
SeaCache: Efficient and Adaptive Caching for Sparse Accelerators
Xintong Li

Tsinghua University

Beijing, China

lixt21@mails.tsinghua.edu.cn

Jinchen Jiang

Tsinghua University

Beijing, China

jiangjc22@mails.tsinghua.edu.cn

Mingyu Gao

Tsinghua University

Beijing, China

Shanghai Qi Zhi Institute

Shanghai, China

gaomy@tsinghua.edu.cn

Abstract
Sparse tensor computations are highly memory-bound, making

on-chip data reuse in SRAM buffers critical to the performance of

domain-specific sparse accelerators. On-demand caches are com-

monly used in recent sparse accelerators, due to the advantage

of easy space allocation and the ability to avoid unnecessary data

fetches compared to scratchpad-style data buffering. However, ex-

isting cache designs suffer from inefficient space utilization due

to the difficulty of fitting variable-length sparse data into fixed-

size cache blocks. The theoretically optimal replacement policies

used by them also have substantial implementation cost, requir-

ing significant on-chip space to manage the metadata. To address

these issues, we propose SeaCache to enable efficient and adaptive

caching for sparse accelerators. SeaCache includes three key tech-

niques. First, it incorporates fiber packing and splitting to efficiently

map variable-length data into fixed-size cache blocks with high

space utilization. Second, it proposes a practical replacement policy

that performs similarly to the optimal one but has a much cheaper

implementation. Third, it shares the cache space between the ac-

tual data and the replacement policy metadata, with a two-phase

adaptive mechanism to decide the best partition ratio. Overall, Sea-

Cache outperforms state-of-the-art sparse cache designs by 2.8× on
average, demonstrating the effectiveness of its novel optimizations.

CCS Concepts
•Computer systems organization→ Special purpose systems;
• Computing methodologies→ Linear algebra algorithms; •
Theory of computation→ Caching and paging algorithms.

Keywords
sparse tensor algebra, hardware acceleration, cache, replacement

policy

ACM Reference Format:
Xintong Li, Jinchen Jiang, and Mingyu Gao. 2025. SeaCache: Efficient and

Adaptive Caching for Sparse Accelerators. In 58th IEEE/ACM International
Symposium on Microarchitecture (MICRO ’25), October 18–22, 2025, Seoul,
Republic of Korea. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3725843.3756040

This work is licensed under a Creative Commons Attribution 4.0 International License.

MICRO ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1573-0/25/10

https://doi.org/10.1145/3725843.3756040

1 Introduction
Sparse tensors play a crucial role in various fields, such as graph

analysis, high-performance computing, andmachine learning. How-

ever, their irregular data patterns often lead to inefficient compu-

tations on conventional general-purpose processors, mainly due

to random memory accesses to sparse data and uneven workload

distribution across parallel processing units. To mitigate these is-

sues, specialized accelerators have been developed to optimize

key sparse tensor operations, like sparse-sparse matrix multipli-

cation. These accelerators feature specialized arrays of multiply-

accumulate computing units and on-chip large-capacity SRAM

hierarchies. To overcome the memory access bottleneck in sparse

tensor computations, various dataflow optimizations are further ap-

plied, such as reordering the nested loops to balance data reuse with

Inner Product [13, 25], Outer Product [14, 22, 38], or Gustavson’s

schemes [3, 15, 18, 37], and tiling the loops either statically [17, 35]

or dynamically [16, 21] to allow local subsets of tensor data to fit

in the limited on-chip SRAM.

Despite the extensive collection of research on the optimizations

of sparse accelerators, we find that the specific design of the on-chip

SRAM itself, which is the most critical component to realize data

reuse, has not been sufficiently explored. Different from regular

dense computations, the scratchpad-style, explicit decoupled data
buffering [24] does not work well on sparse tensor operations. The

variable and irregular sizes of sparse data make buffer space alloca-

tion challenging, and simply and blindly bringing all sparse data to

the buffer may result in unnecessary accesses if some data are never

needed. As a result, many recent designs start to use on-demand
data caching for sparse accelerators [3, 18, 22, 37, 38].

In this paper, we focus on two aspects of cache design for sparse

accelerators: data mapping schemes and replacement policies. For

cache data mapping, previous work [30] has proposed to directly

use the IDs of sparse rows/columns (called fibers [32]) to index

the cache, avoiding the translation to physical addresses and thus

saving latency and metadata accesses. However, the drastically

varying sizes of sparse fibers make them difficult to fit in the fixed-

size cache blocks, resulting in cache space underutilization and

excessive cache misses. For replacement policies, existing designs

have noticed that the structural information of one operand tensor

can guide the replacement decisions of the other tensor [3, 4, 38],

leading to the guided LRU (gLRU) policy that realizes the Belady’s

Optimal [6]. Nevertheless, gLRU has a substantial implementation

cost, which either doubles metadata accesses to the off-chip mem-

ory, or requires significant on-chip space to dynamically reorganize

the guide metadata.

944

https://orcid.org/0009-0007-7461-8662
https://orcid.org/0009-0004-1039-619X
https://orcid.org/0000-0001-8433-7281
https://doi.org/10.1145/3725843.3756040
https://doi.org/10.1145/3725843.3756040
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756040
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3725843.3756040&domain=pdf&date_stamp=2025-10-17

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Xintong Li, Jinchen Jiang, and Mingyu Gao

To address these issues, we propose SeaCache, an efficient and

adaptive cache design for sparse accelerators. SeaCache only mod-

ifies the on-chip SRAM components, is compatible with banking,

and is orthogonal to the processing element design of the accelera-

tor. SeaCache consists of three key novel techniques that improve

the cache mapping scheme and the replacement policy.

First, to efficiently map variable-length sparse fibers into fixed-

size cache blocks, SeaCache incorporates fiber packing and splitting.
Each cache block may pack multiple short fibers, or keep a fiber

segment that is split from a long fiber. These techniques improve

cache space utilization for short fibers, and allow more data cached

from long fibers to reduce cache misses. We design the correspond-

ing mapping and format schemes to support such flexible packing

and splitting, with only small area overheads on the cache array.

Second, we move away from the expensive gLRU to a guided
LFU (gLFU) replacement policy that is more practical to implement.

Instead of keeping complex recency lists that involve many wide

pointers in gLRU, gLFU only requires simple narrow counters, thus

greatly saving the metadata size. While gLFU is no longer provably

optimal as gLRU, its empirical performance is similar. We introduce

additional shadowwayswithout data blocks in each cache set, called

virtual tags, to accommodate more gLFU counters on-chip that

capture future access patterns and improve replacement accuracy.

We also add one more port to the cache tag array to prevent counter

updates from interfering with normal accesses.

Third, deriving the gLFU counter values requires future access

information, which follows the structural metadata of the other

operand tensor. Thus we need to prefetch a future window of data

from the latter tensor. This requires on-chip storage space. We let

these prefetched data share the cache space with the actual data, and

propose a two-phase adaptive mechanism to select the appropriate

size to allocate to the prefetched data. In the offline phase, we

estimate an initial prefetch size based on simple sparsity statistics of

the tensor. During the online phase, we collect runtime performance

metrics and use them to dynamically adjust the prefetch size.

We demonstrate the effectiveness of SeaCache by integrating the

three techniques in a sparse accelerator that uses the Gustavson’s

dataflow and supports statically determined tiling. When compared

with state-of-the-art cache designs in sparse accelerators [3, 30, 38],

SeaCache achieves a 2.8× speedup on average, by significantly

reducing the cache miss rate and the memory bandwidth usage

with the proposed optimizations. When enabled on top of a base

design, fiber packing and splitting, guided LFUwith virtual tags, and

two-phase adaptive prefetch size selection contribute 1.80×, 1.10×,
and 1.38× improvements, respectively. We also show that SeaCache

outperforms a highly optimized scratchpad-style design [35] by

2.1×, demonstrating the high potential of on-demand caching for

sparse accelerators.

We make the following contributions in this paper.

• We propose the fiber packing and splitting strategy to map

variable-length sparse fibers into fixed-size cache blocks for

sparse accelerators, with high space utilization.

• We propose the guided LFU policy as a practical and near-

optimal replacement policy for sparse accelerators, and the

corresponding hardware design that incorporates virtual

tags to more accurately capture future access patterns.

• We propose the two-phase adaptive mechanism to deter-

mine the best cache partition ratio between the prefetched

metadata used by the guided LFU policy and the actual data.

• We integrate the above three techniques in a sparse accel-

erator and demonstrate a 2.8× speedup on average over

state-of-the-art designs.

2 Background
2.1 Sparse Tensor Algebra
Sparse tensors are essentially multi-dimensional arrays with most

elements being 0. In this paper, we follow the common terminol-

ogy [32], in which a tensor element is called a point at a certain
coordinate, e.g., 𝑋𝑖, 𝑗,𝑘 at (𝑖, 𝑗, 𝑘). To save storage space and compu-

tation, sparse tensors are often represented in various compressed
formats, such as the coordinate format (COO), compressed sparse

row/column (CSR/CSC), and block variants like block CSR. These

formats follow a common structure that organizes tensor dimen-

sions into a hierarchy of fibers [32]. Each fiber represents a sequen-

tial list of coordinates and their corresponding non-zero values

along the specific dimension. The term position refers to the actual

storage location of a point within these compressed formats, which

typically differs from its coordinate. We further use the Einsum

notation [10] to represent operations on sparse tensors, such as the

sparse-sparse matrix multiplication (SpMSpM) between tensors 𝐴

(𝐼 × 𝐾) and 𝐵 (𝐾 × 𝐽), which is 𝐶𝑖, 𝑗 = 𝐴𝑖,𝑘 × 𝐵𝑘,𝑗 over (𝐼 , 𝐽 , 𝐾).

2.2 Sparse Accelerators and Sparse Dataflow
Many specialized hardware accelerators have been developed for

sparse tensor operations [8, 12, 19, 23, 26, 34, 36]. Due to the sparsity,

each data element is involved in computations with only the non-

zero elements of other operand tensors, resulting in less data reuse

than the dense scenarios. Consequently, sparse accelerators are

usually heavily memory-bound. Loop reordering and loop tiling

techniques, which have been demonstrated to be efficient in dense

computations, have recently been adopted for sparse accelerators.

Loop reordering. Consider the SpMSpM 𝐶𝑖, 𝑗 = 𝐴𝑖,𝑘 × 𝐵𝑘,𝑗
with three dimensions (𝑖, 𝑗, 𝑘). By reordering the dimensions in

the loop nest, we have three main schemes of sparse dataflow,

namely Inner Product (IP) [13, 25], Outer Product (OP) [14, 22,

38], and Gustavson’s (Gust) [3, 15, 18, 37]. These different loop

orders affect the reuse of the three tensors. For example, the 𝑘

loop resides at the innermost level in IP, which maximally reuses

the output 𝐶 , while it is the outermost one in OP, which has poor

output data reuse. There also exist designs supporting dynamic

reconfiguration between multiple dataflow schemes to adapt to

various sparse patterns [18, 20]. We mainly use Gust in this paper,

as it achieves a relatively balanced and efficient design point. We

discuss other dataflows in Section 4.4. In Gust, each 𝐴𝑖,𝑘 element

in the 𝑖th row of 𝐴 multiplies with the corresponding 𝑘th row of 𝐵,

and the partial product is accumulated into the corresponding 𝑖th

row of 𝐶; i.e., 𝐶𝑖 =
∑
𝑘 𝐴𝑖,𝑘 × 𝐵𝑘 .

Loop tiling. Another approach to improving data reuse is to

split large tensors along some loop dimensions into smaller tiles,
which can better fit in the limited on-chip SRAM. Tiling is usually

done on the coordinate space rather than the position space, in

order to ensure matched coordinate spans between tensor tiles

945

SeaCache: Efficient and Adaptive Caching for Sparse Accelerators MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

during computation. However, due to varying data sparsity, simple

static and fixed-size tiling would lead to diverse tile sizes that either

underutilize or exceed the SRAM capacity. Therefore, state-of-the-

art designs leverage data pre-sampling to better choose the proper

tile size [35], use fully dynamic approaches to better adapt to the

data sparsity [16, 21], or combine static and dynamic methods [17].

For simplicity, in this work, we determine the optimized tile size

with offline pre-sampling, but the dynamic tiling methods can also

be integrated with our design (see Section 4.4).

2.3 Cache Management for Sparse Accelerators
The memory-bound nature of sparse accelerators makes them heav-

ily rely on efficient on-chip data reuse. Explicit decoupled scratch-

pad buffering [24] and on-demand caching are two common ap-

proaches used in hardware accelerators. We note that while scratch-

pads are more efficient for regular dense computations, caches are

potentially a better choice for sparse accelerators. There are several

reasons. First, the main data structures, sparse fibers, have irregular

and diverse sizes, which complicates space allocation and would

cause fragmentation in the scratchpad. It would be easier to apply

a fixed-size block granularity for space management with sparse

data. Second, because of the sparsity, not all fibers are needed by

the computations. For example, in the Gust dataflow, if all the 𝐴𝑖,𝑘
elements in column 𝑘 are zero, the 𝐵𝑘 row will never be used and

thus there is no need to fetch it on-chip. These savings are easier to

realize with on-demand caches than with scratchpads, especially

with the proper replacement policies described below. Third, typ-

ical caching overheads, such as translation between row/column

IDs and physical addresses, on-demand data fetch latencies, and

tag storage overheads, have been greatly alleviated with recent

design advances, as described below. As a result, caches have be-

come the common choice in many previous sparse accelerator de-

signs [3, 18, 22, 37, 38]. In this work, we focus on caches and aim to

optimize two major aspects in cache design: data mapping schemes

and replacement policies. We will show that our optimized cache

design outperforms the scratchpad in Section 6.

2.3.1 Mapping Schemes. Conventional caches typically use the

physical address to determine where to map a block of data in the

cache. In sparse accelerators, the data elements inside a fiber (e.g., a

row or a column) are often fetched and used together. This provides

an opportunity to directly use the fiber IDs to index the cache, as

proposed in the X-Cache design [30]. This approach eliminates

translation between the fiber IDs and the physical addresses, which

would require frequent accesses to the metadata of the compressed

format, such as the row pointers in the CSR format. X-Cache has

been shown to reduce the load-to-use latency by approximately 40%

in SpMSpM [30]. In addition, now we do not need to access most

metadata of the compressed format. For example, in CSR, when a

certain row is needed, we can use its ID to directly index the cache,

without first obtaining the row pointers to calculate the positions

of non-zero column IDs and values.

Figure 1 shows a simple example about how the fiber-ID-based

mapping works in X-Cache. Assume that the cache for tensor 𝐵

has two blocks, each with the size of two elements. In the Gust

dataflow, the elements 𝑎 and𝑏 in𝐴 need rows 0 and 3 of 𝐵, which are

fetched and stored in the cache (left bottom of the figure). Instead

b

d e
f g

a q
s t

u

r

v

p
c

0 p q

3 v

Meta-tag Data

A B

c d

e

f
1 2

2

3

null

Head Tail
0
1
2
3

(k) (i)
Data cache Guide metadata prefetch buffer

i k

k j

(k)

Figure 1: An example to illustrate how the fiber-ID-based
mapping scheme and the guided LRU policy work for SpM-
SpM between 𝐴 and 𝐵.

of the physical addresses, the cache keeps the meta-tags, which are

essentially the row IDs, 0 and 3, for the two blocks.

However, a critical challenge arises from the drastically varying

lengths of the fibers in the sparse tensors. With a fixed cache block

size, if the fiber is shorter than the block size, some cache space

would be underutilized, as in the block in row 3. If the fiber is too

long, it cannot fit in the block. The original X-Cache paper did

not explicitly describe how to handle this case. In this paper, we

assume a reasonable design in which only the first few elements

are stored in the block while the rest are discarded (as in the block

of row 0 in the figure), following the overflow handling method in

Tailors [35]. Such partial caching is a better choice than streaming

in these thrashing cases, as it retains reuse at least for some data.

2.3.2 Replacement Policies. Recall that the theoretical optimal re-

placement policy, Belady’s Optimal [6], suggests replacing the cache

block with the next farthest access time. While in general-purpose

applications such future information is unknown, in sparse compu-

tations like SpMSpM, the access pattern of one tensor is determined

by the non-zero element distribution of the other tensor. For exam-

ple, in the Gust dataflow, which 𝐵 rows are needed depends on the

column ID 𝑘 of the 𝐴𝑖,𝑘 element. Thus, the structural metadata of

𝐴 can be leveraged to guide the replacement of 𝐵 data.

This replacement policy, which we call guided LRU (gLRU), has

been exploited by several previous designs, including P-OPT [4],

InnerSP [3], and SpArch [38]. As shown in Figure 1, assume that

we have just finished multiplying element 𝐴0,0 = 𝑎 with row 𝐵0
and 𝐴0,3 = 𝑏 with 𝐵3, and are about to multiply 𝐴1,1 = 𝑐 with 𝐵1.

The cache has already been fully filled with two rows of 𝐵0 and 𝐵3,

and one of them needs to be evicted to make room for the incoming

𝐵1. Looking at the non-zero distribution of tensor 𝐴, we find that

the next time to reuse 𝐵0 is for the next non-zero element 𝐴3,0 = 𝑓

in column 𝑘 = 0, while that for 𝐵3 is for 𝐴2,3 = 𝑒 . Hence 𝐵3 has a

more recent reuse at 𝑖 = 2 than 𝐵0 at 𝑖 = 3, and we should evict 𝐵0.

Essentially, by looking at each column 𝑘 of 𝐴 and identifying the

next non-zero row ID 𝑖 , we can know when the corresponding 𝐵𝑘
row would be reused and make optimal replacement decisions.

Note that achieving gLRU requires the transposed CSC format

of 𝐴 in addition to the original CSR format for computations, in

order to examine each column of 𝐴. P-OPT [4] and InnerSP [3]

946

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Xintong Li, Jinchen Jiang, and Mingyu Gao

Table 1: Comparison of cache management techniques be-
tween state-of-the-art designs and ours.

Design Block size Replacement policy

P-OPT [4] 64 bytes gLRU (offline transpose)

InnerSP [3] 64 bytes gLRU (offline transpose)

SpArch [38] 576 bytes gLRU (1/6 prefetch size)

X-Cache [30] 16 bytes LRU

SeaCache Fiber packing & gLFU (adaptive prefetch

(ours) splitting in 64 bytes size shared with cache)

pre-computed such a transposition and assumed that both formats

were available for access. This is only possible if the tensor remains

constant and can be reused multiple times to amortize the offline

transpose cost. SpArch [38] instead claimed to perform next-reuse

detection online, but did not provide microarchitectural design

details. In this work, we assume an efficient implementation as

illustrated in Figure 1. The hardware would prefetch a certain num-

ber of 𝐴 elements into a guide metadata buffer. These metadata

are reorganized by column ID 𝑘 , into linked lists, each ordered by

row ID 𝑖 . Consequently, the row ID of the head element in the list

of column 𝑘 represents the next reuse time for the 𝐵𝑘 row. As in

Figure 1, the prefetch size is 4 elements, {𝑐, 𝑑, 𝑒, 𝑓 }, following its

original CSR order and reorganized into columns on-chip. From

their linked list structures, we see that the next reuse time for each

𝐵𝑘 would be 3, 1,∞, 2. Thus, 𝐵2 has the farthest reuse and is the best
candidate for replacement. When an element in the prefetch buffer,

e.g., 𝑐 , finishes its computation, it is removed from the list head.

Simultaneously, we prefetch a new element, e.g., 𝑔, and append it to

the corresponding list tail. This follows a sliding window manner.

3 Motivation
In this section, we focus on cache management for sparse accelera-

tors, and discuss several key problems in the state-of-the-art designs

introduced in Section 2.3, mainly concentrating on the aspects of

mapping schemes and replacement policies. The comparison is

summarized in Table 1.

3.1 Mapping of Variable-Length Fibers
As already discussed in Section 2.3.1, when the fiber length mis-

matches with the cache block size, either the cache space would be

underutilized for short fibers, or there will be many cache misses

for uncached elements in long fibers. Indeed, we find that for real-

world sparse matrices (obtained from the SuiteSparse Matrix Col-

lection [9]), not only the fiber lengths in different matrices, but also

those within a single matrix, vary significantly as shown in Figure 2.

This makes it difficult to choose a single fixed optimal block size.

Previous sparse accelerators only use fixed block sizes that fit

their target applications, but cannot generalize to diverse sparse

patterns. For example, X-Cache [30] opts for very short block sizes

of 1 or 2 elements. This works well in scenarios with very high

sparsity and mostly short fibers, increasing cache space utilization

and reducing internal fragmentation. However, long fibers cannot

fit in these small blocks and many elements remain uncached. On

the other hand, SpArch [38] uses a longer cache block size of 48

0 50 100 150 200 250
Fiber length

0%

1%

2%

3%

4%

5%

6%

7%

Pe
rc

en
ta

ge

ldoor
IMDB
ship_001
crankseg_2
TSOPF_FS_b300_c3

Figure 2: Distributions of row fiber non-zero lengths in se-
lected sparse matrices from SuiteSparse [9].

elements, which achieves higher throughput and lower latency by

avoiding multiple cache probes when accessing long fibers. This

design performs better in more mildly sparse scenarios. But such

large blocks will be underutilized for short fibers.

Design goal 1: To better support the highly diverse fiber lengths,
we need a more space-efficient mapping scheme to handle fibers

both shorter and longer than the block size, ensuring good perfor-

mance across various scenarios.

3.2 Cost of Guided Replacement
For replacement policies, although gLRU achieves optimal eviction

decisions, its implementation is non-trivial and may cause substan-

tial overheads. The offline approaches in P-OPT and InnerSP [3, 4]

allow for simpler hardware designs but introduce additional cost

for offline transposition and extra accesses to the transposed matrix.

Note that transposing a sparse matrix in a compressed format has

substantial cost, up to 126% compared to the actual computation

even with highly optimized and dedicated hardware support [11].

Although repeated computations on the same matrix may amor-

tize this cost, it is unacceptable in scenarios where the matrix is

computed only once. Furthermore, the offline methods still incur

extra online overheads because of the need to access the separate

transposed matrix, i.e., 𝐴𝑇 . This cost of doubling the accesses to

𝐴 would become especially significant considering that the other

matrix 𝐵 now enjoys good reuse with the optimal gLRU policy.

On the other hand, the online approach described in Section 2.3.2

(pre)fetches 𝐴 only once and uses its data for both guided replace-

ment decisions and actual computations. However, it has its own

drawbacks. First, significant on-chip SRAM space is needed to store

the prefetched guide metadata of𝐴. To obtain accurate future reuse

information, the prefetch size needs to be large enough, so that a

sufficient number of columns 𝑘 can identify at least one non-zero

element to make the linked lists non-empty (c.f. Figure 1). This

is particularly necessary when the tensor is very sparse with few

non-zeros. Second, complex hardware logic and extra auxiliary data

are needed to support online transposition. Recall Section 2.3.2 and

Figure 1 that each column 𝑘 needs a head pointer and a tail pointer,

both to the prefetched metadata of 𝐴. Additionally, each element in

the prefetch buffer also needs a pointer to the next one in the list.

The number of head/tail pointers is linear to the dimension size 𝐾

(or the tiled size 𝑇𝐾 if with tiling), which can be much larger than

the number of non-zero elements. Furthermore, the bitwidth of

947

SeaCache: Efficient and Adaptive Caching for Sparse Accelerators MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

each pointer is also not small, requiring ∼ 20 bits to cover a typical

prefetch buffer in hundreds of kB to a few MB.

Design goal 2: We aim to develop a guided replacement policy

that achieves similar efficiency, but is simpler and requires less

implementation cost than gLRU.

One known approach to alleviating the extra on-chip storage

for the guide metadata is to share the existing data cache space, as

proposed by P-OPT [4]. However, the offline method of P-OPT pins

the entire guide metadata on-chip and significantly reduces the

available space for data caching. The online approach only needs

to prefetch a subset of metadata ahead, but it faces the question

of deciding this prefetch size. A small prefetch size degrades the

accuracy of future reuse information, and hence decreases the hit

rate. A too large prefetch size would take too much space from the

data cache, also reducing the cache hits. Intuitively, the necessary

guide metadata to prefetch depend on the sparse pattern of the

tensor. A denser tensor can more quickly identify the next non-zero

coordinate for the next reuse even with a small prefetch size, while

a sparser tensor may need to look farther more into the future.

Design goal 3:When sharing the on-chip SRAM space between

the actual data and the guide metadata, we need an adaptive mech-

anism to decide the partitioning ratio between them to achieve the

overall best data hit rate.

4 SeaCache Design
We propose SeaCache, a set of efficient and adaptive cache manage-

ment techniques for sparse accelerators. SeaCache mainly improves

the mapping schemes and the replacement policies. It includes fiber
packing and splitting techniques that efficiently map variable-length

fibers to fixed-size cache blocks (Section 4.1), a practical guided LFU
replacement policy that is easier to implement than guided LRU

(Section 4.2), and a two-phase adaptive mechanism to select the

prefetch size of the guide metadata (Section 4.3). The above three

techniques realize the three design goals in Section 3. We discuss

how to integrate them together in Section 4.4 at the end.

4.1 Fiber Packing and Splitting
To support highly variable fiber lengths (design goal 1), several
architectural solutions are possible. One straightforward way is to

deploy multiple SRAM banks with different block sizes that respec-

tively fit long and short fibers. However, the ratio of long to short

fibers in a tensor is not known a priori andmay vary across different

local regions, making the static bank-level separation underutilize

the cache resources. Another solution is to use reconfigurable block

sizes that allow banks to be configured in different modes for long

and short fibers. Such reconfiguration needs to happen dynamically

to adapt to the ratio of long and short fibers. However, the long and

short modes with different block sizes need to use different address

indexing schemes to map fibers to SRAM locations. Such mode

switching requires a full remapping of the entire bank, i.e., flushing

and refetching all the data, which incurs excessive overheads.

We propose an efficient scheme that uses fixed-size hardware

blocks, but flexibly maps variable-length fibers with high space uti-

lization, by packing multiple short fibers into one block, or splitting
a long fiber into multiple segments to store across multiple blocks.

Figure 3 shows our mapping scheme, with a set-associative cache

0x00 | 0x7 10 0 5 10 -

Meta-tag Cnt Extra Data

2

5

0x2330

0x00337 0x00338 0x00339

0x12330

0x54332

0x4332

Tag array Data array

0x12 | 0x0 00

0x54 | 0x2 00

0x12 | 0x0 00

0x54 | 0x2 00

Set
0x33

Set
0x34

Tag-H Set ID Tag-LFiber ID

0x12330 (cont.)

0x54332 (cont.)

4 bits8 bits

Figure 3: Tag and data array structures for the mapping
scheme with fiber packing and splitting.

organization. In this example, we use a block size of 64 bytes. With

fiber packing and splitting, each block may store (a segment of) a

long fiber or multiple short fibers. To indicate the number of fibers

in a block, two extra Cnt bits per block are added to the tag part.

A value of 00 represents that only one fiber or a fiber segment is

stored. Otherwise, there are Cnt+ 1 fibers in this block. We also add

16 Extra metadata bits per block in the tag array, whose usage will

be discussed below. Because the Extra bits are used in different

ways for fiber packing and splitting, each block must be in one of

the two modes (distinguished by Cnt), but not both.
Fiber packing.When multiple fibers reside in the same block,

they must have the same set ID to legally be placed together. To

save space for tag bits, we further require that they have contiguous

fiber IDs, so we only need to store the tag of the first ID in the tag

bits. In other words, the Cnt+1 fibers in the block have their tags as

Tag, Tag+1, . . . , Tag+Cnt. This would require us to slightly change
how fiber IDs are mapped to sets. In normal fiber-ID-based mapping

schemes, the set ID is from the least significant bits of the fiber ID,

so we spread consecutive fibers into different sets (note that there

are no offset bits). To be able to pack multiple consecutive fibers in

one block, we skip a few least significant bits when taking the set

ID, shown as the Tag-L bits at the bottom of Figure 3. The Tag-L
and Tag-H bits are concatenated as the full tag. For example, the

first block in Figure 3 contains three fibers (Cnt = 10) with IDs of

0x00337, 0x00338, 0x00339, whose tags are contiguous as 0x00|7,
0x00|8, 0x00|9. While the 2-bit Cnt means at most four fibers can

be packed in one block, we choose a slightly wider Tag-L of 4 bits

to support unaligned cases, e.g., when fiber IDs of 7, 8, 9 reside in

one block as above. More analysis on Tag-L is done in Section 6.4.

To locate the multiple fibers in a block, we use the 16 Extra bits,

encoded as four 4-bit offsets within the block. In the above block,

the three fibers are at positions 0, 5, 10, respectively.

Fiber splitting. On the other hand, when a long fiber is split

and stored in multiple blocks, we need to adjust the indexing of

each segment. Otherwise, all segments would have exactly the same

set ID and tag from the same fiber ID and would be restricted in a

single block as in previous designs [30, 38]. Specifically, for the 𝑙th

948

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Xintong Li, Jinchen Jiang, and Mingyu Gao

segment, we map it using an adjusted fiber ID of ID + (𝑙 ≪ 𝑛Tag-L),
where the added term changes the set ID bits, so each segment is

mapped to a different set. To differentiate a segment in this adjusted

form from the fiber with the same ID, we further store the lowest 16

bits of the original fiber ID in the Extra bits. These bits are checked
when the block is accessed to ensure the correct match. For the

first segment which does not use an adjusted ID, we do not need

to store the original fiber ID, so we put the number of segments of

the fiber in the Extra bits.

For example, fiber 0x12330 is longer than a block and split into

two segments. The first segment is mapped to the set 0x33 in the

normal way, with the Extra field being 2, representing that the fiber
has 2 segments. The second segment with 𝑙 = 1 has an adjusted ID

of 0x12340 following the above equation and is thus mapped to

the set 0x34. The Extra bits are 0x2330, extracted from its original

fiber ID, so we will not mismatch it with the actual fiber 0x12340
even though their tag bits are the same. That is, only one of the

two can appear in the cache.

Using only the lowest 16 bits to differentiate fibers poses a limit

on the number of segments allowed. Assume two fibers with IDs of𝑎

and 𝑏, 𝑎 ≠ 𝑏. When their 𝑙𝑎-th and 𝑙𝑏 -th segments are mapped to the

same set and have the same tag, we have 𝑎+(𝑙𝑎 ≪ 4) = 𝑏+(𝑙𝑏 ≪ 4).
If their Extra bits are also identical, we have 𝑎 = 𝑏 (mod 65536). To
satisfy all the above equations, we must have 𝑙𝑎 or 𝑙𝑏 ≥ 4096 blocks,

or 256 kB. With each element containing a 64-bit value and a 32-bit

coordinate, this translates to 21854 elements (21845 = 256 kB / (32

bit + 64 bit)) in a fiber. Almost all sparse matrices in SuiteSparse

are within this limit. Furthermore, when tiling is applied, a single

long row/column would be split into multiple shorter fibers. In the

rare cases of very long fibers, we can reduce the tile size, or simply

discard the remaining elements beyond the allowed segments.

Cache access process. Following the fiber-ID-based mapping

approach [30], to access a fiber in the cache, we use its ID to directly

index the cache. We extract the set ID bits from the fiber ID to

identify the target set, and concatenate Tag-H and Tag-L to compare

with the tags in this set (Figure 3 bottom). Such tag matching is

performed in a fuzzy way for the lowest few bits, so as long as

the request tag falls in the range [Tag, Tag + Cnt] for a way in

the set, it is a potential hit. If Cnt is larger than 00, the block is

in the packing mode. We decode the Extra bits into four offsets,

and follow the corresponding one to access the data. If Cnt is 00,
the block is in the splitting mode. We read the Extra bits to get

how many segments to access. For each segment, we calculate the

adjusted ID to determine the corresponding set and access the data

from that set. For segments other than the first one, we also check

the Extra bits to match the lowest bits of the original fiber ID.

In the above cache hit case, no translation to physical addresses is

performed. However, for a miss, we need to follow the conventional

sparse data access flow, to retrieve the metadata from the memory

first, translate to the physical address, and then access the data

from the memory.

SRAM capacity cost. The additional bits added to each block

in our new mapping scheme introduce minor area overheads. The

original tag field is usually ∼ 20 bits with 32-bit coordinates and

∼10 bits for set IDs. With fiber packing, the data block size can be

much larger without worrying about space waste. We find that a

size of 64 bytes is a balanced choice (Section 6.4). In addition to

Tag Counter Data
1
2
0
1

Counter
0
1
2
3

(k)

0
2
1
1

After using c and
prefetching g

–1

+1

Normal tags

Virtual tags Set i

Set i + 1
(a) (b)

Figure 4: The guided LFU replacement policy. (a) The per-
column reuse counters and their updates. (b) The counters
are integrated into the data cache, with additional virtual
tags in each set.

these fields, we add 2 Cnt bits and 16 Extra bits, in total 18 bits.

These are only 18/(20 + 64 × 8) = 3.4% overheads.

Comparison to compressed caches. The fiber packing tech-
nique shares similar ideas to prior compressed cache designs [2, 27–

29] that compress multiple memory blocks into one cache block to

increase the effective cache capacity. However, SeaCache has two

main differences. First, in the domain of sparse tensors, both data

distributions and access patterns are more predictable than general-

purpose workloads. The cached 𝐴 and 𝐵 fibers are read-only, and

have fixed (albeit diverse) lengths. Thus we can avoid complicated

(de)compression and not deal with compress ratio changes. Second,

compressed caches only pack blocks but do not split. Fiber splitting

is unique to the fiber-ID-based mapping approach [30, 38].

4.2 Guided LFU Replacement
As discussed in Section 3.2, while gLRU is optimal, its implemen-

tation cost is excessive due to the many pointers to maintain the

per-column LRU linked lists. To avoid such overheads (design goal
2), we propose to move from LRU to LFU, which is also a commonly

used and empirically well-performed replacement policy. Specifi-

cally, we use a guided LFU (gLFU) policy, where we use the future

reuse information from matrix 𝐴 to derive the reuse counts (a.k.a.,

frequencies) of each fiber of 𝐵, instead of the reuse distance in gLRU.

Consequently, the per-column linked list becomes a single counter

per column. Figure 4(a) shows the auxiliary metadata needed by

gLFU, in contrast to those in Figure 1. When the prefetch buffer

slides to the next element, i.e., when𝐴1,1 = 𝑐 is used and𝐴3,2 = 𝑔 is

prefetched, their corresponding column counters are decremented

and incremented, respectively.

The metadata savings from gLRU to gLFU can be significant.

Recall that each pointer in the gLRU lists can be as wide as 20 bits.

In contrast, the counters in gLFU do not need to be very wide

because of the sparsity of tensors; each column usually only has a

few non-zeros within the prefetch size. In our design, we find 4-bit

counters are sufficient. Even if counter overflow (i.e., saturation)

occurs, the error is tolerable because these fibers are alreadymarked

as important with very large counts and are unlikely to be evicted.

Therefore, besides the prefetched structural metadata of 𝐴, gLRU

needs additional 20 × (2𝐾 + 𝑆) bits, while gLFU only needs 4𝐾 bits.

The tradeoff here is that gLFU is no longer provably optimal

as gLRU. However, empirically we find gLFU performs as good as

949

SeaCache: Efficient and Adaptive Caching for Sparse Accelerators MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

0%

20%

40%

60%

80%

100%

M
is

s R
at

e

p2p-Gnutella08
p2p-Gnutella31

filter3Dship_001
pwtk crankseg_2

af_shell9
kron18_g500-logn18

mouse_gene
nd24k Fault_639

TSOPF_FS_b300

fem_hifreq_circuit

CoupCons3D
ldoor dielFilterV2real

mycielskian16
mycielskian14

pdb1HYS
vsp_msc10848

amazon0601
cage14 Hardesty2

human_gene2
average

LRU
Idealized gLRU

Idealized gLFU
gLFU w/ 0 vtag

gLFU w/ 2 vtags
gLFU w/ 4 vtags

gLFU w/ 8 vtags
gLFU w/ 16 vtags

Figure 5: Comparison of miss rates with different replacement policies, including LRU, idealized gLRU, idealized gLFU, and
gLFU with various numbers of virtual tags per set.

gLRU. The first three bars of each group in Figure 5 compare (ideal-

ized) gLRU and gLFU against the conventional LRU policy. These

idealized guided policies have sufficiently large on-chip SRAM to

keep their metadata as calculated in the previous paragraph. We

see that both guided policies significantly reduce the miss rates

over LRU, with 16.5% and 15.9% miss rates, respectively. Note that,

here, gLFU even outperforms gLRU, because gLRU cannot achieve

Belady’s Optimal with a limited prefetch size (see below).

Practical implementation. However, the 4𝐾 bits of counters

may still be expensive if dedicated SRAM is used to store them on-

chip. In particular, for highly sparse matrices such as web-Google
and kkt_power, the SRAM capacity for these counters may even

exceed the structural metadata of 𝐴, as the number of columns 𝐾

could be larger than the number of non-zeros in the prefetch buffer.

We leverage two key insights here. First, the gLFU counters can

be sparse for highly sparse tensors; i.e., many counters are zero

and do not need to be stored. Second, most of the counters that are

important to making replacement decisions are for those fibers that

are already cached in the data cache. This is because these fibers

are exactly the replacement candidates. Therefore, we propose to

integrate the counters into the data cache tag array, exactly like

how the conventional LRU bits are maintained per block besides the

tags in standard caches. Only the cached fibers have their counters

valid. This integrated design has several benefits. First, compared

to using a separate counter cache, we reuse the same tag space

for both counters and data, avoiding duplication. Second, when an

𝐴 element is actually used and moved out from the head of the

prefetch buffer (e.g., 𝑐 in the previous example), the decrement of

the corresponding counter can be piggybacked on the access to the

fiber data, within a single cache access.

However, we still have two problems. First, as we aim to analyze

future access patterns with gLFU, some uncached fibers that will

be accessed in the future are still important, but their counters are

missing, which may significantly degrade performance compared to

the idealized case. This can be seen in Figure 5, where the miss rates

of “gLFU w/ 0 vtag” noticeably increase by 2.6× over “idealized

gLFU”. To resolve this issue, we further add several virtual tags
in each cache set, which only have the counters without actual

fiber data, as shown in Figure 4(b). These virtual tags can store

counters for uncached fibers that will be accessed in the future.

Only a moderate number of virtual tags are needed, such as 2 to

4 virtual tags besides the 16 ways in a set as indicated by Figure 5.

We use 4 virtual tags per set. This adds about 20 bits × 4ways +

4 bits × (16ways + 4ways) = 160 bits in each set. Combined with

the extra bits added in Section 4.1, the total overheads are about

5.3% more bits.

Second, maintaining the counters requires extra cache probes.

We have already discussed how to merge counter decrements with

actual data accesses. But counter increments when prefetching a

new 𝐴 element (e.g., 𝑔 in the previous example) still need separate

cache probes. Fortunately, these extra probes only access the tag

array but not the data array. We add an extra port to the tag array

in hardware to support two accesses per cycle, with moderate area

cost (see Table 2). Note that such doubled (or even tripled) cache

probes are not unique to our gLFU policy. Any guided policy would

require such metadata maintenance.

Overall flow. We finally describe the overall workflow of gLFU

with virtual tags. The gLFU counters need to be incremented and

decremented when an 𝐴 element is moved into and out of the

prefetch buffer, respectively. If the counter exists in the cache, either

with a normal tag or a virtual tag, it is directly updated. If the counter

is not present, we assume an initial counter value of zero. If it is

incremented to 1 (in case of prefetching), we check whether the

counter of a virtual tag is smaller (i.e., invalid or 0). If so, we replace

it with the new counter. Here we only check virtual tags because

for this prefetching, the actual 𝐵 fiber data do not need to be fetched

at this time, so the data space of a normal way would not be used.

4.3 Selection of Prefetch Size
Regardless of whether gLRU or gLFU is used, part of matrix𝐴 needs

to be prefetched onto the chip to guide replacement decisions. We

follow the P-OPT design [4] to directly store the prefetched data

in the data cache, i.e., sharing the cache space between the actual

𝐵 fiber data and the prefetched 𝐴 data. This avoids the need for

a separate dedicated prefetch buffer. However, now we need to

carefully determine how to partition the cache space between the

two types of data (design goal 3).
We find that the best prefetch size could vary significantly be-

tween different tensors. Figure 6 shows the miss rates when using

different amounts of the cache as the prefetch buffer, from 64/128
to 1/128. For relatively dense matrices like mouse_gene and nd24k,
very small prefetch sizes are desired. This is because their data-to-

metadata ratios are high, meaning only a small amount of metadata

are required to effectively determine optimized data replacements.

In these cases, overly large prefetch sizes actually reduce perfor-

mance for two reasons. First, a large prefetch size reduces the cache

950

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Xintong Li, Jinchen Jiang, and Mingyu Gao

0%

20%

40%

60%

80%

100%

M
is

s R
at

e

filter3D ship_001
af_shell9

kron18_g500-logn18

mouse_gene
nd24k CoupCons3D

mycielskian16

64/128
56/128
48/128

40/128
32/128
24/128

16/128
8/128
4/128

2/128
1/128

Figure 6: Miss rates when using different sizes for the guide
metadata prefetch buffer as portions of the data cache.

space available for data and increases the miss rate. Second, with the

gLFU implementation in Section 4.2, an excessively large prefetch

size would result in many non-zero gLFU counters that exceed what

the cache (including its virtual tags) can afford. Then newly incom-

ing counters that would be useful to guide replacements cannot

receive slots and be accumulated, but have to be discarded.

On the other hand, for highly sparse matrices, larger prefetch

sizes are more appropriate. When the sparsity is high, more meta-

data are needed to effectively profile future access patterns. If the

prefetch size is too small, many 𝐵 fibers will not have any corre-

sponding𝐴 elements present in the current prefetch buffer, resulting

in many gLFU counters being zero and ineffective guiding.

We propose an effective mechanism to determine the prefetch

size that can adapt to different matrices. We use a two-phase ap-
proach. Before execution starts, we use simple statistics of the

sparse tensor to determine an initial prefetch size. During runtime,

we further dynamically adjust the prefetch size according to the

collected performance behaviors.

More specifically, we first estimate the initial prefetch size based

on the sparsity of input tensors (Algorithm 1 Lines 1 to 2). Recall

that the cache is mainly used for 𝐵 fibers, and each 𝐵 row (i.e., each

𝐴 column) needs a counter. The ratio between the number of 𝐵

rows and the total number of non-zeros in 𝐵 (i.e., the inverse of the

average non-zero length of 𝐵 rows, Algorithm 1 Line 1) would be

the ratio between the counter space and the 𝐵 data space, which is

the prefetch size as a portion of the cache capacity. To ensure the

size is not too small, we empirically set a lower bound of 1/1024,
which is small enough to not affect the data caching.

Then, at runtime (Algorithm 1 Lines 3 to 18), we maintain two

pairs of counters during the execution for the following twometrics.

A discard rate is measured on the prefetch side, i.e., when incre-

menting counters for prefetched metadata, how many increments

are discarded due to insufficient counter storage. A high discard

rate indicates that too many data have been prefetched, and the

prefetch size should be reduced. A miss rate is measured on the

access side, i.e., when actually accessing the data, how many of

them have no counters being maintained. A high miss rate indicates

insufficient prefetching, suggesting that the prefetch size should be

increased. We perform dynamic adjustments each time a certain

amount of computations are performed (e.g., 1/500 × total MACs),

by increasing/decreasing the prefetch size when the miss/discard

rate exceeds a certain threshold of 20%.

From Figure 6 we see the performance impact of the prefetch

size may have multiple local optima. Thus we use simulated anneal-

ing to control the iterative adjustments. Specifically, we record the

actual data access miss rates to compare across iterations. In the

initial high-temperature iterations, adjustments that degrade per-

formance may be accepted with certain probabilities. Later on, only

adjustments that improve performance are accepted; otherwise, we

revert to the previous prefetch size. We choose 𝑇 (𝑘) = 0.2 × 0.99𝑘
as the temperature at iteration 𝑘 , and 𝑃 (𝑘,Δ𝑀) = exp(− Δ𝑀

𝑇 (𝑘)) as
the acceptance probability of a worse adjustment with Δ𝑀 being

the increased miss rate.

The aforementioned 20% miss/discard rate threshold is empir-

ically set and the final prefetch size is insensitive to it. We use

this threshold mainly to accelerate the convergence of simulated

annealing. Most cases can converge within 25 iterations and reach

a size within 95% performance of the optimal selection.

Algorithm 1: Two-phase adaptive prefetch size selection.

// Offline phase
1 nzlB← nnzB

𝐾×(𝐽 /𝑇𝐽)
; // Average non-zero length of 𝐵 rows

2 prefetch size← max

(
1

nzlB ,
1

1024

)
;

// Online phase
3 discard rate← 0, miss rate← 0;

4 for 𝑘 ← 1 to 100 do
5 𝑇 (𝑘) ← 0.2 × 0.99𝑘 ; // Temperature
6 Perform computations; record discard rate and miss rate;

7 if discard rate > threshold ∧miss rate < threshold then
8 Decrease prefetch size;

9 else if discard rate < threshold ∧miss rate > threshold then
10 Increase prefetch size;

11 else
12 Apply stochastic disturbance to prefetch size;

13 Δ𝑀 ← new miss rate − previous miss rate;

14 𝑃 (𝑘,Δ𝑀) ← exp

(
− Δ𝑀
𝑇 (𝑘)

)
; // Acceptance probability

15 if 𝑃 (𝑘,Δ𝑀) > Random() then
16 Accept new prefetch size;

17 else
18 Revert to previous prefetch size;

4.4 Putting It All Together
We integrate the three key techniques, namely fiber packing and

splitting, practical gLFU replacement, and two-phase prefetch size

selection, into SeaCache, an efficient and adaptive cache design for

sparse accelerators. SeaCache only modifies the cache components,

and is orthogonal to the processing element (PE) design of the

accelerator; the PEs can be organized in any form, being 1D or

2D. The on-chip cache of the sparse accelerator may be potentially

banked. At the high level, each bank operates independently, and

its space is partitioned into two parts, for the actual data of 𝐵 fibers

and the prefetched guide metadata of 𝐴, respectively.

A prefetch controller tracks the prefetch range of 𝐴, and moves

the corresponding 𝐴 elements into the tail or out of the head of the

prefetch buffer region in the cache, in a sliding window fashion as

951

SeaCache: Efficient and Adaptive Caching for Sparse Accelerators MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

described in Section 4.2. This prefetch controller also determines

the prefetch size, using the two-phase mechanism proposed in Sec-

tion 4.3. The prefetch size is initially set to the offline calculated size,

and then periodically adjusted at runtime by temporally pausing

the head/tail advances until the desired size is reached.

A fiber iterator is added to each PE to facilitate accesses to the

packed or split fibers from the cache (Section 4.1). In the case of

fiber packing, it extracts the corresponding sub-blocks from the

returned full cache block. In the case of fiber splitting, it keeps the

number of segments and maintains the segment index accessed so

far, and calculates the adjusted fiber ID for each segment before

sending the request to the cache.

Finally, inside the cache, we follow the structures illustrated in

Figure 3 and Figure 4(b), which add extra bits and counters to each

block. Furthermore, we add virtual tags in each set, and add an extra

access port to the tag array, to optimize gLFU metadata updates.

The tag comparators are also revised to support fuzzy matching on

the lowest bits, and we may add a few more comparators to cover

the additional virtual tags besides the normal ways.

Support various dataflow schemes.We havemainly discussed

SeaCache with the Gust dataflow in the previous sections. On other

dataflow schemes, the fiber packing and splitting techniques can

be applied in the same way, as all schemes access data in the gran-

ularity of fibers. The guided replacement policies, including gLRU

and gLFU, are usually used for Gust [3] which exhibits the depen-

dent access patterns of 𝐵𝑘 on 𝐴𝑖,𝑘 . The classic IP and OP schemes

access the fibers in pre-determined orders and do not have these de-

pendencies. SpArch [38], while being OP-based, further condenses

the non-zeros in 𝐴 to the leftmost. Therefore, when executing the

outer product between 𝐴 and 𝐵, the non-zeros in the condensed 𝐴

column have different 𝑘 coordinates and need to access different 𝐵

rows in an irregular and dependent manner. As a result, the gLFU

policy and the adaptive prefetch size selection can also be applied

to SpArch. We evaluate this case in Section 6.3.

Support dynamic tiling. So far, we assume the input tensors

are tiled offline, so the runtime hardware sees fixed tile sizes. It

is also possible to use dynamic tiling [16, 17, 21] with SeaCache.

Essentially, all the techniques in SeaCache work within the process

of multiplying two tiles of 𝐴 and 𝐵. Existing dynamic tiling designs

only adjust the tile size between tiles, so the processing within a

tile remains unaffected. Therefore, when integrated together, the

dynamic tiling logic decides the next tile size, and then asks the

PEs to fetch the corresponding fibers, which generates the accesses

to the cache that will be served with the SeaCache techniques.

5 Methodology
We compare SeaCache with prior cache designs in sparse accel-

erators, particularly InnerSP [3], SpArch [38], and X-Cache [30].

P-OPT [4] is a CPU-based design, while its accelerator variant is

just InnerSP. Table 1 summarizes the key techniques of these de-

signs. For mapping strategies, all the three baselines use the basic

fiber-ID-based mapping described in Section 2.3.1. For replacement

policies, X-Cache uses standard LRU. InnerSP uses offline gLRU

that pre-generates the transpose of 𝐴, whose cost is ignored. At

runtime, the gLRU reuse distance is fetched and kept in addition

to the cache tag in each fiber’s block, and does not occupy the data

space. In contrast, SpArch uses online gLRU that dynamically calcu-

lates the reuse distance. It uses 1/6 of the cache data space to store

the head/tail pointers as well as the linked lists (Figure 1).

All the designs use the same hardware configuration: 32 MAC

PEs operating at 1GHz, with a 2MB global cache organized into

32 banks. We also use the same dataflow for all the designs for fair

comparison, though they were originally proposed under differ-

ent dataflow schemes. We use Gust by default, and also evaluate

condensed OP used by SpArch in Section 6.3. The cache is 16-way

set-associative, with a 64-byte block size. The off-chip memory

employs four DDR4 channels, providing an aggregate bandwidth

of 68GB/s. These settings are consistent with the configurations

adopted in prior works [18, 31, 37]. We also evaluate performance

under varying cache sizes and block sizes in Section 6.4.

To apply tiling, we mainly follow Tailors [35] and statically

choose the appropriate tile size that achieves the best performance

for each input matrix, under the given on-chip SRAM budget. Our

tile size choices incorporate overbooking as in Tailors, and the on-

demand fetching nature of caches naturally handles overbooking.

Besides caching, we also include a scratchpad baseline to demon-

strate the benefits of caches over scratchpads, as described in Sec-

tion 2.3. The scratchpad baseline follows the design of Tailors [35],

and has the same number of PEs, on-chip SRAM capacity, and

off-chip bandwidth as the above configuration.

Simulation and implementation. To evaluate performance

across the different designs, we implement a cycle-accurate simu-

lator in C++. The simulator tracks the accesses to individual non-

zeros and precisely captures the impact of input sparsity patterns.

Specifically, key components such as the index selector for Gust

are explicitly modeled. The actual input sparse matrix is fed to the

simulator to determine which data elements are actually processed

in the PEs, as well as the specific fiber IDs and lengths that need

to be accessed from the memory. The simulator tracks the exact

tag and data contents of the cache following the proposed designs,

to determine whether each access is a hit or a miss. The cache is

accessed in the granularity of cache blocks. When a fiber access con-

tains multiple cache blocks as described in Section 4.1, these blocks

are accessed in a pipelined way from the cache in multiple cycles,

and the access time is determined by the cache port bandwidth. In

addition, we assume the access requests are issued by a decoupled

controller [24] which then sends the data to all the requesting PEs.

This avoids redundant accesses from multiple PEs. Our simulator is

open-sourced at https://github.com/tsinghua-ideal/SeaCache-sim.

In addition, we implement the RTL designs of the key compo-

nents introduced in SeaCache, including the prefetch controller, the

fiber iterators, and the modified fuzzy tag comparators (Section 4.4).

We synthesize these components using the Synopsys Design Com-

piler targeting the TSMC 28 nm technology node. The SRAM-based

cache banks are modeled using CACTI 7.0 [5] to estimate the area

and power. We also extend CACTI to capture the SeaCache internal

modifications to the cache, including the extra bits and counters,

the added virtual tags per set, and the extra read-write port in the

tag array (Section 4.4). Table 2 shows the area breakdown. Most of

the overheads come from the modifications to the internal cache

arrays, as we add extra bits and counters per block. Nevertheless,

the overall area increase is modest, less than 6%.

952

https://github.com/tsinghua-ideal/SeaCache-sim

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Xintong Li, Jinchen Jiang, and Mingyu Gao

0.062
0.125
0.250
0.500
1.000
2.000
4.000
8.000

Sp
ee

du
p

p2p-Gnutella08
p2p-Gnutella31

filter3Dship_001
pwtk crankseg_2

af_shell9
kron_g500-logn18

mouse_gene
nd24k Fault_639

TSOPF_FS_b300

fem_hifreq_circuit

CoupCons3D
ldoor dielFilterV2real

mycielskian16
mycielskian14

pdb1HYS
vsp_msc10848

amazon0601
cage14 Hardesty2

human_gene2
geomean

0.04 0.28 4.15
9.41 11.75 52.16 16.21

3700.85
1113.79 172.76 36.21

26.19

185.16
96.62 38.70

83.10 1113.47 41.74
7.62

23.66 17.12 392.51
40.01

574.85

Scratchpad InnerSP InnerSP + Static SpArch X-Cache SeaCache (Ours)

Figure 7: Performance comparison between the baselines and SeaCache, with Gust dataflow. Normalized to InnerSP. The
numbers on top of the SeaCache bars represent their absolute execution time in milliseconds. The hatched regions in InnerSP
indicate the performance when including its offline transpose cost.

0
10
20
30
40
50
60
70

B
an

dw
id

th
 (G

B
/s

)

p2p-Gnutella08
p2p-Gnutella31

filter3Dship_001
pwtk crankseg_2

af_shell9
kron18_g500-logn18

mouse_gene
nd24k Fault_639

TSOPF_FS_b300

fem_hifreq_circuit

CoupCons3D
ldoor dielFilterV2real

mycielskian16
mycielskian14

pdb1HYS
vsp_msc10848

amazon0601
cage14 Hardesty2

human_gene2

0%

20%

40%

60%

80%

100%

M
is

s R
at

e

Scratchpad InnerSP SpArch X-Cache SeaCache (ours)

Figure 8: Memory bandwidth (bars) and miss rates (dots) of the baselines and SeaCache.

Table 2: Area breakdown of SeaCache.

Component Area (mm
2) Area %

32 PEs 2.80 36.78%

Interconnects 0.37 4.86%

2MB vanilla cache 3.99 52.41%

Internal cache modifications 0.35 4.60%

All modified comparators 0.013 0.17%

Prefetch controller 0.005 0.07%

32 fiber iterators 0.085 1.12%

Total 7.613 100.00%

Datasets. We use real-world sparse matrices from the SuiteS-

parse Matrix Collection [9] as our evaluation datasets. These ma-

trices cover a wide range of densities (from 0.0006% to 0.356%),

non-zero counts (from 20K to 27M), and sparsity patterns. Fol-

lowing previous work, all matrices use 64-bit non-zero values,

with 32-bit coordinates and pointers. Our primary evaluation task

is sparse matrix-sparse matrix multiplication (SpMSpM) via self-

multiplication of square matrices, i.e., 𝑆×𝑆 , in line with prior studies.
In addition, we also test several other sparse kernels, including (1)

𝐹𝑇 × 𝐹 with a tall-skinny sparse matrix 𝐹 ; (2) 𝐹 × 𝐷 where 𝐷 is

a random dense matrix, i.e., SpMM; (3) 𝐹𝑇 × 𝑆 as one iteration of

multi-source breadth-first search (MS-BFS) in graph analytics [1, 7],

where 𝑆 is the graph and 𝐹 represents the initial source nodes [21].

6 Evaluation
In this section, Section 6.1 first compares the overall performance

among all the designs with the default configuration, and then

Section 6.2 analyzes the benefits from each individual techniques of

SeaCache. Section 6.3 further extends SeaCache to other accelerator

dataflow schemes and sparse kernels. Finally, Section 6.4 measures

the impact of key design parameters in SeaCache.

6.1 Overall Comparison
Performance. Figure 7 compares SeaCache against the scratchpad

approach and the three cache baselines under the Gust PE dataflow.

First, the scratchpad condenses all fibers and eliminates space frag-

mentation, thus achieving good overall performance with 1.48×
over InnerSP. However, it is hard to apply replacement policies to

scratchpads for sparse accelerators. After we evict a fiber with an

arbitrary length and reclaim its space, it is difficult to re-allocate

this space to another fiber with a different length. Hence, when the

data exceed the buffer size, cold fibers fetched earlier will prevent

hot fibers fetched later from entering the buffer. Our optimized

SeaCache design can achieve similarly high space utilization while

enabling gLFU replacements, thus outperforming the scratchpad.

Among the three cache baselines, each design has some advan-

tages in some aspects but performs poorly in others. InnerSP uses

a moderate cache block size and the gLRU policy, resulting in good

average performance across different matrices. However, its fixed

block size does not always match the matrix fiber lengths. Also, the

results are optimistic. If we account for the offline transpose cost,

the total execution time will increase by 1.81× on average (shown

as the hatched regions), even though we use the optimized parallel

transposition algorithm ScanTrans [33] with 24 threads on an Intel

Xeon Gold 5120 processor at 2.2 GHz.

For SpArch with a large block size and the online gLRU policy,

about half of the matrices perform well, while the rest half exhibit

significantly lower performance. There are mainly three inefficien-

cies. First, in highly sparsematrices, such as p2p-Gnutella31, there
are only a few elements (e.g., two) in each fiber, leaving the 576-byte

block severely underutilized. Second, for those matrices preferring

large tile sizes, such as af_shell9, the guide metadata needed

953

SeaCache: Efficient and Adaptive Caching for Sparse Accelerators MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

p2p-Gnutella08

p2p-Gnutella31

filter3D
ship_001

pwtk
crankseg_2

af_shell9

kron18_g500-logn18

mouse_gene

nd24k
Fault_639

TSOPF_FS_b300

fem_hifreq_circuit

CoupCons3D

ldoor
dielFilterV2real

mycielskian16

mycielskian14

pdb1HYS

vsp_msc10848

amazon0601

cage14
Hardesty2

human_gene2

average

0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy
 B

re
ak

do
w

n

Others
Cache Accesses

Memory Accesses
Energy Reduction

0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy
 R

ed
uc

tio
n

Figure 9: Energy consumption breakdown (bars) of SeaCache
and its energy reduction (dots) over InnerSP.

by gLRU, including the head/tail pointers and linked list pointers,

would take substantial cache space. Third, for very large matrices,

such as ldoor and dielFilterV2real, the guide metadata size

may even exceed the entire cache capacity. We have to reduce their

tile sizes to limit these metadata to use no more than half of the

cache. The smaller tile sizes will lead to worse data reuse and more

redundant memory accesses [35], hence degrading performance. In

summary, while gLRU theoretically gives the optimal replacement

decisions, its online implementation cost is too high, requiring

significant metadata storage.

X-Cache uses very short blocks and the conventional LRU policy.

It does not suffer from any offline or online cost from the replace-

ment policy, but LRU is not as good as gLRU, so its performance is

lower than InnerSP. We were expecting its small block size would

make it perform much worse than InnerSP, but this effect is not sig-

nificant. We find that for very long fibers, even the 64-byte blocks

in InnerSP still cannot efficiently cache them, leaving many data

accesses to the off-chip memory.

Finally, SeaCache achieves significant speedups over all baselines,

on average 2.1× over the scratchpad, 3.1× over InnerSP, 6.8× over

SpArch, and 2.8× over X-Cache. Such significant improvements

are enabled by the efficient fiber packing and splitting technique

that better utilizes the cache block space, the gLFU policy that has

cheap and practical implementation, and the two-phase adaptive

prefetch size selection that prevents guide metadata from hijacking

too much cache space from actual data. Essentially, SeaCache ef-

fectively addresses the inefficiencies mentioned above in the three

baselines. We will later conduct in-depth performance analysis of

each individual technique in Section 6.2.

Memory bandwidth and cache miss rate. Figure 8 further
explains the performance gains of SeaCache using the memory

bandwidth and miss rate of each design. InnerSP and X-Cache can

achieve relatively low miss rates in extremely sparse matrices like

p2p-Gnutella08, p2p-Gnutella31, and amazon0601, but have bad
miss rates in other matrices. This is because the fiber lengths often

exceed the block size in these not-so-sparse matrices. This leads

to many cache misses, and also increases the memory bandwidth

usage in these two designs. SpArch, with very large blocks, relieves

this problem and reduces the miss rates for certain matrices with

long fibers. But its overall miss rate and memory bandwidth remain

high. We do not show the miss rate of the scratchpad since it is

defined for caches, but we see that the memory bandwidth of the

scratchpad is also very high and makes it memory-bound. Finally

in SeaCache, both the improved mapping strategy and the replace-

ment policy help reduce cache misses, making its miss rates the low-

est among all designs. The memory bandwidth used by SeaCache

also drops, sometimes even no longer memory-bound. But sev-

eral highly sparse or hard-to-reuse matrices, e.g., p2p-Gnutella08,
fem_hifreq_circuit, and mycielskian16, still exhibit high band-
width, mainly because of the decreased execution time.

Impact of sparsity characteristics. The caching performance

of sparse accelerators heavily depends on the data characteristics,

among which the most important one is the degree of sparsity.
Sparser matrices usually have shorter fiber lengths, i.e., fewer non-

zeros per row. First, from the mapping perspective, matrices with

short fibers suffer from cache block underutilization, and thus prefer

short block sizes, e.g., p2p-Gnutella08 for X-Cache. Matrices with

long fibers suffer from cache block overflow, and need large blocks,

e.g., nd24k for SpArch. Most matrices have diverse fiber lengths

and benefit from our fiber packing and splitting design. Second,

for the replacement policy, gLRU has high metadata cost (head/tail

pointers and linked-list pointers) for large and sparse matrices,

e.g., af_shell9 and ldoor for SpArch. Third, for the prefetch size,

denser matrices require smaller prefetch sizes, e.g., mouse_gene
and nd24k. This is because their data-to-metadata ratios are high,

meaning only a small amount of metadata would be sufficient to

effectively determine the optimized data replacements.

Furthermore, the specific sparse pattern, i.e., the non-zero distri-

bution, also affects the caching performance. Matrices with higher

data correlations, such as power-law matrices mycielskian16 and

amazon0601, can still have good hit rates with a simple LRU pol-

icy as in X-Cache. Matrices with low data correlations, such as

diagonal-like ship_001 and fem_hifreq_circuit, perform bad

under simple policies and benefit more from the guided policies,

but may require large prefetch sizes.

Energy. Figure 9 shows the energy consumption breakdown

of SeaCache. We mainly highlight the dynamic energy portions

of cache and memory accesses. “Others” include the PE compu-

tation energy (at 3.32W) and the static energy (at 1.02W). Based

on CACTI, we assume 0.291 nJ and 0.306 nJ for each 64-byte cache

block read and write. The memory access consumes 20 pJ/bit. We

see that off-chip memory accesses account for a moderate portion

of energy consumption around 30%, thanks to the reduced cache

misses. Overall, SeaCache reduces the energy by 60.2% compared

to the InnerSP baseline.

6.2 Analysis of Individual Techniques
To separate the contribution of each technique in SeaCache, we

start from a “Base” design, which uses conventional LRU and 64-

byte cache blocks with basic fiber-ID-based mapping. The effects of

incrementally enabling each optimization are depicted in Figure 10.

By using fiber packing and splitting (“+P&S”), the space utilization

of each cache block is improved for both short and long fibers,

fitting more data in the cache. This achieves a 1.80× speedup.

Next, we apply the gLFU policy (“+gLFU”), using a fixed prefetch

size of 1/6 cache space, same as SpArch. No virtual tags are added.

954

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Xintong Li, Jinchen Jiang, and Mingyu Gao

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Sp
ee
du
p

p2p-Gnutella08
p2p-Gnutella31

filter3Dship_001
pwtk crankseg_2

af_shell9
kron18_g500-logn18

mouse_gene
nd24k Fault_639

TSOPF_FS_b300

fem_hifreq_circuit

CoupCons3D
ldoor dielFilterV2real

mycielskian16
mycielskian14

pdb1HYS
vsp_msc10848

amazon0601
cage14 Hardesty2

human_gene2
geomean

Base +P&S +gLFU +4vtags +StaticSize +AdaptSize

Figure 10: Performance improvements from each individual technique in SeaCache.

0.062
0.125
0.250
0.500
1.000
2.000
4.000
8.000

Sp
ee

du
p

p2p-Gnutella08
p2p-Gnutella31

filter3Dship_001
pwtk crankseg_2

af_shell9
kron_g500-logn18

mouse_gene
nd24k Fault_639

TSOPF_FS_b300

fem_hifreq_circuit

CoupCons3D
ldoor dielFilterV2real

mycielskian16
mycielskian14

pdb1HYS
vsp_msc10848

amazon0601
cage14 Hardesty2

human_gene2
geomean

Scratchpad InnerSP SpArch X-Cache SeaCache (Ours)

Figure 11: Performance comparison between the baselines and SeaCache, with condensed OP dataflow. Normalized to InnerSP.

However, this does not show any speedup, but degrades the perfor-

mance by 7.5% on average. Only for several matrices like af_shell9
and dielFilterV2real, this simple gLFU performs close to our

final design. These matrices have the following characteristics. On

one hand, they exhibit relatively good temporal locality, in which

the prefetched fiber IDs are mostly already in the cache. So extra

virtual tags are not needed. On the other hand, they fit well with

the 1/6 prefetch size. Some other matrices like CoupCons3D also

have good temporal locality, but require different prefetch sizes.

We then introduce 4 virtual tags in each 16-way set (“+4vtags”).

This setting gains an overall speedup of 10.3% relative to “+P&S”,

but many matrices still do not have their most appropriate prefetch

sizes. If we statically scan all prefetch sizes, we find that 1/16 of

the cache size (“+StaticSize”) has the best average speedup of 35.4%

over “+P&S”. Finally, we use our two-phase adaptive mechanism

to select per-matrix best prefetch sizes (“+AdaptSize”). This design

achieves the best performance, with 1.12× faster than “+StaticSize”,

and 2.75× and 1.38× over “Base” and “+4vtags”.

6.3 Results of Other Dataflows and Kernels
Other dataflow. Besides Gust, SeaCache can also be used for the

condensed OP dataflow [38] (Section 4.4). We compare SeaCache

against the baseline scratchpad and cache designs in Figure 11

when all of them use the condensed OP dataflow. The overall per-

formance trend is similar to that of Gust. The scratchpad only per-

forms well on matrices that are relatively dense or have good reuse.

SpArch underutilizes the large block size, especially in very sparse

matrices. Several power-law matrices, including mouse_gene and
amazon0601, have better reuse under condensed OP, so the rela-

tively simple replacement policies in the scratchpad and X-Cache

achieve better performance than those under Gust. Overall, with

the condensed OP dataflow, SeaCache achieves average speedups

of 1.6×, 2.8×, 8.6×, and 2.4× over the scratchpad, InnerSP, SpArch,

and X-Cache, respectively.

Other kernels. Figure 12 evaluates other sparse kernels. In gen-

eral, SeaCache still exhibits robust speedups over the four baselines,

0.25
0.50
1.00
2.00
4.00
8.00

Sp
ee
du
p

nemsemm1
12month1

spal_004
bibd_22_8

rail2586
rail4284

Trec14 geomean

F T × F

0.50
1.00
2.00
4.00
8.00

Sp
ee
du
p

nemsemm1
12month1

spal_004
bibd_22_8

rail2586
rail4284

Trec14 geomean

F × D

0.12
0.25
0.50
1.00
2.00

Sp
ee
du
p

filter3D
ship_001

pwtk crankseg_2

af_shell9
kron_g500-logn18

mouse_gene

nd24k
CoupCons3D

dielFilterV2real

mycielskian16

pdb1HYS
vsp_msc10848

geomean

F T × S

Scratchpad InnerSP SpArch X-Cache SeaCache

Figure 12: Performance comparison between the baselines
and SeaCache, for different sparse kernels 𝐹𝑇 × 𝐹 , 𝐹 × 𝐷 , and
𝐹𝑇 × 𝑆 with Gust dataflow. The 𝑥 axis shows matrix 𝐹 in the
first two kernels, and matrix 𝑆 in the last kernel.

1.7×, 4.3×, 4.8×, 3.8× for 𝐹𝑇 × 𝐹 ; 1.9×, 2.9×, 3.1×, 2.9× for 𝐹 × 𝐷 ;
and 3.2×, 1.0×, 3.6×, 0.9× for 𝐹𝑇 × 𝑆 .

The scratchpad shows good performance in 𝐹𝑇 ×𝐹 . In this kernel,
the result matrix𝐶 is very small, so tiling along the 𝑘 dimension and

buffering the𝐶 matrix are very effective and can make data fully fit

in the scratchpad. But in the cache baselines, the space utilization

degrades due to underutilizing or overflowing the fixed block size,

making performance suffer. Similarly, 𝐹 ×𝐷 on bibd_22_8 also has
a very small dense matrix 𝐷 that fully fits in the scratchpad.

Note that the gains of SeaCache are also significant on the sparse-

dense multiplication kernel 𝐹 × 𝐷 . First, although 𝐷 is dense, the

fiber lengths of 𝐷 still vary across matrices, and do not perfectly

match the fixed block sizes in the baseline caches. Second, the access

pattern of 𝐷 still depends on the sparse 𝐹 , and thus benefits from

955

SeaCache: Efficient and Adaptive Caching for Sparse Accelerators MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

0.0
1.0
2.0
3.0
4.0
5.0
6.0

Sp
ee
du
p

p2p-Gnutella08

p2p-Gnutella31

filter3D
ship_001

pwtk
crankseg_2

af_shell9

kron_g500-logn18

mouse_gene

nd24k
Fault_639

TSOPF_FS_b300

fem_hifreq_circuit

CoupCons3D

ldoor
dielFilterV2real

mycielskian16

mycielskian14

pdb1HYS

vsp_msc10848

amazon0601

cage14
Hardesty2

human_gene2

geomean

0.5MB 2MB 8MB

Figure 13: Impact of cache capacity on the speedups of Sea-
Cache over the Base design in Figure 10.

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

p2p-Gnutella08

p2p-Gnutella31

filter3D
ship_001

pwtk
crankseg_2

af_shell9

kron_g500-logn18

mouse_gene

nd24k
Fault_639

TSOPF_FS_b300

fem_hifreq_circuit

CoupCons3D

ldoor
dielFilterV2real

mycielskian16

mycielskian14

pdb1HYS

vsp_msc10848

amazon0601

cage14
Hardesty2

human_gene2

geomean

32 Bytes 64 Bytes 128 Bytes

Figure 14: Impact of cache block size on performance, nor-
malized to the default 64 bytes.

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

p2p-Gnutella08

p2p-Gnutella31

filter3D
ship_001

pwtk
crankseg_2

af_shell9

kron_g500-logn18

mouse_gene

nd24k
Fault_639

TSOPF_FS_b300

fem_hifreq_circuit

CoupCons3D

ldoor
dielFilterV2real

mycielskian16

mycielskian14

pdb1HYS

vsp_msc10848

amazon0601

cage14
Hardesty2

human_gene2

geomean

3 bits 4 bits 5 bits

Figure 15: Impact of Tag-L bitwidth on performance, normal-
ized to the default 4 bits.

the guided replacement policies. Third, the dense 𝐷 matrix further

reduces the overheads of prefetch metadata (e.g., one counter for a

long dense row), making the guided replacement more efficient.

In the MS-BFS kernel 𝐹𝑇 × 𝑆 , SeaCache’s advantages are smaller.

This is due to the extremely sparse matrix 𝐹𝑇 representing the

initial source nodes (one element per row), which makes the graph

matrix 𝑆 hardly reused, and thus the caching optimizations have

limited impact. X-Cache achieves the best performance here since

it uses a very small cache block size and has the fewest redundant

fetches. SeaCache performs close to X-Cache.

6.4 Sensitivity Studies
Cache capacity. We measure the speedup of the full SeaCache

design over the “Base” design in Section 6.2, i.e., the effectiveness of

SeaCache, under different cache capacities of 0.5MB, 2MB (default),

and 8MB in Figure 13. We keep using 32 PEs and 64-byte blocks.

SeaCache achieves consistent speedups of 2.21×, 2.69× and 2.89×.
The SeaCache techniques offer more performance gains in larger

capacities. The increased cache space necessitates efficient mapping

strategies like fiber packing and splitting to fully utilize. Also, more

space allows the gLFU policy to keep more guide metadata and

thus make more accurate decisions.

Block size. Figure 14 shows the performance of SeaCache with

different block sizes. We keep the 32 PEs and the total 2MB capac-

ity unchanged. However, when changing the block size, the access

bandwidth to a bank, which is one block per cycle, also changes.

We thus change the number of banks to ensure the same total

bandwidth, i.e., 64 banks for 32-byte blocks, 32 banks for 64-byte

blocks, etc. In such scenarios, we see the performance is not very

sensitive to the block size, with smaller blocks achieving slightly

better performance, i.e., 32-byte is 4.2% faster than 64-byte. How-

ever, smaller blocks need more banks, and the relative space cost

of tag-to-data also increases, both adding area overheads. Thus, we

choose 64-byte as our default configuration.

Number of Tag-L bits. Recall that in Section 4.1 we skip the

lowest few Tag-L bits when extracting the set ID from a fiber ID.

Figure 15 shows the impact of these bits. More Tag-L bits make

more contiguous fibers mapped to the same set and allow more

flexible packing, improving performance. But some matrices includ-

ing crankseg_2, kron_g500-logn18, and mycielskian16 perform
worse with a longer Tag-L. There are two reasons. First, Tag-L bits
are harmful to some patterned sparse matrices with high corre-

lation between adjacent rows. If all of these rows are needed but

mapped to the same set, conflicts will occur more frequently. With

16 ways per set, we can fit 16 contiguous fibers (without packing),

corresponding to 4-bit Tag-L. Second, recall that we have a limit

on the number of segments allowed when splitting fibers. A longer

Tag-L leads to a more strict limit. Each additional Tag-L bit reduces
the limit by half. As a result, we choose 4-bit Tag-L.

7 Conclusions
We propose SeaCache, a set of efficient and adaptive techniques

to optimize the cache design in sparse accelerators, particularly

on data mapping schemes and replacement policies. SeaCache ap-

plies fiber packing and splitting to improve the cache block space

utilization in the presence of variable-length sparse fiber data. It

incorporates a practical guided LFU replacement policy that has

much smaller implementation cost than the optimal guided LRU

but performs similarly, and also uses a two-phase adaptive mecha-

nism to decide the proper on-chip capacity to keep the replacement

policy metadata by borrowing space from the data cache. SeaCache

significantly outperforms state-of-the-art cache and scratchpad

designs, by 2.8× and 2.1×, respectively.

Acknowledgments
The authors thank the anonymous reviewers for their valuable sug-

gestions, and the Tsinghua IDEAL group members for constructive

discussion. Mingyu Gao is the corresponding author.

References
[1] Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang. 2014. Opti-

mizing Sparse Matrix-Multiple Vectors Multiplication for Nuclear Configuration

Interaction Calculations. In 28th International Parallel and Distributed Processing
Symposium (IPDPS). 1213–1222.

[2] Alaa R. Alameldeen and David A. Wood. 2004. Adaptive Cache Compression

for High-Performance Processors. In 31st Annual International Symposium on
Computer Architecture (ISCA). 212–223.

[3] Daehyeon Baek, Soojin Hwang, Taekyung Heo, Daehoon Kim, and Jaehyuk Huh.

2021. InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator

with Locality-Aware Inner Product Processing. In 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT). 116–128.

956

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Xintong Li, Jinchen Jiang, and Mingyu Gao

[4] Vignesh Balaji, Neal Crago, Aamer Jaleel, and Brandon Lucia. 2021. P-OPT: Prac-

tical Optimal Cache Replacement for Graph Analytics. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 668–681.

[5] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,

and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration

in Innovative Off-Chip Memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 1–25.

[6] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-Storage

Computer. IBM Systems Journal 5, 2 (1966), 78–101.
[7] Aydin Buluç and John R Gilbert. 2012. Parallel Sparse Matrix-Matrix Multiplica-

tion and Indexing: Implementation and Experiments. SIAM Journal on Scientific
Computing 34, 4 (2012), C170–C191.

[8] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A

Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.

IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308.

[9] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Transactions on Mathematical Software 38, 1, Article 1 (2011),
25 pages.

[10] A. Einstein. 1916. Die Grundlage der Allgemeinen Relativitätstheorie. Annalen
der Physik 354, 7 (1916), 769–822.

[11] Siying Feng, Xin He, Kuan-Yu Chen, Liu Ke, Xuan Zhang, David Blaauw, Trevor

Mudge, and Ronald Dreslinski. 2022. MeNDA: A Near-Memory Multi-Way Merge

Solution for Sparse Transposition and Dataflows. In 49th Annual International
Symposium on Computer Architecture (ISCA). 245–258.

[12] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar.

2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.

In 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
151–165.

[13] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer

Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. ExTensor:

An Accelerator for Sparse Tensor Algebra. In 52nd International Symposium on
Microarchitecture (MICRO). 319–333.

[14] Reza Hojabr, Ali Sedaghati, Amirali Sharifian, Ahmad Khonsari, and Arrvindh

Shriraman. 2021. Spaghetti: Streaming Accelerators for Highly Sparse GEMM on

FPGAs. In 2021 International Symposium on High-Performance Computer Archi-
tecture (HPCA). 84–96.

[15] Ranggi Hwang, Minhoo Kang, Jiwon Lee, Dongyun Kam, Youngjoo Lee, and Min-

soo Rhu. 2023. GROW: A Row-Stationary Sparse-Dense GEMM Accelerator for

Memory-Efficient Graph Convolutional Neural Networks. In 2023 International
Symposium on High-Performance Computer Architecture (HPCA). 42–55.

[16] Jinkwon Kim, Myeongjae Jang, Haejin Nam, and Soontae Kim. 2023. HARP:

Hardware-Based Pseudo-Tiling for Sparse Matrix Multiplication Accelerator. In

56th International Symposium on Microarchitecture (MICRO). 1148–1162.
[17] Xintong Li, Zhiyao Li, and Mingyu Gao. 2025. HYTE: Flexible Tiling for Sparse

Accelerators via Hybrid Static-Dynamic Approaches. In 52nd Annual International
Symposium on Computer Architecture (ISCA). 1613–1626.

[18] Zhiyao Li, Jiaxiang Li, Taijie Chen, Dimin Niu, Hongzhong Zheng, Yuan Xie,

and Mingyu Gao. 2023. Spada: Accelerating Sparse Matrix Multiplication with

Adaptive Dataflow. In 28th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 747–761.

[19] Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, and Xian-He Sun. 2024.

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow

and Concurrency-Aware Cache Optimizations. In 29th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 71–85.

[20] Francisco Muñoz Martínez, Raveesh Garg, Michael Pellauer, José L. Abellán,

Manuel E. Acacio, and Tushar Krishna. 2023. Flexagon: A Multi-Dataflow Sparse-

Sparse Matrix Multiplication Accelerator for Efficient DNN Processing. In 28th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 252–265.

[21] Toluwanimi O Odemuyiwa, Hadi Asghari-Moghaddam, Michael Pellauer, Kartik

Hegde, Po-An Tsai, Neal C Crago, Aamer Jaleel, John D Owens, Edgar Solomonik,

Joel S Emer, and Christopher W Fletcher. 2023. Accelerating Sparse Data Or-

chestration via Dynamic Reflexive Tiling. In 28th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). 18–32.

[22] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying

Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and

Ronald Dreslinski. 2018. OuterSPACE: An Outer Product Based Sparse Matrix

Multiplication Accelerator. In 2018 International Symposium on High Performance
Computer Architecture (HPCA). 724–736.

[23] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-

harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and

William J. Dally. 2017. SCNN: An Accelerator for Compressed-Sparse Convolu-

tional Neural Networks. In 44th Annual International Symposium on Computer
Architecture (ISCA). 27–40.

[24] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,

Rangharajan Venkatesan, Stephen W Keckler, Christopher W Fletcher, and Joel

Emer. 2019. Buffets: An Efficient and Composable Storage Idiom for Explicit

Decoupled Data Orchestration. In 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 137–151.

[25] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-

vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse

and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.

In 2020 International Symposium on High Performance Computer Architecture
(HPCA). 58–70.

[26] Gengyu Rao, Jingji Chen, Jason Yik, and Xuehai Qian. 2022. SparseCore: Stream

ISA and Processor Specialization for Sparse Computation. In 27th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 186–199.

[27] Somayeh Sardashti, André Seznec, and David AWood. 2014. Skewed Compressed

Caches. In 47th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 331–342.

[28] Somayeh Sardashti, Andre Seznec, and David A Wood. 2016. Yet Another Com-

pressed Cache: A Low-Cost Yet Effective Compressed Cache. ACM Transactions
on Architecture and Code Optimization (TACO) 13, 3 (2016), 1–25.

[29] Somayeh Sardashti and David A Wood. 2013. Decoupled Compressed Cache:

Exploiting Spatial Locality for Energy-Optimized Compressed Caching. In 46th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 62–73.

[30] Ali Sedaghati, Milad Hakimi, Reza Hojabr, and Arrvindh Shriraman. 2022. X-

Cache: A Modular Architecture for Domain-Specific Caches. In 49th Annual
International Symposium on Computer Architecture (ISCA). 396–409.

[31] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.

MatRaptor: A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-

Wise Product. In 53rd International Symposium on Microarchitecture (MICRO).
766–780.

[32] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2020. Efficient
Processing of Deep Neural Networks. Springer.

[33] Hao Wang, Weifeng Liu, Kaixi Hou, and Wu-chun Feng. 2016. Parallel Transposi-

tion of Sparse Data Structures. In 2016 International Conference on Supercomputing
(SC). 1–13.

[34] YangWang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen Leng.

2021. Dual-Side Sparse Tensor Core. In 48th Annual International Symposium on
Computer Architecture (ISCA). 1083–1095.

[35] Zi Yu Xue, Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. 2023. Tailors:

Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity. In 56th
International Symposium on Microarchitecture (MICRO). 1347–1363.

[36] Yifan Yang, Joel S Emer, and Daniel Sanchez. 2021. SpZip: Architectural Sup-

port for Effective Data Compression in Irregular Applications. In 48th Annual
International Symposium on Computer Architecture (ISCA). 1069–1082.

[37] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021. GAMMA:

Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication. In

26th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 687–701.

[38] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. SpArch:

Efficient Architecture for Sparse Matrix Multiplication. In 2020 International
Symposium on High Performance Computer Architecture (HPCA). 261–274.

957

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Tensor Algebra
	2.2 Sparse Accelerators and Sparse Dataflow
	2.3 Cache Management for Sparse Accelerators

	3 Motivation
	3.1 Mapping of Variable-Length Fibers
	3.2 Cost of Guided Replacement

	4 SeaCache Design
	4.1 Fiber Packing and Splitting
	4.2 Guided LFU Replacement
	4.3 Selection of Prefetch Size
	4.4 Putting It All Together

	5 Methodology
	6 Evaluation
	6.1 Overall Comparison
	6.2 Analysis of Individual Techniques
	6.3 Results of Other Dataflows and Kernels
	6.4 Sensitivity Studies

	7 Conclusions
	Acknowledgments
	References

