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Background

❑ Data-intensive applications grow rapidly

❑ “Memory wall” bottleneck
o Limited bandwidth scaling and excessive data migration energy

o Limited capacity scaling due to limited CPU pin counts

Computational biology Big dataSimulationMachine learning
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Near-data processing (NDP) moves computation close to data

Compute Express Link (CXL) allows efficient memory capacity extension 



❑ Near-data processing (NDP): place compute logic near data memory
o Shorter distance→ lower latency and energy

o Higher bandwidth

❑ 3D-Stacked NDP architecture: 
o Incorporate compute logics inside 3D-stacked memories

o Multiple memory stacks interconnect with each other

o High bandwidth but Limited capacity

Near-Data Processing
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Compute Express Link

❑ CXL outlines memory interaction between host and devices

❑ We primarily focus on CXL.mem for memory extension
o Direct load/store access in the address space

o TB-level capacity plus scalable bandwidth support

o Fewer CPU pins requirement compared to DDR controllers
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NDP with Extended Memory

❑ 3D stacked NDP provides TB/s bandwidth while CXL provides TB capacity

❑ We add extended memory to NDP to accelerate large-scale applications
o Host offloads large-scale data-intensive tasks to NDP accelerator

o NDP manages data between local stacks and extended CXL memory

o For simplicity we use NDP as a distributed cache of extended memory space
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NUCA NDP
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Design Challenges

❑ Existing systems already incorporate a distributed cache system: NUCA

❑ What are the differences?
o D1: Fewer misses to extended memory in NDP thanks to larger cache capacity

o D2: NDP has higher interconnect overheads due to high off-chip/on-chip latency

o D3: NDP has higher metadata overheads since tags cannot store fully on-chip
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Prior NUCA Solutions for Interconnect Overheads

❑ Placing common data to the 
“center-of-mass”?
o Related work: Jigsaw [PACT’13]

o B’s interconnect hops are reduced

o But this scheme always favors cache 
space at the center than corner ones

o Per cacheline placement is challenging
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❑ Replicating every data to units
o Related work: Nexus [PACT’17]

o B’s interconnect hops are reduced

o But this scheme usually wastes 
cache space

o Metadata overheads disallow 
flexible replication options
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Motivation Summary from Previous Slides

Bandwidth bottleneck

But this architecture has interconnect and metadata overheads…

We propose NDPExt to reduce above overheads

Coarse-grained stream cache organization

Optimized cache configuration schemes
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Capacity bottleneck

Data-intensive applications suffer from memory wall bottleneck

NDP with extended memory comes to the rescue



Stream Cache Organization

❑ Observation 1: most NDP applications respect to stream access patterns

❑ Streams: coarse-grained memory access pattern abstraction
o Affine pattern, e.g., 𝑎𝑑𝑑𝑟 = 𝑎𝑥 + 𝑏
o Indirect pattern, e.g., 𝑎𝑑𝑑𝑟 =  𝑠 𝑖
o Used in prior work for prefetching [ISCA’19], instruction offloading [HPCA’22], etc.

❑ For example, parallelized graph traversal for thread 0
o Access pattern of vertex array: i
o Access pattern of edge array : j + vertex[i]
o Access pattern of visited array: edge[j + vertex[i]]

❑ We can use such programming hints for coarse-grained caching! 9
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Stream Cache Organization

❑ Observation 2: high metadata costs due to fine-grained mapping
o Storing streams instead of cachelines for NDP can reduce metadata overheads

❑ Basic access flow
o Lookup stream metadata to identify stream and element ID

o Fetch stream remap table to identify possible unit ID and DRAM location

o If hit, fetch local or remote data. If miss, refill data from extended memory.
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Stream Cache Organization

❑ We cache intermediate tables on-chip to reduce lookup overheads
o Stream lookahead buffer (SLB) is used to cache stream remapping information

o Affine tag array (ATA) is used to store tags for affine streams

❑ We support per-stream replication groups
o Unlike prior work, each stream can be replicated or partitioned to any unit groups

• For each stream, partial units are tagged with the same replication group (RGroups)

• Within each RGroup, stream data are partitioned using their allocation shares (RShares)

o Hardware-efficient lookup procedure
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Cache Configuration

❑ Goal
o Host determines stream placement by adjusting per-stream replication group 

(RGroups) and space partitioning across units within each group (RShares)

o We sample miss rates and configure data placement periodically

❑ Prior NUCA work separates sizing and placement
o For sizing, e.g., using Lookahead in Utility-Based Cache Partitioning [MICRO’06]

o For placement, e.g., using “center-of-mass” in Jigsaw [PACT’13]

o Separated sizing and placement results in suboptimal result
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Cache Configuration

❑ We propose a new configuration algorithm
o Simultaneous data sizing and placement

o Flexible data replication

❑ Key Ideas
o Compute the next steepest slope and immediately place it

o Prefer all replication when NDP memory is sufficient

o If NDP memory full, considering reallocation towards higher utility
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Methodology

❑ Simulated platform
o 128 NDP cores with 8 stacks

o Both HBM3-style and HMC-style NDP evaluated

❑ Evaluated designs
o Baseline: non-NDP host execution

o NUCA design: Jigsaw

o NUCA + data classification: Whirlpool

o NUCA + global data replication: Nexus

❑ Workloads
o Tensor workloads: e.g., DLRM recommendation system

o Rodinia workloads

o Graph computing benchmark GAP
14



❑ HBM-style comparison
o NDPExt outperforms SOTA by 1.41x on average and up to 2.43x over recsys

❑ Similar result trends in HMC-style NDP systems

Evaluation
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Evaluation

❑ NDPExt gains speedup for two reasons
o Prior work shows low metadata hit rate for irregular graph applications, while 

NDPExt avoids metadata overheads using stream programming

o Compared to a heuristic static placement (NDPExt-static), NDPExt reduces 
interconnect overheads with better data placement and flexible data replication
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Summary

Bandwidth bottleneck

But this architecture has interconnect and metadata overheads…

We propose NDPExt to reduce above overheads

Coarse-grained stream cache organization

Optimized cache configuration schemes
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Capacity bottleneck

Data-intensive applications suffer from memory wall bottleneck

NDP with extended memory comes to the rescue

Thank you!
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