer CPU pins requirement compared to DDR controllers
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NDP with Extended Memory

a 3D stacked NDP provides TB/s bandwidth while CXL provides TB capacity

o We add extended memory to NDP to accelerate large-scale applications
o Host offloads large-scale data-intensive tasks to NDP accelerator
o NDP manages data between local stacks and extended CXL memory

o For simplicity we use NDP as a distributed cache of extended memory space
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Performance Breakdown

Design Challenges

o Existing systems already incorporate a distributed cache system: NUCA

o What are the differences?
o D1: Fewer misses to extended memory in NDP thanks to larger cache capacity

o D2: NDP has higher interconnect overheads due to high off-chip/on-chip latency
o D3: NDP has higher metadata overheads since tags cannot store fully on-chip
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Prior NUCA Solutions for Interconnect Overheads

a Placing common data to the
“center-of-mass”?
o Related work: Jigsaw [PACT’13]
o B’s interconnect hops are reduced

o But this scheme always favors cache
space at the center than corner ones

o Per cacheline placement is challenging
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a Replicating every data to units

o Related work: Nexus [PACT’17]
o B’s interconnect hops are reduced

o But this scheme usually wastes
cache space

o Metadata overheads disallow
flexible replication options
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Motivation Summary from Previous Slides

[ Data-intensive applications suffer from memory wall bottleneck ]
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[ Bandwidth bottleneck ] [ Capacity bottleneck ]
[ NDP with extended memory comes to the rescue
[ But this architecture has interconnect and metadata overheads...

> Coarse-grained stream cache organization

|—> Optimized cache configuration schemes

[ We propose NDPEXxt to reduce above overheads ]




Stream Cache Organization

a Observation 1: most NDP applications respect to stream access patterns

a Streams: coarse-grained memory access pattern abstraction
o Affine pattern, e.g., addr = ax + b
o Indirect pattern, e.g., addr = s]i]
o Used in prior work for prefetching [ISCA’19], instruction offloading [HPCA'22], etc.

a For example, parallelized graph traversal for thread O

o Access pattern of vertex array: 1 |Affine stream
o Access pattern of edge array : j + vertex[1i] |Affinestream
o Access pattern of visited array: edge[j + vertex[i]] [indirect stream

T1 12 13

TO
TO

Vertex array

Edge array Tl | T2 T2

Visited array

a We can use such programming hints for coarse-grained caching! 5



Stream Cache Organization

a Observation 2: high metadata costs due to fine-grained mapping
o Storing streams instead of cachelines for NDP can reduce metadata overheads

o Basic access flow
o Lookup stream metadata to identify stream and element ID
o Fetch stream remap table to identify possible unit ID and DRAM location

o If hit, fetch local or remote data. If miss, refill data from extended memory.
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Stream Cache Organization

o We cache intermediate tables on-chip to reduce lookup overheads

o Stream lookahead buffer (SLB) is used to cache stream remapping information
o Affine tag array (ATA) is used to store tags for affine streams

a We support per-stream replication groups

o Unlike prior work, each stream can be replicated or partitioned to any unit groups
* For each stream, partial units are tagged with the same replication group (RGroups)
* Within each RGroup, stream data are partitioned using their allocation shares (RShares)

o Hardware-efficient lookup procedure
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Cache Configuration

o Goal

o Host determines stream placement by adjusting per-stream replication group
(RGroups) and space partitioning across units within each group (RShares)

o We sample miss rates and configure data placement periodically

a Prior NUCA work separates sizing and placement
o For sizing, e.g., using Lookahead in Utility-Based Cache Partitioning [MICRO’06]
o For placement, e.g., using “center-of-mass” in Jigsaw [PACT’13]
o Separated sizing and placement results in suboptimal result
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Cache Configuration

o We propose a new configuration algorithm
o Simultaneous data sizing and placement
o Flexible data replication

a Key ldeas
o Compute the next steepest slope and immediately place it
o Prefer all replication when NDP memory is sufficient
o If NDP memory full, considering reallocation towards higher utility

Extending the current replication group Merging two existing groups
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Methodology

a Simulated platform
o 128 NDP cores with 8 stacks
o Both HBM3-style and HMC-style NDP evaluated

o 4 x 2 inter-stack mesh, 16 NDP cores per stack:
. NDP system 128 NDP cores 1n total
| Eva I u ate d d es Ig n S NDP core 2 GHz, in-order
L1l 2-way, 32kB per core, 64B cachelines, LRU
. . LiD 4-way, 64kB per core, 64B cachelines, LRU
o Baseline: non-NDP host execution 16GB HEM 30, 1600 MHz, 256 Milun:

NDP HEM RCD-CAS-RP: 24-24-24;

@) NUCA dESign‘ JigsaW RD/WR: 1.7 pJ/bit, ACT/PRE: 0.6n]

16 GB HMC 2.1, 1250 MHz, 256 MB/unit;

o NUCA + data classification: Whirlpool et

DDR5-4800, 4 channels = 2 ranks x 16 banks:
Extended memory RCD-CAS-RP: 40-40-40;

o NUCA + global data replication: Nexus RDIWR: 3.2plbi, ACTIPRE: 330

Intra-stack network  128-bit link, 1.3 ns'hop [65]. [69]; 0.4 pl/bit
Inter-stack network 32 GB/s per dir., 10ns/hop [20], [22], [69]; 4 pJ/bit
CXL link 16-lane; 200 ns link latency; 11.4 pl/bit

2 Workloads

o Tensor workloads: e.g., DLRM recommendation system
o Rodinia workloads
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Evaluation

I Jigsaw [—1 Whirlpool [ Nexus [ NDPExt
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HBM3-style NDP memory HMC2-gtyle NDP memuory

a HBM-style comparison
o NDPExt outperforms SOTA by 1.41x on average and up to 2.43x over recsys

a Similar result trends in HMC-style NDP systems
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Evaluation

[ 1 NDPExt-static B NDPExt
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HBM3-style NDP memory

a NDPExt gains speedup for two reasons
o Prior work shows low metadata hit rate for irregular graph applications, while
NDPExt avoids metadata overheads using stream programming
o Compared to a heuristic static placement (NDPExt-static), NDPExt reduces
interconnect overheads with better data placement and flexible data replication



Summary

[ Data-intensive applications suffer from memory wall bottleneck ]
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[ Bandwidth bottleneck ] [ Capacity bottleneck ]
[ NDP with extended memory comes to the rescue
[ But this architecture has interconnect and metadata overheads...

> Coarse-grained stream cache organization

|—> Optimized cache configuration schemes

[ We propose NDPEXxt to reduce above overheads ]

Thank you!
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