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Abstract

Sparse tensor computations are highly memory-bound, making
on-chip data reuse in SRAM bulffers critical to the performance of
domain-specific sparse accelerators. On-demand caches are com-
monly used in recent sparse accelerators, due to the advantage
of easy space allocation and the ability to avoid unnecessary data
fetches compared to scratchpad-style data buffering. However, ex-
isting cache designs suffer from inefficient space utilization due
to the difficulty of fitting variable-length sparse data into fixed-
size cache blocks. The theoretically optimal replacement policies
used by them also have substantial implementation cost, requir-
ing significant on-chip space to manage the metadata. To address
these issues, we propose SeaCache to enable efficient and adaptive
caching for sparse accelerators. SeaCache includes three key tech-
niques. First, it incorporates fiber packing and splitting to efficiently
map variable-length data into fixed-size cache blocks with high
space utilization. Second, it proposes a practical replacement policy
that performs similarly to the optimal one but has a much cheaper
implementation. Third, it shares the cache space between the ac-
tual data and the replacement policy metadata, with a two-phase
adaptive mechanism to decide the best partition ratio. Overall, Sea-
Cache outperforms state-of-the-art sparse cache designs by 2.8X on
average, demonstrating the effectiveness of its novel optimizations.
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1 Introduction

Sparse tensors play a crucial role in various fields, such as graph
analysis, high-performance computing, and machine learning. How-
ever, their irregular data patterns often lead to inefficient compu-
tations on conventional general-purpose processors, mainly due
to random memory accesses to sparse data and uneven workload
distribution across parallel processing units. To mitigate these is-
sues, specialized accelerators have been developed to optimize
key sparse tensor operations, like sparse-sparse matrix multipli-
cation. These accelerators feature specialized arrays of multiply-
accumulate computing units and on-chip large-capacity SRAM
hierarchies. To overcome the memory access bottleneck in sparse
tensor computations, various dataflow optimizations are further ap-
plied, such as reordering the nested loops to balance data reuse with
Inner Product [13, 25], Outer Product [14, 22, 38], or Gustavson’s
schemes [3, 15, 18, 37], and tiling the loops either statically [17, 35]
or dynamically [16, 21] to allow local subsets of tensor data to fit
in the limited on-chip SRAM.

Despite the extensive collection of research on the optimizations
of sparse accelerators, we find that the specific design of the on-chip
SRAM itself, which is the most critical component to realize data
reuse, has not been sufficiently explored. Different from regular
dense computations, the scratchpad-style, explicit decoupled data
buffering [24] does not work well on sparse tensor operations. The
variable and irregular sizes of sparse data make buffer space alloca-
tion challenging, and simply and blindly bringing all sparse data to
the buffer may result in unnecessary accesses if some data are never
needed. As a result, many recent designs start to use on-demand
data caching for sparse accelerators [3, 18, 22, 37, 38].

In this paper, we focus on two aspects of cache design for sparse
accelerators: data mapping schemes and replacement policies. For
cache data mapping, previous work [30] has proposed to directly
use the IDs of sparse rows/columns (called fibers [32]) to index
the cache, avoiding the translation to physical addresses and thus
saving latency and metadata accesses. However, the drastically
varying sizes of sparse fibers make them difficult to fit in the fixed-
size cache blocks, resulting in cache space underutilization and
excessive cache misses. For replacement policies, existing designs
have noticed that the structural information of one operand tensor
can guide the replacement decisions of the other tensor [3, 4, 38],
leading to the guided LRU (gLRU) policy that realizes the Belady’s
Optimal [6]. Nevertheless, gLRU has a substantial implementation
cost, which either doubles metadata accesses to the off-chip mem-
ory, or requires significant on-chip space to dynamically reorganize
the guide metadata.
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To address these issues, we propose SeaCache, an efficient and
adaptive cache design for sparse accelerators. SeaCache only mod-
ifies the on-chip SRAM components, is compatible with banking,
and is orthogonal to the processing element design of the accelera-
tor. SeaCache consists of three key novel techniques that improve
the cache mapping scheme and the replacement policy.

First, to efficiently map variable-length sparse fibers into fixed-
size cache blocks, SeaCache incorporates fiber packing and splitting.
Each cache block may pack multiple short fibers, or keep a fiber
segment that is split from a long fiber. These techniques improve
cache space utilization for short fibers, and allow more data cached
from long fibers to reduce cache misses. We design the correspond-
ing mapping and format schemes to support such flexible packing
and splitting, with only small area overheads on the cache array.

Second, we move away from the expensive gLRU to a guided
LFU (gLFU) replacement policy that is more practical to implement.
Instead of keeping complex recency lists that involve many wide
pointers in gLRU, gLFU only requires simple narrow counters, thus
greatly saving the metadata size. While gLFU is no longer provably
optimal as gLRU, its empirical performance is similar. We introduce
additional shadow ways without data blocks in each cache set, called
virtual tags, to accommodate more gLFU counters on-chip that
capture future access patterns and improve replacement accuracy.
We also add one more port to the cache tag array to prevent counter
updates from interfering with normal accesses.

Third, deriving the gLFU counter values requires future access
information, which follows the structural metadata of the other
operand tensor. Thus we need to prefetch a future window of data
from the latter tensor. This requires on-chip storage space. We let
these prefetched data share the cache space with the actual data, and
propose a two-phase adaptive mechanism to select the appropriate
size to allocate to the prefetched data. In the offline phase, we
estimate an initial prefetch size based on simple sparsity statistics of
the tensor. During the online phase, we collect runtime performance
metrics and use them to dynamically adjust the prefetch size.

We demonstrate the effectiveness of SeaCache by integrating the
three techniques in a sparse accelerator that uses the Gustavson’s
dataflow and supports statically determined tiling. When compared
with state-of-the-art cache designs in sparse accelerators [3, 30, 38],
SeaCache achieves a 2.8X speedup on average, by significantly
reducing the cache miss rate and the memory bandwidth usage
with the proposed optimizations. When enabled on top of a base
design, fiber packing and splitting, guided LFU with virtual tags, and
two-phase adaptive prefetch size selection contribute 1.80%, 1.10X,
and 1.38% improvements, respectively. We also show that SeaCache
outperforms a highly optimized scratchpad-style design [35] by
2.1, demonstrating the high potential of on-demand caching for
sparse accelerators.

We make the following contributions in this paper.

e We propose the fiber packing and splitting strategy to map
variable-length sparse fibers into fixed-size cache blocks for
sparse accelerators, with high space utilization.

e We propose the guided LFU policy as a practical and near-
optimal replacement policy for sparse accelerators, and the
corresponding hardware design that incorporates virtual
tags to more accurately capture future access patterns.
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e We propose the two-phase adaptive mechanism to deter-
mine the best cache partition ratio between the prefetched
metadata used by the guided LFU policy and the actual data.

e We integrate the above three techniques in a sparse accel-
erator and demonstrate a 2.8X speedup on average over
state-of-the-art designs.

2 Background
2.1 Sparse Tensor Algebra

Sparse tensors are essentially multi-dimensional arrays with most
elements being 0. In this paper, we follow the common terminol-
ogy [32], in which a tensor element is called a point at a certain
coordinate, e.g., X; j i at (i, j, k). To save storage space and compu-
tation, sparse tensors are often represented in various compressed
formats, such as the coordinate format (COO), compressed sparse
row/column (CSR/CSC), and block variants like block CSR. These
formats follow a common structure that organizes tensor dimen-
sions into a hierarchy of fibers [32]. Each fiber represents a sequen-
tial list of coordinates and their corresponding non-zero values
along the specific dimension. The term position refers to the actual
storage location of a point within these compressed formats, which
typically differs from its coordinate. We further use the Einsum
notation [10] to represent operations on sparse tensors, such as the
sparse-sparse matrix multiplication (SpMSpM) between tensors A
(I x K)and B (K X J), which is Cj j = A; x X B ; over (I, ], K).

2.2 Sparse Accelerators and Sparse Dataflow

Many specialized hardware accelerators have been developed for
sparse tensor operations [8, 12, 19, 23, 26, 34, 36]. Due to the sparsity,
each data element is involved in computations with only the non-
zero elements of other operand tensors, resulting in less data reuse
than the dense scenarios. Consequently, sparse accelerators are
usually heavily memory-bound. Loop reordering and loop tiling
techniques, which have been demonstrated to be efficient in dense
computations, have recently been adopted for sparse accelerators.

Loop reordering. Consider the SpMSpM Cj; = A; i X By ;
with three dimensions (i, j, k). By reordering the dimensions in
the loop nest, we have three main schemes of sparse dataflow,
namely Inner Product (IP) [13, 25], Outer Product (OP) [14, 22,
38], and Gustavson’s (Gust) [3, 15, 18, 37]. These different loop
orders affect the reuse of the three tensors. For example, the k
loop resides at the innermost level in IP, which maximally reuses
the output C, while it is the outermost one in OP, which has poor
output data reuse. There also exist designs supporting dynamic
reconfiguration between multiple dataflow schemes to adapt to
various sparse patterns [18, 20]. We mainly use Gust in this paper,
as it achieves a relatively balanced and efficient design point. We
discuss other dataflows in Section 4.4. In Gust, each A; ;. element
in the ith row of A multiplies with the corresponding kth row of B,
and the partial product is accumulated into the corresponding ith
row Ofc; ie., Cl' = Zk Ai,k X Bk-

Loop tiling. Another approach to improving data reuse is to
split large tensors along some loop dimensions into smaller tiles,
which can better fit in the limited on-chip SRAM. Tiling is usually
done on the coordinate space rather than the position space, in
order to ensure matched coordinate spans between tensor tiles
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during computation. However, due to varying data sparsity, simple
static and fixed-size tiling would lead to diverse tile sizes that either
underutilize or exceed the SRAM capacity. Therefore, state-of-the-
art designs leverage data pre-sampling to better choose the proper
tile size [35], use fully dynamic approaches to better adapt to the
data sparsity [16, 21], or combine static and dynamic methods [17].
For simplicity, in this work, we determine the optimized tile size
with offline pre-sampling, but the dynamic tiling methods can also
be integrated with our design (see Section 4.4).

2.3 Cache Management for Sparse Accelerators

The memory-bound nature of sparse accelerators makes them heav-
ily rely on efficient on-chip data reuse. Explicit decoupled scratch-
pad buffering [24] and on-demand caching are two common ap-
proaches used in hardware accelerators. We note that while scratch-
pads are more efficient for regular dense computations, caches are
potentially a better choice for sparse accelerators. There are several
reasons. First, the main data structures, sparse fibers, have irregular
and diverse sizes, which complicates space allocation and would
cause fragmentation in the scratchpad. It would be easier to apply
a fixed-size block granularity for space management with sparse
data. Second, because of the sparsity, not all fibers are needed by
the computations. For example, in the Gust dataflow, if all the A;
elements in column k are zero, the B, row will never be used and
thus there is no need to fetch it on-chip. These savings are easier to
realize with on-demand caches than with scratchpads, especially
with the proper replacement policies described below. Third, typ-
ical caching overheads, such as translation between row/column
IDs and physical addresses, on-demand data fetch latencies, and
tag storage overheads, have been greatly alleviated with recent
design advances, as described below. As a result, caches have be-
come the common choice in many previous sparse accelerator de-
signs [3, 18, 22, 37, 38]. In this work, we focus on caches and aim to
optimize two major aspects in cache design: data mapping schemes
and replacement policies. We will show that our optimized cache
design outperforms the scratchpad in Section 6.

2.3.1 Mapping Schemes. Conventional caches typically use the
physical address to determine where to map a block of data in the
cache. In sparse accelerators, the data elements inside a fiber (e.g., a
row or a column) are often fetched and used together. This provides
an opportunity to directly use the fiber IDs to index the cache, as
proposed in the X-Cache design [30]. This approach eliminates
translation between the fiber IDs and the physical addresses, which
would require frequent accesses to the metadata of the compressed
format, such as the row pointers in the CSR format. X-Cache has
been shown to reduce the load-to-use latency by approximately 40%
in SpMSpM [30]. In addition, now we do not need to access most
metadata of the compressed format. For example, in CSR, when a
certain row is needed, we can use its ID to directly index the cache,
without first obtaining the row pointers to calculate the positions
of non-zero column IDs and values.

Figure 1 shows a simple example about how the fiber-ID-based
mapping works in X-Cache. Assume that the cache for tensor B
has two blocks, each with the size of two elements. In the Gust
dataflow, the elements a and b in A need rows 0 and 3 of B, which are
fetched and stored in the cache (left bottom of the figure). Instead
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Figure 1: An example to illustrate how the fiber-ID-based
mapping scheme and the guided LRU policy work for SpM-
SpM between A and B.

of the physical addresses, the cache keeps the meta-tags, which are
essentially the row IDs, 0 and 3, for the two blocks.

However, a critical challenge arises from the drastically varying
lengths of the fibers in the sparse tensors. With a fixed cache block
size, if the fiber is shorter than the block size, some cache space
would be underutilized, as in the block in row 3. If the fiber is too
long, it cannot fit in the block. The original X-Cache paper did
not explicitly describe how to handle this case. In this paper, we
assume a reasonable design in which only the first few elements
are stored in the block while the rest are discarded (as in the block
of row 0 in the figure), following the overflow handling method in
Tailors [35]. Such partial caching is a better choice than streaming
in these thrashing cases, as it retains reuse at least for some data.

2.3.2  Replacement Policies. Recall that the theoretical optimal re-
placement policy, Belady’s Optimal [6], suggests replacing the cache
block with the next farthest access time. While in general-purpose
applications such future information is unknown, in sparse compu-
tations like SpMSpM, the access pattern of one tensor is determined
by the non-zero element distribution of the other tensor. For exam-
ple, in the Gust dataflow, which B rows are needed depends on the
column ID k of the A; ;. element. Thus, the structural metadata of
A can be leveraged to guide the replacement of B data.

This replacement policy, which we call guided LRU (gLRU), has
been exploited by several previous designs, including P-OPT [4],
InnerSP [3], and SpArch [38]. As shown in Figure 1, assume that
we have just finished multiplying element Agp = a with row By
and Ao 3 = b with B3, and are about to multiply A1; = ¢ with B;.
The cache has already been fully filled with two rows of By and Bs,
and one of them needs to be evicted to make room for the incoming
Bj. Looking at the non-zero distribution of tensor A, we find that
the next time to reuse By is for the next non-zero element A3 = f
in column k = 0, while that for B3 is for Ay 3 = e. Hence B3 has a
more recent reuse at i = 2 than By at i = 3, and we should evict By.
Essentially, by looking at each column k of A and identifying the
next non-zero row ID i, we can know when the corresponding By
row would be reused and make optimal replacement decisions.

Note that achieving gLRU requires the transposed CSC format
of A in addition to the original CSR format for computations, in
order to examine each column of A. P-OPT [4] and InnerSP [3]
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Table 1: Comparison of cache management techniques be-
tween state-of-the-art designs and ours.

Design Block size Replacement policy
P-OPT [4] 64 bytes gLRU (offline transpose)
InnerSP [3] 64 bytes gLRU (offline transpose)
SpArch [38] 576 bytes gLRU (1/6 prefetch size)
X-Cache [30] 16 bytes LRU
SeaCache Fiber packing & gLFU (adaptive prefetch
(ours) splitting in 64 bytes  size shared with cache)

pre-computed such a transposition and assumed that both formats
were available for access. This is only possible if the tensor remains
constant and can be reused multiple times to amortize the offline
transpose cost. SpArch [38] instead claimed to perform next-reuse
detection online, but did not provide microarchitectural design
details. In this work, we assume an efficient implementation as
illustrated in Figure 1. The hardware would prefetch a certain num-
ber of A elements into a guide metadata buffer. These metadata
are reorganized by column ID k, into linked lists, each ordered by
row ID i. Consequently, the row ID of the head element in the list
of column k represents the next reuse time for the By row. As in
Figure 1, the prefetch size is 4 elements, {c,d, e, f}, following its
original CSR order and reorganized into columns on-chip. From
their linked list structures, we see that the next reuse time for each
By would be 3, 1, 0o, 2. Thus, B has the farthest reuse and is the best
candidate for replacement. When an element in the prefetch buffer,
e.g., ¢, finishes its computation, it is removed from the list head.
Simultaneously, we prefetch a new element, e.g., g, and append it to
the corresponding list tail. This follows a sliding window manner.

3 Motivation

In this section, we focus on cache management for sparse accelera-
tors, and discuss several key problems in the state-of-the-art designs
introduced in Section 2.3, mainly concentrating on the aspects of
mapping schemes and replacement policies. The comparison is
summarized in Table 1.

3.1 Mapping of Variable-Length Fibers

As already discussed in Section 2.3.1, when the fiber length mis-
matches with the cache block size, either the cache space would be
underutilized for short fibers, or there will be many cache misses
for uncached elements in long fibers. Indeed, we find that for real-
world sparse matrices (obtained from the SuiteSparse Matrix Col-
lection [9]), not only the fiber lengths in different matrices, but also
those within a single matrix, vary significantly as shown in Figure 2.
This makes it difficult to choose a single fixed optimal block size.
Previous sparse accelerators only use fixed block sizes that fit
their target applications, but cannot generalize to diverse sparse
patterns. For example, X-Cache [30] opts for very short block sizes
of 1 or 2 elements. This works well in scenarios with very high
sparsity and mostly short fibers, increasing cache space utilization
and reducing internal fragmentation. However, long fibers cannot
fit in these small blocks and many elements remain uncached. On
the other hand, SpArch [38] uses a longer cache block size of 48
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Figure 2: Distributions of row fiber non-zero lengths in se-
lected sparse matrices from SuiteSparse [9].

elements, which achieves higher throughput and lower latency by
avoiding multiple cache probes when accessing long fibers. This
design performs better in more mildly sparse scenarios. But such
large blocks will be underutilized for short fibers.

Design goal 1: To better support the highly diverse fiber lengths,
we need a more space-efficient mapping scheme to handle fibers
both shorter and longer than the block size, ensuring good perfor-
mance across various scenarios.

3.2 Cost of Guided Replacement

For replacement policies, although gLRU achieves optimal eviction
decisions, its implementation is non-trivial and may cause substan-
tial overheads. The offline approaches in P-OPT and InnerSP [3, 4]
allow for simpler hardware designs but introduce additional cost
for offline transposition and extra accesses to the transposed matrix.
Note that transposing a sparse matrix in a compressed format has
substantial cost, up to 126% compared to the actual computation
even with highly optimized and dedicated hardware support [11].
Although repeated computations on the same matrix may amor-
tize this cost, it is unacceptable in scenarios where the matrix is
computed only once. Furthermore, the offline methods still incur
extra online overheads because of the need to access the separate
transposed matrix, i.e., AT This cost of doubling the accesses to
A would become especially significant considering that the other
matrix B now enjoys good reuse with the optimal gLRU policy.
On the other hand, the online approach described in Section 2.3.2
(pre)fetches A only once and uses its data for both guided replace-
ment decisions and actual computations. However, it has its own
drawbacks. First, significant on-chip SRAM space is needed to store
the prefetched guide metadata of A. To obtain accurate future reuse
information, the prefetch size needs to be large enough, so that a
sufficient number of columns k can identify at least one non-zero
element to make the linked lists non-empty (c.f. Figure 1). This
is particularly necessary when the tensor is very sparse with few
non-zeros. Second, complex hardware logic and extra auxiliary data
are needed to support online transposition. Recall Section 2.3.2 and
Figure 1 that each column k needs a head pointer and a tail pointer,
both to the prefetched metadata of A. Additionally, each element in
the prefetch buffer also needs a pointer to the next one in the list.
The number of head/tail pointers is linear to the dimension size K
(or the tiled size Tk if with tiling), which can be much larger than
the number of non-zero elements. Furthermore, the bitwidth of
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each pointer is also not small, requiring ~ 20 bits to cover a typical
prefetch buffer in hundreds of kB to a few MB.

Design goal 2: We aim to develop a guided replacement policy
that achieves similar efficiency, but is simpler and requires less
implementation cost than gLRU.

One known approach to alleviating the extra on-chip storage
for the guide metadata is to share the existing data cache space, as
proposed by P-OPT [4]. However, the offline method of P-OPT pins
the entire guide metadata on-chip and significantly reduces the
available space for data caching. The online approach only needs
to prefetch a subset of metadata ahead, but it faces the question
of deciding this prefetch size. A small prefetch size degrades the
accuracy of future reuse information, and hence decreases the hit
rate. A too large prefetch size would take too much space from the
data cache, also reducing the cache hits. Intuitively, the necessary
guide metadata to prefetch depend on the sparse pattern of the
tensor. A denser tensor can more quickly identify the next non-zero
coordinate for the next reuse even with a small prefetch size, while
a sparser tensor may need to look farther more into the future.

Design goal 3: When sharing the on-chip SRAM space between
the actual data and the guide metadata, we need an adaptive mech-
anism to decide the partitioning ratio between them to achieve the
overall best data hit rate.

4 SeaCache Design

We propose SeaCache, a set of efficient and adaptive cache manage-
ment techniques for sparse accelerators. SeaCache mainly improves
the mapping schemes and the replacement policies. It includes fiber
packing and splitting techniques that efficiently map variable-length
fibers to fixed-size cache blocks (Section 4.1), a practical guided LFU
replacement policy that is easier to implement than guided LRU
(Section 4.2), and a two-phase adaptive mechanism to select the
prefetch size of the guide metadata (Section 4.3). The above three
techniques realize the three design goals in Section 3. We discuss
how to integrate them together in Section 4.4 at the end.

4.1 Fiber Packing and Splitting

To support highly variable fiber lengths (design goal 1), several
architectural solutions are possible. One straightforward way is to
deploy multiple SRAM banks with different block sizes that respec-
tively fit long and short fibers. However, the ratio of long to short
fibers in a tensor is not known a priori and may vary across different
local regions, making the static bank-level separation underutilize
the cache resources. Another solution is to use reconfigurable block
sizes that allow banks to be configured in different modes for long
and short fibers. Such reconfiguration needs to happen dynamically
to adapt to the ratio of long and short fibers. However, the long and
short modes with different block sizes need to use different address
indexing schemes to map fibers to SRAM locations. Such mode
switching requires a full remapping of the entire bank, i.e., flushing
and refetching all the data, which incurs excessive overheads.

We propose an efficient scheme that uses fixed-size hardware
blocks, but flexibly maps variable-length fibers with high space uti-
lization, by packing multiple short fibers into one block, or splitting
a long fiber into multiple segments to store across multiple blocks.
Figure 3 shows our mapping scheme, with a set-associative cache
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Figure 3: Tag and data array structures for the mapping
scheme with fiber packing and splitting.

organization. In this example, we use a block size of 64 bytes. With
fiber packing and splitting, each block may store (a segment of) a
long fiber or multiple short fibers. To indicate the number of fibers
in a block, two extra Cnt bits per block are added to the tag part.
A value of 00 represents that only one fiber or a fiber segment is
stored. Otherwise, there are Cnt + 1 fibers in this block. We also add
16 Extra metadata bits per block in the tag array, whose usage will
be discussed below. Because the Extra bits are used in different
ways for fiber packing and splitting, each block must be in one of
the two modes (distinguished by Cnt), but not both.

Fiber packing. When multiple fibers reside in the same block,
they must have the same set ID to legally be placed together. To
save space for tag bits, we further require that they have contiguous
fiber IDs, so we only need to store the tag of the first ID in the tag
bits. In other words, the Cnt +1 fibers in the block have their tags as
Tag,Tag+1,...,Tag+Cnt. This would require us to slightly change
how fiber IDs are mapped to sets. In normal fiber-ID-based mapping
schemes, the set ID is from the least significant bits of the fiber ID,
so we spread consecutive fibers into different sets (note that there
are no offset bits). To be able to pack multiple consecutive fibers in
one block, we skip a few least significant bits when taking the set
ID, shown as the Tag-L bits at the bottom of Figure 3. The Tag-L
and Tag-H bits are concatenated as the full tag. For example, the
first block in Figure 3 contains three fibers (Cnt = 10) with IDs of
0x00337, 0x00338, 0x00339, whose tags are contiguous as 0x00| 7,
0x00|8, 0x00|9. While the 2-bit Cnt means at most four fibers can
be packed in one block, we choose a slightly wider Tag-L of 4 bits
to support unaligned cases, e.g., when fiber IDs of 7, 8, 9 reside in
one block as above. More analysis on Tag-L is done in Section 6.4.

To locate the multiple fibers in a block, we use the 16 Extra bits,
encoded as four 4-bit offsets within the block. In the above block,
the three fibers are at positions 0, 5, 10, respectively.

Fiber splitting. On the other hand, when a long fiber is split
and stored in multiple blocks, we need to adjust the indexing of
each segment. Otherwise, all segments would have exactly the same
set ID and tag from the same fiber ID and would be restricted in a
single block as in previous designs [30, 38]. Specifically, for the Ith
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segment, we map it using an adjusted fiber ID of ID + (I < ntag-L),
where the added term changes the set ID bits, so each segment is
mapped to a different set. To differentiate a segment in this adjusted
form from the fiber with the same ID, we further store the lowest 16
bits of the original fiber ID in the Extra bits. These bits are checked
when the block is accessed to ensure the correct match. For the
first segment which does not use an adjusted ID, we do not need
to store the original fiber ID, so we put the number of segments of
the fiber in the Extra bits.

For example, fiber 0x12330 is longer than a block and split into
two segments. The first segment is mapped to the set @x33 in the
normal way, with the Extra field being 2, representing that the fiber
has 2 segments. The second segment with [ = 1 has an adjusted ID
of 0x12340 following the above equation and is thus mapped to
the set @x34. The Extra bits are 0x2330, extracted from its original
fiber ID, so we will not mismatch it with the actual fiber 0x12340
even though their tag bits are the same. That is, only one of the
two can appear in the cache.

Using only the lowest 16 bits to differentiate fibers poses a limit
on the number of segments allowed. Assume two fibers with IDs of a
and b, a # b. When their [,-th and [},-th segments are mapped to the
same set and have the same tag, we have a+(l;, < 4) =b+(l), < 4).
If their Extra bits are also identical, we have a = b (mod 65536). To
satisfy all the above equations, we must have I, or I, > 4096 blocks,
or 256 kB. With each element containing a 64-bit value and a 32-bit
coordinate, this translates to 21854 elements (21845 = 256 kB / (32
bit + 64 bit)) in a fiber. Almost all sparse matrices in SuiteSparse
are within this limit. Furthermore, when tiling is applied, a single
long row/column would be split into multiple shorter fibers. In the
rare cases of very long fibers, we can reduce the tile size, or simply
discard the remaining elements beyond the allowed segments.

Cache access process. Following the fiber-ID-based mapping
approach [30], to access a fiber in the cache, we use its ID to directly
index the cache. We extract the set ID bits from the fiber ID to
identify the target set, and concatenate Tag-H and Tag-L to compare
with the tags in this set (Figure 3 bottom). Such tag matching is
performed in a fuzzy way for the lowest few bits, so as long as
the request tag falls in the range [Tag, Tag + Cnt] for a way in
the set, it is a potential hit. If Cnt is larger than 00, the block is
in the packing mode. We decode the Extra bits into four offsets,
and follow the corresponding one to access the data. If Cnt is 00,
the block is in the splitting mode. We read the Extra bits to get
how many segments to access. For each segment, we calculate the
adjusted ID to determine the corresponding set and access the data
from that set. For segments other than the first one, we also check
the Extra bits to match the lowest bits of the original fiber ID.

In the above cache hit case, no translation to physical addresses is
performed. However, for a miss, we need to follow the conventional
sparse data access flow, to retrieve the metadata from the memory
first, translate to the physical address, and then access the data
from the memory.

SRAM capacity cost. The additional bits added to each block
in our new mapping scheme introduce minor area overheads. The
original tag field is usually ~ 20 bits with 32-bit coordinates and
~10 bits for set IDs. With fiber packing, the data block size can be
much larger without worrying about space waste. We find that a
size of 64 bytes is a balanced choice (Section 6.4). In addition to
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Figure 4: The guided LFU replacement policy. (a) The per-
column reuse counters and their updates. (b) The counters
are integrated into the data cache, with additional virtual
tags in each set.

these fields, we add 2 Cnt bits and 16 Extra bits, in total 18 bits.
These are only 18/(20 + 64 X 8) = 3.4% overheads.

Comparison to compressed caches. The fiber packing tech-
nique shares similar ideas to prior compressed cache designs [2, 27—
29] that compress multiple memory blocks into one cache block to
increase the effective cache capacity. However, SeaCache has two
main differences. First, in the domain of sparse tensors, both data
distributions and access patterns are more predictable than general-
purpose workloads. The cached A and B fibers are read-only, and
have fixed (albeit diverse) lengths. Thus we can avoid complicated
(de)compression and not deal with compress ratio changes. Second,
compressed caches only pack blocks but do not split. Fiber splitting
is unique to the fiber-ID-based mapping approach [30, 38].

4.2 Guided LFU Replacement

As discussed in Section 3.2, while gLRU is optimal, its implemen-
tation cost is excessive due to the many pointers to maintain the
per-column LRU linked lists. To avoid such overheads (design goal
2), we propose to move from LRU to LFU, which is also a commonly
used and empirically well-performed replacement policy. Specifi-
cally, we use a guided LFU (gLFU) policy, where we use the future
reuse information from matrix A to derive the reuse counts (a.k.a.,
frequencies) of each fiber of B, instead of the reuse distance in gLRU.
Consequently, the per-column linked list becomes a single counter
per column. Figure 4(a) shows the auxiliary metadata needed by
gLFU, in contrast to those in Figure 1. When the prefetch buffer
slides to the next element, i.e., when A1 = cisused and A3y = g is
prefetched, their corresponding column counters are decremented
and incremented, respectively.

The metadata savings from gLRU to gLFU can be significant.
Recall that each pointer in the gLRU lists can be as wide as 20 bits.
In contrast, the counters in gLFU do not need to be very wide
because of the sparsity of tensors; each column usually only has a
few non-zeros within the prefetch size. In our design, we find 4-bit
counters are sufficient. Even if counter overflow (i.e., saturation)
occurs, the error is tolerable because these fibers are already marked
as important with very large counts and are unlikely to be evicted.
Therefore, besides the prefetched structural metadata of A, gLRU
needs additional 20 X (2K + S) bits, while gLFU only needs 4K bits.

The tradeoff here is that gLFU is no longer provably optimal
as gLRU. However, empirically we find gLFU performs as good as
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Figure 5: Comparison of miss rates with different replacement policies, including LRU, idealized gLRU, idealized gLFU, and

gLFU with various numbers of virtual tags per set.

gLRU. The first three bars of each group in Figure 5 compare (ideal-
ized) gLRU and gLFU against the conventional LRU policy. These
idealized guided policies have sufficiently large on-chip SRAM to
keep their metadata as calculated in the previous paragraph. We
see that both guided policies significantly reduce the miss rates
over LRU, with 16.5% and 15.9% miss rates, respectively. Note that,
here, gLFU even outperforms gLRU, because gLRU cannot achieve
Belady’s Optimal with a limited prefetch size (see below).

Practical implementation. However, the 4K bits of counters
may still be expensive if dedicated SRAM is used to store them on-
chip. In particular, for highly sparse matrices such as web-Google
and kkt_power, the SRAM capacity for these counters may even
exceed the structural metadata of A, as the number of columns K
could be larger than the number of non-zeros in the prefetch buffer.

We leverage two key insights here. First, the gLFU counters can
be sparse for highly sparse tensors; i.e., many counters are zero
and do not need to be stored. Second, most of the counters that are
important to making replacement decisions are for those fibers that
are already cached in the data cache. This is because these fibers
are exactly the replacement candidates. Therefore, we propose to
integrate the counters into the data cache tag array, exactly like
how the conventional LRU bits are maintained per block besides the
tags in standard caches. Only the cached fibers have their counters
valid. This integrated design has several benefits. First, compared
to using a separate counter cache, we reuse the same tag space
for both counters and data, avoiding duplication. Second, when an
A element is actually used and moved out from the head of the
prefetch buffer (e.g., ¢ in the previous example), the decrement of
the corresponding counter can be piggybacked on the access to the
fiber data, within a single cache access.

However, we still have two problems. First, as we aim to analyze
future access patterns with gLFU, some uncached fibers that will
be accessed in the future are still important, but their counters are
missing, which may significantly degrade performance compared to
the idealized case. This can be seen in Figure 5, where the miss rates
of “gLFU w/ 0 vtag” noticeably increase by 2.6x over “idealized
gLFU”. To resolve this issue, we further add several virtual tags
in each cache set, which only have the counters without actual
fiber data, as shown in Figure 4(b). These virtual tags can store
counters for uncached fibers that will be accessed in the future.
Only a moderate number of virtual tags are needed, such as 2 to
4 virtual tags besides the 16 ways in a set as indicated by Figure 5.
We use 4 virtual tags per set. This adds about 20 bits X 4 ways +
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4bits X (16 ways + 4 ways) = 160 bits in each set. Combined with
the extra bits added in Section 4.1, the total overheads are about
5.3% more bits.

Second, maintaining the counters requires extra cache probes.
We have already discussed how to merge counter decrements with
actual data accesses. But counter increments when prefetching a
new A element (e.g., g in the previous example) still need separate
cache probes. Fortunately, these extra probes only access the tag
array but not the data array. We add an extra port to the tag array
in hardware to support two accesses per cycle, with moderate area
cost (see Table 2). Note that such doubled (or even tripled) cache
probes are not unique to our gLFU policy. Any guided policy would
require such metadata maintenance.

Overall flow. We finally describe the overall workflow of gLFU
with virtual tags. The gLFU counters need to be incremented and
decremented when an A element is moved into and out of the
prefetch buffer, respectively. If the counter exists in the cache, either
with a normal tag or a virtual tag, it is directly updated. If the counter
is not present, we assume an initial counter value of zero. If it is
incremented to 1 (in case of prefetching), we check whether the
counter of a virtual tag is smaller (i.e., invalid or 0). If so, we replace
it with the new counter. Here we only check virtual tags because
for this prefetching, the actual B fiber data do not need to be fetched
at this time, so the data space of a normal way would not be used.

4.3 Selection of Prefetch Size

Regardless of whether gLRU or gLFU is used, part of matrix A needs
to be prefetched onto the chip to guide replacement decisions. We
follow the P-OPT design [4] to directly store the prefetched data
in the data cache, i.e., sharing the cache space between the actual
B fiber data and the prefetched A data. This avoids the need for
a separate dedicated prefetch buffer. However, now we need to
carefully determine how to partition the cache space between the
two types of data (design goal 3).

We find that the best prefetch size could vary significantly be-
tween different tensors. Figure 6 shows the miss rates when using
different amounts of the cache as the prefetch buffer, from 64/128
to 1/128. For relatively dense matrices like mouse_gene and nd24Kk,
very small prefetch sizes are desired. This is because their data-to-
metadata ratios are high, meaning only a small amount of metadata
are required to effectively determine optimized data replacements.
In these cases, overly large prefetch sizes actually reduce perfor-
mance for two reasons. First, a large prefetch size reduces the cache
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Figure 6: Miss rates when using different sizes for the guide
metadata prefetch buffer as portions of the data cache.

space available for data and increases the miss rate. Second, with the
gLFU implementation in Section 4.2, an excessively large prefetch
size would result in many non-zero gLFU counters that exceed what
the cache (including its virtual tags) can afford. Then newly incom-
ing counters that would be useful to guide replacements cannot
receive slots and be accumulated, but have to be discarded.

On the other hand, for highly sparse matrices, larger prefetch
sizes are more appropriate. When the sparsity is high, more meta-
data are needed to effectively profile future access patterns. If the
prefetch size is too small, many B fibers will not have any corre-
sponding A elements present in the current prefetch buffer, resulting
in many gLFU counters being zero and ineffective guiding.

We propose an effective mechanism to determine the prefetch
size that can adapt to different matrices. We use a two-phase ap-
proach. Before execution starts, we use simple statistics of the
sparse tensor to determine an initial prefetch size. During runtime,
we further dynamically adjust the prefetch size according to the
collected performance behaviors.

More specifically, we first estimate the initial prefetch size based
on the sparsity of input tensors (Algorithm 1 Lines 1 to 2). Recall
that the cache is mainly used for B fibers, and each B row (i.e., each
A column) needs a counter. The ratio between the number of B
rows and the total number of non-zeros in B (i.e., the inverse of the
average non-zero length of B rows, Algorithm 1 Line 1) would be
the ratio between the counter space and the B data space, which is
the prefetch size as a portion of the cache capacity. To ensure the
size is not too small, we empirically set a lower bound of 1/1024,
which is small enough to not affect the data caching.

Then, at runtime (Algorithm 1 Lines 3 to 18), we maintain two
pairs of counters during the execution for the following two metrics.
A discard rate is measured on the prefetch side, i.e., when incre-
menting counters for prefetched metadata, how many increments
are discarded due to insufficient counter storage. A high discard
rate indicates that too many data have been prefetched, and the
prefetch size should be reduced. A miss rate is measured on the
access side, i.e., when actually accessing the data, how many of
them have no counters being maintained. A high miss rate indicates
insufficient prefetching, suggesting that the prefetch size should be
increased. We perform dynamic adjustments each time a certain
amount of computations are performed (e.g., 1/500 X total MACs),
by increasing/decreasing the prefetch size when the miss/discard
rate exceeds a certain threshold of 20%.
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From Figure 6 we see the performance impact of the prefetch
size may have multiple local optima. Thus we use simulated anneal-
ing to control the iterative adjustments. Specifically, we record the
actual data access miss rates to compare across iterations. In the
initial high-temperature iterations, adjustments that degrade per-
formance may be accepted with certain probabilities. Later on, only
adjustments that improve performance are accepted; otherwise, we
revert to the previous prefetch size. We choose T(k) = 0.2 X 0.99%
as the temperature at iteration k, and P(k, AM) = exp(—%) as
the acceptance probability of a worse adjustment with AM being
the increased miss rate.

The aforementioned 20% miss/discard rate threshold is empir-
ically set and the final prefetch size is insensitive to it. We use
this threshold mainly to accelerate the convergence of simulated
annealing. Most cases can converge within 25 iterations and reach
a size within 95% performance of the optimal selection.

Algorithm 1: Two-phase adaptive prefetch size selection.

// Offline phase

1 nz1B « // Average non-zero length of B rows

nnzB .
Kx(J/Ty)>
2 prefetch size < max (nzlﬁ’ ﬁ);

// Online phase
3 discard rate « 0, miss rate « 0;
4 for k < 1to 100 do

5 T(k) « 0.2 x 0.99%; // Temperature

6 Perform computations; record discard rate and miss rate;

7 if discard rate > threshold A miss rate < threshold then

8 ‘ Decrease prefetch size;

9 else if discard rate < threshold A miss rate > threshold then
10 ‘ Increase prefetch size;

1 else

12 L Apply stochastic disturbance to prefetch size;

13 AM < new miss rate — previous miss rate;

14

P(k,AM) « exp (—%);

15 if P(k, AM) > Ranpom() then
‘ Accept new prefetch size;

// Acceptance probability

16
17 else
18 L Revert to previous prefetch size;

4.4 Putting It All Together

We integrate the three key techniques, namely fiber packing and
splitting, practical gLFU replacement, and two-phase prefetch size
selection, into SeaCache, an efficient and adaptive cache design for
sparse accelerators. SeaCache only modifies the cache components,
and is orthogonal to the processing element (PE) design of the
accelerator; the PEs can be organized in any form, being 1D or
2D. The on-chip cache of the sparse accelerator may be potentially
banked. At the high level, each bank operates independently, and
its space is partitioned into two parts, for the actual data of B fibers
and the prefetched guide metadata of A, respectively.

A prefetch controller tracks the prefetch range of A, and moves
the corresponding A elements into the tail or out of the head of the
prefetch buffer region in the cache, in a sliding window fashion as
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described in Section 4.2. This prefetch controller also determines
the prefetch size, using the two-phase mechanism proposed in Sec-
tion 4.3. The prefetch size is initially set to the offline calculated size,
and then periodically adjusted at runtime by temporally pausing
the head/tail advances until the desired size is reached.

A fiber iterator is added to each PE to facilitate accesses to the
packed or split fibers from the cache (Section 4.1). In the case of
fiber packing, it extracts the corresponding sub-blocks from the
returned full cache block. In the case of fiber splitting, it keeps the
number of segments and maintains the segment index accessed so
far, and calculates the adjusted fiber ID for each segment before
sending the request to the cache.

Finally, inside the cache, we follow the structures illustrated in
Figure 3 and Figure 4(b), which add extra bits and counters to each
block. Furthermore, we add virtual tags in each set, and add an extra
access port to the tag array, to optimize gLFU metadata updates.
The tag comparators are also revised to support fuzzy matching on
the lowest bits, and we may add a few more comparators to cover
the additional virtual tags besides the normal ways.

Support various dataflow schemes. We have mainly discussed
SeaCache with the Gust dataflow in the previous sections. On other
dataflow schemes, the fiber packing and splitting techniques can
be applied in the same way, as all schemes access data in the gran-
ularity of fibers. The guided replacement policies, including gLRU
and gLFU, are usually used for Gust [3] which exhibits the depen-
dent access patterns of By on A; . The classic IP and OP schemes
access the fibers in pre-determined orders and do not have these de-
pendencies. SpArch [38], while being OP-based, further condenses
the non-zeros in A to the leftmost. Therefore, when executing the
outer product between A and B, the non-zeros in the condensed A
column have different k coordinates and need to access different B
rows in an irregular and dependent manner. As a result, the gLFU
policy and the adaptive prefetch size selection can also be applied
to SpArch. We evaluate this case in Section 6.3.

Support dynamic tiling. So far, we assume the input tensors
are tiled offline, so the runtime hardware sees fixed tile sizes. It
is also possible to use dynamic tiling [16, 17, 21] with SeaCache.
Essentially, all the techniques in SeaCache work within the process
of multiplying two tiles of A and B. Existing dynamic tiling designs
only adjust the tile size between tiles, so the processing within a
tile remains unaffected. Therefore, when integrated together, the
dynamic tiling logic decides the next tile size, and then asks the
PEs to fetch the corresponding fibers, which generates the accesses
to the cache that will be served with the SeaCache techniques.

5 Methodology

We compare SeaCache with prior cache designs in sparse accel-
erators, particularly InnerSP [3], SpArch [38], and X-Cache [30].
P-OPT [4] is a CPU-based design, while its accelerator variant is
just InnerSP. Table 1 summarizes the key techniques of these de-
signs. For mapping strategies, all the three baselines use the basic
fiber-ID-based mapping described in Section 2.3.1. For replacement
policies, X-Cache uses standard LRU. InnerSP uses offline gLRU
that pre-generates the transpose of A, whose cost is ignored. At
runtime, the gLRU reuse distance is fetched and kept in addition
to the cache tag in each fiber’s block, and does not occupy the data
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space. In contrast, SpArch uses online gLRU that dynamically calcu-
lates the reuse distance. It uses 1/6 of the cache data space to store
the head/tail pointers as well as the linked lists (Figure 1).

All the designs use the same hardware configuration: 32 MAC
PEs operating at 1 GHz, with a 2 MB global cache organized into
32 banks. We also use the same dataflow for all the designs for fair
comparison, though they were originally proposed under differ-
ent dataflow schemes. We use Gust by default, and also evaluate
condensed OP used by SpArch in Section 6.3. The cache is 16-way
set-associative, with a 64-byte block size. The off-chip memory
employs four DDR4 channels, providing an aggregate bandwidth
of 68 GB/s. These settings are consistent with the configurations
adopted in prior works [18, 31, 37]. We also evaluate performance
under varying cache sizes and block sizes in Section 6.4.

To apply tiling, we mainly follow Tailors [35] and statically
choose the appropriate tile size that achieves the best performance
for each input matrix, under the given on-chip SRAM budget. Our
tile size choices incorporate overbooking as in Tailors, and the on-
demand fetching nature of caches naturally handles overbooking.

Besides caching, we also include a scratchpad baseline to demon-
strate the benefits of caches over scratchpads, as described in Sec-
tion 2.3. The scratchpad baseline follows the design of Tailors [35],
and has the same number of PEs, on-chip SRAM capacity, and
off-chip bandwidth as the above configuration.

Simulation and implementation. To evaluate performance
across the different designs, we implement a cycle-accurate simu-
lator in C++. The simulator tracks the accesses to individual non-
zeros and precisely captures the impact of input sparsity patterns.
Specifically, key components such as the index selector for Gust
are explicitly modeled. The actual input sparse matrix is fed to the
simulator to determine which data elements are actually processed
in the PEs, as well as the specific fiber IDs and lengths that need
to be accessed from the memory. The simulator tracks the exact
tag and data contents of the cache following the proposed designs,
to determine whether each access is a hit or a miss. The cache is
accessed in the granularity of cache blocks. When a fiber access con-
tains multiple cache blocks as described in Section 4.1, these blocks
are accessed in a pipelined way from the cache in multiple cycles,
and the access time is determined by the cache port bandwidth. In
addition, we assume the access requests are issued by a decoupled
controller [24] which then sends the data to all the requesting PEs.
This avoids redundant accesses from multiple PEs. Our simulator is
open-sourced at https://github.com/tsinghua-ideal/SeaCache-sim.

In addition, we implement the RTL designs of the key compo-
nents introduced in SeaCache, including the prefetch controller, the
fiber iterators, and the modified fuzzy tag comparators (Section 4.4).
We synthesize these components using the Synopsys Design Com-
piler targeting the TSMC 28 nm technology node. The SRAM-based
cache banks are modeled using CACTI 7.0 [5] to estimate the area
and power. We also extend CACTI to capture the SeaCache internal
modifications to the cache, including the extra bits and counters,
the added virtual tags per set, and the extra read-write port in the
tag array (Section 4.4). Table 2 shows the area breakdown. Most of
the overheads come from the modifications to the internal cache
arrays, as we add extra bits and counters per block. Nevertheless,
the overall area increase is modest, less than 6%.
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Figure 7: Performance comparison between the baselines and SeaCache, with Gust dataflow. Normalized to InnerSP. The
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indicate the performance when including its offline transpose cost.
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Table 2: Area breakdown of SeaCache. dataflow schemes and sparse kernels. Finally, Section 6.4 measures
the impact of key design parameters in SeaCache.

Component Area (mm?) Area %
32 PEs 2.80 36.78% 6.1 Overall Comparison
Interconnects 0.37 4.86% Performance. Figure 7 compares SeaCache against the scratchpad
2MB vanilla cache 3.99 >241% approach and the three cache baselines under the Gust PE dataflow.
Internal cache modifications  0.35 4.60% First, the scratchpad condenses all fibers and eliminates space frag-
All modified comparators 0.013 0.17% mentation, thus achieving good overall performance with 1.48x
Prefetch controller 0.005 0.07% over InnerSP. However, it is hard to apply replacement policies to
32 fiber iterators 0.085 1.12% scratchpads for sparse accelerators. After we evict a fiber with an
Total 7.613 100.00% arbitrary length and reclaim its space, it is difficult to re-allocate

this space to another fiber with a different length. Hence, when the
data exceed the buffer size, cold fibers fetched earlier will prevent
hot fibers fetched later from entering the buffer. Our optimized
SeaCache design can achieve similarly high space utilization while
enabling gLFU replacements, thus outperforming the scratchpad.

Among the three cache baselines, each design has some advan-
tages in some aspects but performs poorly in others. InnerSP uses
a moderate cache block size and the gLRU policy, resulting in good
average performance across different matrices. However, its fixed
block size does not always match the matrix fiber lengths. Also, the
results are optimistic. If we account for the offline transpose cost,
the total execution time will increase by 1.81x on average (shown
as the hatched regions), even though we use the optimized parallel
transposition algorithm ScanTrans [33] with 24 threads on an Intel
Xeon Gold 5120 processor at 2.2 GHz.

For SpArch with a large block size and the online gLRU policy,
about half of the matrices perform well, while the rest half exhibit

Datasets. We use real-world sparse matrices from the SuiteS-
parse Matrix Collection [9] as our evaluation datasets. These ma-
trices cover a wide range of densities (from 0.0006% to 0.356%),
non-zero counts (from 20K to 27M), and sparsity patterns. Fol-
lowing previous work, all matrices use 64-bit non-zero values,
with 32-bit coordinates and pointers. Our primary evaluation task
is sparse matrix-sparse matrix multiplication (SpMSpM) via self-
multiplication of square matrices, i.e., SXS, in line with prior studies.
In addition, we also test several other sparse kernels, including (1)
FT x F with a tall-skinny sparse matrix F; (2) F x D where D is
a random dense matrix, i.e., SpMM; (3) F T % S as one iteration of
multi-source breadth-first search (MS-BFS) in graph analytics [1, 7],
where S is the graph and F represents the initial source nodes [21].

6 Evaluation significantly lower performance. There are mainly three inefficien-
In this section, Section 6.1 first compares the overall performance cies. First, in highly sparse matrices, such as p2p-Gnutella31, there
among all the designs with the default configuration, and then are only a few elements (e.g., two) in each fiber, leaving the 576-byte
Section 6.2 analyzes the benefits from each individual techniques of block severely underutilized. Second, for those matrices preferring
SeaCache. Section 6.3 further extends SeaCache to other accelerator large tile sizes, such as af_shell9, the guide metadata needed
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Figure 9: Energy consumption breakdown (bars) of SeaCache
and its energy reduction (dots) over InnerSP.

by gLRU, including the head/tail pointers and linked list pointers,
would take substantial cache space. Third, for very large matrices,
such as ldoor and dielFilterV2real, the guide metadata size
may even exceed the entire cache capacity. We have to reduce their
tile sizes to limit these metadata to use no more than half of the
cache. The smaller tile sizes will lead to worse data reuse and more
redundant memory accesses [35], hence degrading performance. In
summary, while gLRU theoretically gives the optimal replacement
decisions, its online implementation cost is too high, requiring
significant metadata storage.

X-Cache uses very short blocks and the conventional LRU policy.
It does not suffer from any offline or online cost from the replace-
ment policy, but LRU is not as good as gLRU, so its performance is
lower than InnerSP. We were expecting its small block size would
make it perform much worse than InnerSP, but this effect is not sig-
nificant. We find that for very long fibers, even the 64-byte blocks
in InnerSP still cannot efficiently cache them, leaving many data
accesses to the off-chip memory.

Finally, SeaCache achieves significant speedups over all baselines,
on average 2.1X over the scratchpad, 3.1x over InnerSP, 6.8X over
SpArch, and 2.8x over X-Cache. Such significant improvements
are enabled by the efficient fiber packing and splitting technique
that better utilizes the cache block space, the gLFU policy that has
cheap and practical implementation, and the two-phase adaptive
prefetch size selection that prevents guide metadata from hijacking
too much cache space from actual data. Essentially, SeaCache ef-
fectively addresses the inefficiencies mentioned above in the three
baselines. We will later conduct in-depth performance analysis of
each individual technique in Section 6.2.

Memory bandwidth and cache miss rate. Figure 8 further
explains the performance gains of SeaCache using the memory
bandwidth and miss rate of each design. InnerSP and X-Cache can
achieve relatively low miss rates in extremely sparse matrices like
p2p-Gnutella@8, p2p-Gnutella3l, and amazon@601, but have bad
miss rates in other matrices. This is because the fiber lengths often
exceed the block size in these not-so-sparse matrices. This leads
to many cache misses, and also increases the memory bandwidth
usage in these two designs. SpArch, with very large blocks, relieves
this problem and reduces the miss rates for certain matrices with
long fibers. But its overall miss rate and memory bandwidth remain
high. We do not show the miss rate of the scratchpad since it is
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defined for caches, but we see that the memory bandwidth of the
scratchpad is also very high and makes it memory-bound. Finally
in SeaCache, both the improved mapping strategy and the replace-
ment policy help reduce cache misses, making its miss rates the low-
est among all designs. The memory bandwidth used by SeaCache
also drops, sometimes even no longer memory-bound. But sev-
eral highly sparse or hard-to-reuse matrices, e.g., p2p-Gnutellag,
fem_hifreq_circuit, and mycielskian16, still exhibit high band-
width, mainly because of the decreased execution time.

Impact of sparsity characteristics. The caching performance
of sparse accelerators heavily depends on the data characteristics,
among which the most important one is the degree of sparsity.
Sparser matrices usually have shorter fiber lengths, i.e., fewer non-
zeros per row. First, from the mapping perspective, matrices with
short fibers suffer from cache block underutilization, and thus prefer
short block sizes, e.g., p2p-Gnutella@8 for X-Cache. Matrices with
long fibers suffer from cache block overflow, and need large blocks,
e.g., nd24k for SpArch. Most matrices have diverse fiber lengths
and benefit from our fiber packing and splitting design. Second,
for the replacement policy, gLRU has high metadata cost (head/tail
pointers and linked-list pointers) for large and sparse matrices,
e.g., af_shell9 and ldoor for SpArch. Third, for the prefetch size,
denser matrices require smaller prefetch sizes, e.g., mouse_gene
and nd24k. This is because their data-to-metadata ratios are high,
meaning only a small amount of metadata would be sufficient to
effectively determine the optimized data replacements.

Furthermore, the specific sparse pattern, i.e., the non-zero distri-
bution, also affects the caching performance. Matrices with higher
data correlations, such as power-law matrices mycielskian16 and
amazon@601, can still have good hit rates with a simple LRU pol-
icy as in X-Cache. Matrices with low data correlations, such as
diagonal-like ship_001 and fem_hifreq_circuit, perform bad
under simple policies and benefit more from the guided policies,
but may require large prefetch sizes.

Energy. Figure 9 shows the energy consumption breakdown
of SeaCache. We mainly highlight the dynamic energy portions
of cache and memory accesses. “Others” include the PE compu-
tation energy (at 3.32 W) and the static energy (at 1.02 W). Based
on CACTI, we assume 0.291 nJ and 0.306 nJ for each 64-byte cache
block read and write. The memory access consumes 20 pJ/bit. We
see that off-chip memory accesses account for a moderate portion
of energy consumption around 30%, thanks to the reduced cache
misses. Overall, SeaCache reduces the energy by 60.2% compared
to the InnerSP baseline.

6.2 Analysis of Individual Techniques

To separate the contribution of each technique in SeaCache, we
start from a “Base” design, which uses conventional LRU and 64-
byte cache blocks with basic fiber-ID-based mapping. The effects of
incrementally enabling each optimization are depicted in Figure 10.
By using fiber packing and splitting (“+P&S”), the space utilization
of each cache block is improved for both short and long fibers,
fitting more data in the cache. This achieves a 1.80x speedup.
Next, we apply the gLFU policy (“+gLFU”), using a fixed prefetch
size of 1/6 cache space, same as SpArch. No virtual tags are added.



MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

6.0
5.0

Xintong Li, Jinchen Jiang, and Mingyu Gao

ﬁwwWMWMW W%WWMMMWWWMWWWMMW

P2p. GHU%]GHHI’eBD hip _od vtk cra“ksea[ She119°n18m"USe "d241r Faujy 63SOPF < b; OUpC 001‘ "1F11ter{;01elskycle]sklan YSp\mSC[ ﬂzonoé% 14 afdeSt ”’nan geomean

le]],

[ Base 1 +P&S I:I +gLFU

7 +4vtags

lrc lan] e L genes

[ +StaticSize [T +AdaptSize

Figure 10: Performance improvements from each individual technique in SeaCache.

8.000
4.000

C‘Ha

15t ol

lanjg 084 8en,

P2p. GIIUl‘eI[ 1115’30 ip_od)Vik ra“kse2~5bellgr°" ggg(l)g“Se 241( Faujy 6380PF i hzfreo“PC °0r IeIFIIren“}ClelskyCIe]sklan 14YSp \111sc'1n‘7201106g0 a’deszyz.man ge‘)mZean
8 1z

I:I Scratchpad 7 InnerSP

7 SpArch

I:I X-Cache I:I SeaCache (Ours)

Figure 11: Performance comparison between the baselines and SeaCache, with condensed OP dataflow. Normalized to InnerSP.

However, this does not show any speedup, but degrades the perfor-
mance by 7.5% on average. Only for several matrices like af _shell9
and dielFilterV2real, this simple gLFU performs close to our
final design. These matrices have the following characteristics. On
one hand, they exhibit relatively good temporal locality, in which
the prefetched fiber IDs are mostly already in the cache. So extra
virtual tags are not needed. On the other hand, they fit well with
the 1/6 prefetch size. Some other matrices like CoupCons3D also
have good temporal locality, but require different prefetch sizes.

We then introduce 4 virtual tags in each 16-way set (“+4vtags”).
This setting gains an overall speedup of 10.3% relative to “+P&S”,
but many matrices still do not have their most appropriate prefetch
sizes. If we statically scan all prefetch sizes, we find that 1/16 of
the cache size (“+StaticSize”) has the best average speedup of 35.4%
over “+P&S”. Finally, we use our two-phase adaptive mechanism
to select per-matrix best prefetch sizes (“+AdaptSize”). This design
achieves the best performance, with 1.12X faster than “+StaticSize”,
and 2.75% and 1.38x over “Base” and “+4vtags”.

6.3 Results of Other Dataflows and Kernels

Other dataflow. Besides Gust, SeaCache can also be used for the
condensed OP dataflow [38] (Section 4.4). We compare SeaCache
against the baseline scratchpad and cache designs in Figure 11
when all of them use the condensed OP dataflow. The overall per-
formance trend is similar to that of Gust. The scratchpad only per-
forms well on matrices that are relatively dense or have good reuse.
SpArch underutilizes the large block size, especially in very sparse
matrices. Several power-law matrices, including mouse_gene and
amazon@6@1, have better reuse under condensed OP, so the rela-
tively simple replacement policies in the scratchpad and X-Cache
achieve better performance than those under Gust. Overall, with
the condensed OP dataflow, SeaCache achieves average speedups
of 1.6X%, 2.8X%, 8.6%, and 2.4x over the scratchpad, InnerSP, SpArch,
and X-Cache, respectively.

Other kernels. Figure 12 evaluates other sparse kernels. In gen-
eral, SeaCache still exhibits robust speedups over the four baselines,
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and SeaCache, for different sparse kernels FT x F, F x D, and
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1.7X, 4.3%, 4.8X, 3.8% for FT x F; 1.9%, 2.9%, 3.1%, 2.9x for F X D;
and 3.2x, 1.0, 3.6, 0.9x for FT x §.

The scratchpad shows good performance in FT X F. In this kernel,
the result matrix C is very small, so tiling along the k dimension and
buffering the C matrix are very effective and can make data fully fit
in the scratchpad. But in the cache baselines, the space utilization
degrades due to underutilizing or overflowing the fixed block size,
making performance suffer. Similarly, F X D on bibd_22_8 also has
a very small dense matrix D that fully fits in the scratchpad.

Note that the gains of SeaCache are also significant on the sparse-
dense multiplication kernel F X D. First, although D is dense, the
fiber lengths of D still vary across matrices, and do not perfectly
match the fixed block sizes in the baseline caches. Second, the access
pattern of D still depends on the sparse F, and thus benefits from
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the guided replacement policies. Third, the dense D matrix further
reduces the overheads of prefetch metadata (e.g., one counter for a
long dense row), making the guided replacement more efficient.

In the MS-BFS kernel FT x S, SeaCache’s advantages are smaller.
This is due to the extremely sparse matrix F! representing the
initial source nodes (one element per row), which makes the graph
matrix S hardly reused, and thus the caching optimizations have
limited impact. X-Cache achieves the best performance here since
it uses a very small cache block size and has the fewest redundant
fetches. SeaCache performs close to X-Cache.

6.4 Sensitivity Studies

Cache capacity. We measure the speedup of the full SeaCache
design over the “Base” design in Section 6.2, i.e., the effectiveness of
SeaCache, under different cache capacities of 0.5 MB, 2 MB (default),
and 8 MB in Figure 13. We keep using 32 PEs and 64-byte blocks.
SeaCache achieves consistent speedups of 2.21x, 2.69x and 2.89x.
The SeaCache techniques offer more performance gains in larger
capacities. The increased cache space necessitates efficient mapping
strategies like fiber packing and splitting to fully utilize. Also, more
space allows the gLFU policy to keep more guide metadata and
thus make more accurate decisions.
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Block size. Figure 14 shows the performance of SeaCache with
different block sizes. We keep the 32 PEs and the total 2 MB capac-
ity unchanged. However, when changing the block size, the access
bandwidth to a bank, which is one block per cycle, also changes.
We thus change the number of banks to ensure the same total
bandwidth, i.e., 64 banks for 32-byte blocks, 32 banks for 64-byte
blocks, etc. In such scenarios, we see the performance is not very
sensitive to the block size, with smaller blocks achieving slightly
better performance, i.e., 32-byte is 4.2% faster than 64-byte. How-
ever, smaller blocks need more banks, and the relative space cost
of tag-to-data also increases, both adding area overheads. Thus, we
choose 64-byte as our default configuration.

Number of Tag-L bits. Recall that in Section 4.1 we skip the
lowest few Tag-L bits when extracting the set ID from a fiber ID.
Figure 15 shows the impact of these bits. More Tag-L bits make
more contiguous fibers mapped to the same set and allow more
flexible packing, improving performance. But some matrices includ-
ing crankseg_2, kron_g500-1ogn18,and mycielskian16 perform
worse with a longer Tag-L. There are two reasons. First, Tag-L bits
are harmful to some patterned sparse matrices with high corre-
lation between adjacent rows. If all of these rows are needed but
mapped to the same set, conflicts will occur more frequently. With
16 ways per set, we can fit 16 contiguous fibers (without packing),
corresponding to 4-bit Tag-L. Second, recall that we have a limit
on the number of segments allowed when splitting fibers. A longer
Tag-L leads to a more strict limit. Each additional Tag-L bit reduces
the limit by half. As a result, we choose 4-bit Tag-L.

7 Conclusions

We propose SeaCache, a set of efficient and adaptive techniques
to optimize the cache design in sparse accelerators, particularly
on data mapping schemes and replacement policies. SeaCache ap-
plies fiber packing and splitting to improve the cache block space
utilization in the presence of variable-length sparse fiber data. It
incorporates a practical guided LFU replacement policy that has
much smaller implementation cost than the optimal guided LRU
but performs similarly, and also uses a two-phase adaptive mecha-
nism to decide the proper on-chip capacity to keep the replacement
policy metadata by borrowing space from the data cache. SeaCache
significantly outperforms state-of-the-art cache and scratchpad
designs, by 2.8 and 2.1X, respectively.
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