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Abstract—With an increasing focus on data security in today’s
computer systems, homomorphic encryption and zero-knowledge
proofs are becoming widely used tools in privacy-preserving com-
puting. Number theoretic transform (NTT) is a key primitive that
dominates the performance of these algorithms, and thus becomes
an attractive target for domain-specific acceleration. Prior NTT
accelerators mostly support only fixed and small NTT sizes,
which are insufficient for the diverse parameter requirements
of different cryptographic algorithms and applications.

In this paper, we propose an FPGA-based, scalable NTT ac-
celerator that uses multi-dimensional decomposition to efficiently
support various NTT sizes. The hardware uses a limited and fixed
amount of compute and storage resources on-chip. An arbitrary-
sized NTT task is decomposed into fixed-sized small NTT kernels
that match the on-chip hardware and thus execute with high
efficiency. We further incorporate techniques to optimize both
off-chip and on-chip data transfers under such complicated
decomposed execution. Overall, our accelerator balances between
on-chip compute throughput and off-chip memory bandwidth. It
can flexibly scale to very large NTT tasks, and outperforms prior
FPGA-based NTT accelerators by over 2× at these large sizes.

Index Terms—NTT, accelerator, FPGA

I. INTRODUCTION

Data privacy has recently become a critical concern in
computer systems due to the ubiquity of cloud computing,
blockchains, and Internet of Things (IoT). To guarantee con-
fidentiality and integrity not only when data are stored and
transmitted but also during computation, modern cryptography
offers various privacy-preserving computing algorithms, such
as homomorphic encryption (HE) and zero-knowledge proof
(ZKP). HE [1] allows to encrypt the private data and conducts
various computations on the ciphertexts, to directly obtain the
encryption of the desired result without exposing the secret
plaintexts, thus ensuring confidentiality. ZKP [2], on the other
hand, allows a prover to generate a proof about some statement
on her secret data x, such as F(x) = 0, while the proof is zero-
knowledge, i.e., not leaking any information about the secret
x when validated by other verifiers. ZKP is widely used in
blockchains and computation outsourcing to ensure integrity.

State-of-the-art HE and ZKP algorithms typically use some
modular polynomial rings as their underlying algebraic sys-
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tems [2]–[7], and perform a large number of polynomial
additions and multiplications. In particular, with a large poly-
nomial degree N, the multiplication is an expensive operation,
whose cost grows as O(N2). The most widely used algorithmic
optimization for polynomial multiplications is based on the
number theoretic transform (NTT), a special form of the
discrete Fourier transformation on large finite fields. NTT
could reduce the multiplication complexity to O(N logN).
Nevertheless, it still remains as the dominant component in
the overall performance of most HE and ZKP algorithms.
Therefore, NTT has been a popular acceleration target using
FPGA [8]–[15], ASIC [16]–[19], and GPU [20]–[22].

However, the algorithm parameters of NTT, particularly the
polynomial degree N and the bitwidth W , differ significantly
not only between HE and ZKP, but also across different
protocols in each of the two domains. Most HE schemes [23]–
[25] work on numbers with W of 50 to 60 bits after bit
decomposition. Their polynomial degrees vary around 216 to
218. In contrast, ZKP protocols [26], [27] require much larger
polynomial degrees over 220 and up to 228, and have to com-
pute on the original wide integers of several hundreds of bits,
e.g., W = 256. An ideal NTT accelerator should support these
diverse ranges of algorithm parameters. But unfortunately,
most previous FPGA-based and ASIC-based NTT accelerators
were designed for a fixed algorithmic configuration, or only
worked efficiently within a narrow range of parameters.

In this work, we propose SAM, an FPGA-based, scalable
NTT accelerator that uses multi-dimensional decomposition to
efficiently support various NTT sizes. Particularly, SAM uses
the same hardware design with a limited and fixed amount
of on-chip resources, to efficiently process NTT kernels of
various sizes N, ranging from 216 in HE up to 228 in ZKP.
It does this by decomposing the large NTT workload into a
multi-dimensional hypercube of fixed and small NTT kernels,
so the hardware only needs to use constant resources to imple-
ment efficient NTT units of fixed and small sizes. SAM then
leverages FPGA’s reconfigurability to instantiate arithmetic
units for the specific bitwidth W , and seamlessly plugs them
into the same high-level architecture without redesign efforts.

We emphasize that, although previous NTT accelerators
have also used multi-dimensional decomposition [16]–[19],
SAM is the first design that uses it to scalably support diverse
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NTT sizes. Specifically, previous designs decomposed a size-
N NTT into fixed numbers of dimensions (e.g., 2-D or 3-D).
When N varies, the decomposed small NTT sizes also change,
either underutilizing the provisioned resources, or exceeding
the hardware limit and not able to run. SAM instead fixes the
post-decompose NTT sizes (and thus efficiently utilizing the
hardware resources), and allows to decompose into variable
numbers of dimensions. This is enabled by its novel compu-
tation flow and control logic design (Section III-B).

To better support the complicated execution of multi-
dimensional NTT decomposition, SAM adopts novel microar-
chitectural optimizations. First, for off-chip data accesses,
SAM generates the NTT twiddle factors on-the-fly instead of
always accessing them from memory to save bandwidth. The
scheme is specially tailored to decomposed NTT computations
that are not supported before (Section III-C). Second, for on-
chip data transfers, SAM proposes a novel data layout to
rearrange data among multiple on-chip buffers to avoid buffer
access conflicts while still preserving sufficiently sequential
off-chip data fetches even though the computation is decom-
posed into small chunks (Section III-D). Finally, SAM also
uses more area-efficient modular multipliers co-designed with
the NTT pipeline structure, and a prefetching mechanism to
improve off-chip bandwidth utilization (Section III-E).

To evaluate SAM, we instantiate two optimized configura-
tions for 256-bit and 64-bit bitwidths, respectively, through
careful design space exploration that achieves balanced com-
putation throughput and data bandwidth (Section IV). Com-
pared to the state-of-the-art FPGA-based NTT accelerators
with similar off-chip memory bandwidth, SAM achieves 2.1×
to 2.6× speedups for large NTT sizes of 220 to 224. It also
slightly outperforms several FPGA baselines at relatively small
NTT sizes of 216 and 217, even if these designs are specially
optimized for these sizes and keep all data fitting on-chip.

II. BACKGROUND

Number theoretic transform (NTT) is a number-theory-
based form of discrete Fourier transform (DFT) that works on
a finite field such as Zp (integers modulo p), rather than on the
complex plane. The modular operations in NTT avoid potential
floating-point accuracy errors in traditional DFT, making NTT
a powerful cryptographic primitive. In this work, we aim to
design an FPGA-based accelerator for NTT.

A. Number Theoretic Transform (NTT)

Let A(x) = ∑
N−1
j=0 a jx j represent a polynomial with the

degree of N −1. We can also view A as a vector of length N,
and we use a[ j] to denote each of its elements, which is W -bit.
We assume N is a power of 2; for non-power-of-2 lengths, we
pad the vector with zeros. The NTT computation, Â=NTT(A),
is mathematically defined as the following equation:

â[i] =
N−1

∑
j=0

a[ j] ·ω i j
N , i = 0, . . . ,N −1

where ωN is the Nth root of unity in the finite field. Any power
of ωN is called a twiddle factor. The multiplications and addi-

tions in the equation are also performed in the specific field,
e.g., in Zp as modular multiplications and modular additions.
We call A and Â respectively the coefficient representation and
the NTT representation of the polynomial A(x).

As a special form of DFT, NTT can also leverage fast
Fourier transform (FFT) to reduce the computational complex-
ity from O(N2) to O(N logN). An NTT with N input elements
needs log2 N stages where each stage has N/2 butterfly op-
erations. Each butterfly operation takes two elements with a
certain stride ( N

2i for the ith stage), and generates two output
elements using a modular addition, a modular subtraction, and
a modular multiplication in Zp. For the ith stage, N

2i different
twiddle factors are needed. With a fixed N and a fixed finite
field, these twiddle factors are constant numbers.

To convert the NTT representation back to the coefficients,
the inverse NTT (iNTT) process is similar to NTT, except that
ωN is replaced by ω

−1
N and the result elements are multiplied

by N−1 at the end, i.e.,

a[ j] = N−1 ·
N−1

∑
i=0

â[i] · (ω−1
N )i j, j = 0, . . . ,N −1

B. Applications of NTT

NTT and iNTT are widely used in many modern crypto-
graphic algorithms, such as homomorphic encryption (HE) [1],
[3]–[5] and zero-knowledge proof (ZKP) [2], [6], [7], to
optimize large polynomial multiplications from O(N2) to
O(N logN). More specifically, let A(x) and B(x) be two
polynomials (on the ring of Zp[x]/Φ(x) where Φ(x) is usually
the degree-N cyclotomic polynomial). Their product C(x) =
A(x) ·B(x) could be obtained as the following:

C = iNTT(NTT(A)⊙NTT(B))

where ⊙ denotes an element-wise vector multiplication.
However, the specific values of the parameters N and W in

NTT vary significantly across different algorithms, and even
among applications of the same algorithm. For state-of-the-art
HE schemes like BGV [3] and CKKS [5], N is typically set to
a moderately large power-of-2 value that is at least 216, in order
to support 128-bit security and achieve a balance between
sufficient multiplicative depths and manageable bootstrapping
cost [19], [28], [29]. In addition, HE schemes are usually able
to choose a “good” finite field Zp to make p the product of
some smaller co-prime numbers. Each element in the original
large field can be decomposed into a unique set of elements in
the fields of these smaller moduli, forming a Residue Number
System (RNS). Polynomial additions and multiplications in the
large field can then be performed in RNS, independently on
each of the decomposed polynomials with the small moduli.
Therefore, NTT and iNTT computations in HE typically work
with W around 50 to 60 bits, within the native integer type
width of modern processors (64 bits).

On the other hand, ZKP applications would usually require
much larger NTT and iNTT operations, with N reaching 221 to
227 in real-world protocols like Zcash [26] and Filecoin [27].
They also need to use large finite fields, but modulo an exact



power-of-2 value that cannot be factorized in the RNS way.
Therefore, NTT and iNTT in ZKP directly handle wide integer
data with hundreds of bits, e.g., 256, 381, and 753 bits for the
BN128, BLS12-381, and MNT4-753 elliptic curves commonly
used in various ZKP implementations [30]–[33].

C. Related Work

There have been many prior efforts focusing on accelerating
NTT using FPGAs. Roy et al. [8] proposed an FPGA-based
NTT accelerator that supported N = 215 and W = 30bits. They
supported strided data accesses by merging two required coef-
ficients in a single memory word. Later, they also implemented
an NTT co-processor [9] that used two parallel butterfly units,
but limited to N = 212. HEAX [10] realized a fully pipelined
architecture with multiple NTT cores for the CKKS HE algo-
rithm. With larger FPGA chips, HEAX could scale between
N = 212 and 214, and worked with W = 54bits. Other FPGA-
based proposals [11]–[14] were also designed and synthesized
for relatively small and fixed NTT parameters. When scaling
them up to accommodate larger NTT kernels, the limited
on-chip resources and off-chip bandwidth would restrict the
performance. To our best knowledge, CycloneNTT [15] was
the first FPGA accelerator specifically designed to target large
NTT sizes. It used a simple butterfly network as the core
computing unit, and adopted the special Goldilocks field [34]
to minimize the resource usage. But the fixed depth of the
butterfly network d made it less flexible, only supporting
N = 2kd ,k ∈ Z. Furthermore, it did not use on-the-fly twiddle
generation as we do.

Recent HE and ZKP accelerators were mostly implemented
as ASIC. They mainly used the multi-dimensional decompo-
sition of NTT (Section II-D) to reduce the required hardware
resources. PipeZK [16] (N = 220, W = 256bits) and F1 [17]
(N = 214, W = 32bits) both used 2-D NTT decomposition.
CraterLake [18] (N = 216, W = 28bits) handled NTT similarly
to F1, but with more NTT units and an optimized transpose
network. BTS [19] went one step further and performed 3-
D decomposition, breaking a 217-size NTT into 26 ×25 ×26.
It used 2048 on-chip processing elements, each capable of
executing a 26-size NTT. Despite great performance, these
ASIC designs only considered specific parameter choices of
N and W in one type of algorithm, and could not adapt to
diverse applications.

On GPUs, Govindaraju et al. [20] proposed FFT/DFT opti-
mizations suited to different problem sizes. They decomposed
a large-size FFT into smaller kernels that fit in the limited
shared memory. Kim et al. [21] ported various GPU optimiza-
tions that originally targeted DFT to accelerate NTT. They
proposed dynamic generation of twiddle factors to reduce off-
chip bandwidth. Özerk et al. [22] proposed a hybrid approach
that reduced data dependencies and created more parallelism
opportunities, to best exploit the abundant GPU resources.

D. Multi-Dimensional Decomposition for NTT

Previous NTT hardware designs [16]–[18] have adopted the
2-D NTT decomposition method that converts a large NTT

3 7 11 15

19 23 27 312 6 10 14

18 22 261 5 9 13

17 21 25 290 4 8 12

16 20 24 28

①

③

②30

Fig. 1. Multi-dimensional NTT decomposition example.

of size N into multiple smaller kernels of size I and size J,
satisfying N = I × J. Generally, this 2-D NTT decomposition
can be broken down into three distinct steps.

1) Organize the input data of N elements into a 2-D plane
with I columns and J rows in a row-major order. Then,
perform size-J NTT on each of the I columns.

2) Multiply each element at the coordinate (r,c) on the 2-D
plane with the corresponding twiddle factor ωrc

N .
3) Perform size-I NTT on each of the J rows. Then,

transform the 2-D plane following a column-major order,
back into a 1-D sequence of N elements as the output.

In this 2-D decomposition, setting I = J =
√

N reaches the best
utilization, where we only need fewer hardware resources to
process smaller NTT kernels of size O(

√
N) rather than O(N),

reducing the chip area requirement.
We further generalize to multi-dimensional NTT decompo-

sition [20]. In fact, the NTT operations on each decomposed
dimension can be regarded as standalone NTT kernels, and
thus decomposed again, expanding the total number of dimen-
sions in a hierarchical and recursive manner. Mathematically,
we decompose a size-N NTT into a d-dimensional hypercube,
i.e., N = m × nd−1, where m ≤ n represents an incomplete
dimension to support more general values of N. The remaining
dimensions all have the same size n. Our work assumes N, n,
and m are all power-of-2 numbers, so having one incomplete
dimension supports any power-of-2 values of N. In Fig. 1,
N = 25,n = 22,m = 21,d = 3. With such a decomposition, we
need to perform nd−1 times of size-m NTT (① in Fig. 1) and
m×nd−2 times of size-n NTT (② and ③) along each dimension
in turn. Similar to the 2-D case, twiddle factor multiplications
and dimension transpositions are required in between of these
NTTs whenever we switch the dimensions.

III. SAM DESIGN

In this work, we propose SAM, an FPGA-based, scalable
NTT accelerator. SAM leverages multi-dimensional decompo-
sition to efficiently process NTT kernels of various sizes from
216 up to 228 for state-of-the-art HE and ZKP schemes. This
section presents the hardware design of SAM.

A. Architecture Overview

Fig. 2 illustrates the overall system architecture of SAM,
which is implemented on an FPGA connected to the host CPU
via a PCIe bus. The host CPU transfers the input data to the
DDR memory on the FPGA board, and sends the commands
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Fig. 2. SAM architecture overview.

and the input arguments to the FPGA engine to start process-
ing. Since we target any large-size NTT processing, we assume
both the input data and the constant twiddle factors cannot fit
on-chip and are accessed from the off-chip DDR memory.

At the center of the SAM architecture are multiple pipelined
NTT processing units that can natively execute size-n or
smaller NTT operations. Each NTT pipeline is accompanied
with an extra modular multiplier, which performs the twiddle
factor multiplications when switching across different decom-
posed dimensions (Section II-D). The input and output data
elements of the NTT pipelines are buffered on-chip, where
each buffer holds n×n×b elements with double buffering, i.e.,
in total 2n2bW bits. We process two decomposed dimensions
in succession for each round of data fetch (thus n2) to improve
on-chip data reuse. b ≥ 1 is a buffer capacity extension factor
that allows us to prefetch more data to better utilize DDR
bandwidth and hide NTT pipeline delays (Section III-E). We
define a compute lane to include one NTT pipeline, one
modular multiplier, and one buffer. We use t to denote the
number of lanes instantiated in SAM. Section IV discusses
how to concretely set the above design parameters, n, t, b.

With the fixed hardware that natively supports size-n NTT
processing, we can map an NTT kernel of arbitrary power-
of-2 size N onto SAM, by decomposing it into d = ⌈logn N⌉
dimensions, where N = m×nd−1 for some m ≤ n. A larger N
will result in a larger d and needs proportionally longer pro-
cessing time on the same amount of resources. Section III-B
describes the generic computation flow and the control logic in
SAM that supports any value of d. Because multi-dimensional
NTT decomposition also complicates the usage of twiddle
factors and the strided butterfly data access patterns, SAM
also incorporates several novel optimizations, including a
specialized on-the-fly twiddle factor generation scheme to save
off-chip memory bandwidth (Section III-C), and an efficient
on-chip data layout scheme that avoids buffer access conflicts
(Section III-D).

B. Computation Flow

In each compute lane of SAM, the NTT pipeline natively
processes a size-n NTT operation, while the buffer has a

Base+
 -1

Base+1

Base

+

Fig. 3. The b× t 2-D data planes buffered and processed by the t compute
lanes. The elements along the row and column dimensions have strides of
ndc−1 and ndc , respectively, and are likely non-consecutive for most of the
time. The exact layout in the on-chip buffers is depicted in Fig. 5.

capacity to hold 2-D planes of size n×n. This is because on
most FPGA chips, the BRAM/URAM resources (for on-chip
buffers) are relatively abundant compared to the DSP resources
(for modular multipliers in NTT pipelines). Increasing the
buffer capacity makes better use of the RAM resources to
improve on-chip data reuse. We empirically find 2-D fusion
is a good choice. We fetch data from a 2-D plane from the
off-chip memory into the buffer of one lane, and apply both
the row and column NTT operations on the data to save
2× off-chip data traffic. We call such 2-D processing of two
decomposed dimensions as one round.

We now describe the computation flow of SAM for an
arbitrary N and d = ⌈logn N⌉. The control logic maintains the
current processing dimension index dc, which is initialized
to d − 1 by the input command from the host CPU. The
hardware then starts a round of processing on the 2-D planes
of the dimensions dc and dc−1, including the row and column
NTT operations and the twiddle factor multiplications. After
the round finishes, it decrements dc by 2. The hardware
repeats with more rounds, until dc gets to 1. If d is not even,
before the above sequence of normal rounds, we first do a
special round, which only applies 1-D NTT operations on
the dc dimension, and decrements dc by 1. In both cases, the
incomplete dimension m (if any) is processed as the first one.

In one round for the dimensions dc and dc − 1, there are
nd−2 (when dc = d − 1) or nd−3 ×m (when dc < d − 1) 2-
D planes in total. Each time t planes are processed in the
t lanes in parallel. We make each group of these t planes
have consecutive base addresses, as shown in Fig. 3. The base
address of the first plane starts from 0, and increments by
t each time, until reaching ndc−1, at which point it is set to
ndc+1 (when dc < d − 1), and repeats. Such an order allows
the 2-D data planes that share the same set of twiddle factors
to be processed together, enabling on-the-fly twiddle factor
generation in Section III-C.
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Fig. 4. On-the-fly twiddle factor generation scheme in SAM.

C. On-the-Fly Twiddle Factor Generation

In multi-dimensional decomposition, there are two places
that need twiddle factors. First, each NTT pipeline needs its
local twiddle factors to complete the size-n NTT. The number
of these constants is small and bounded by the hardware design
parameters, only O(tn), so they are directly stored in the ROM
of the pipeline stages. Second, when we switch dimensions
in the decomposed hypercube, we need to do twiddle factor
multiplications in between. Such twiddle factors are O(N),
corresponding to the workload size and could be very large.
Thus off-chip DDR accesses are necessary for them.

We use an on-the-fly twiddle factor generation module to
reduce the off-chip traffic demands. Compared to previous
work that only implemented on-the-fly generation for fixed and
limited decomposed depths [12], [19], [21], SAM generalizes
the scheme and is able to support arbitrary decomposition.
Fig. 4(a) shows the microarchitecture, including a modular
multiplier, a ROM, and two output double-buffered RAMs.
The ROM stores a small amount of seed twiddle factors, which
are used by the multiplier at runtime to iteratively calculate
the needed twiddle factors, and store to the output RAMs.

As we buffer 2-D data planes on-chip in each round, the
generation of twiddle factors has two types.

• Pre-column-NTT generation. Before doing the column
NTTs for dimension dc, all columns of the 2-D data plane
should be multiplied with the same set of twiddle factors.
We use a RAM of n elements to store these factors,
and iteratively update them after processing every ndc−1

planes of size mn (when dc = d−1) or ndc−2×m planes of
size n2 (when dc < d−1). Specifically, let dn = d−dc. As
in Fig. 4(b), we initialize all the factors to ω0

mndn−1 = 1 (or
N−1 mod p for iNTT in the first round), which are used
by the first group of planes. The next set of factors are
obtained by multiplying ωr

mndn−1 (read from the ROM) at
row r to each current factor.

• Pre-row-NTT generation. The case is more complicated
for the row NTTs for dimension dc − 1. Each element
of the 2-D plane should be multiplied with a different

twiddle factor. We need double-buffered RAMs of size
n2, as shown in Fig. 4(c). When changing to the next set
(the same pace as in pre-column-NTT generation), we
need to multiply each factor at column c with ωc

mndn .
In total, we need 2(n+n2)W bits of RAM, e.g., up to 17 kB

for n = 16 and W = 256bits, independent of N. After a round
is completed, the module is reset and the twiddle factors of
the next round will be generated from scratch.

We also need a set of ω i
n j , for i = 0,1, . . . ,n − 1, and

j = 2,3, . . . ,dmax, to update the generated twiddle factors. In
addition, the row twiddle factor generation needs n2 initial
values. All these constants consume n(dmax −1)W +n2W bits
of ROM. This ROM capacity does depend on the maximum
supported NTT size Nmax = ndmax , but only increases linearly
with dmax = logn Nmax. This is the only resource in SAM
that depends on N. In reality, this logarithmic increasing is
not an issue. For example, assuming n = 16, W = 256bits,
Nmax = 228, the ROM is only 11 kB. Even extending Nmax to
a huge size of 236 only increases the ROM capacity by 1 kB.

D. Data Layout in On-Chip Buffers

As discussed in Section III-B, each time SAM processes t
data planes of n× n elements in the decomposed hypercube.
When dc > 1, the addresses of these elements are consecutive
only along the plane dimension, but have large strides along
the rows and columns inside each plane (Fig. 3). Therefore,
each off-chip DDR access brings in the t elements at the same
position on all the planes, and they can be independently
stored into the t separate buffers in different lanes, without
buffer conflicts. This ensures that the data needed by each NTT
pipeline are kept local in each lane. Fig. 5 left shows such an
example. The number in each element denotes its address, and
two elements with the same color (with consecutive addresses)
are read from memory and stored to the buffers in the same
cycle. The layout of the two buffers matches exactly with the
two planes needed by the NTT pipelines as in Fig. 3.

However, the above natural layout does not work for the
last round when dc becomes 1. This case is special as the
data within each plane become consecutive, e.g., the first row
should have 0,ndc−1 =1, . . .. Therefore, consecutive elements
0 and 1 fetched together from the memory now need to be put
in the same buffer (Fig. 5 middle), causing access conflicts.
In SAM we require n > t, so only dc = 1 has this issue.

To resolve this issue, we propose a novel circular layout
shown on Fig. 5 right. The elements needed by the t lanes
are circularly distributed across all the buffers after being
fetched from off-chip. Specifically, a perfect layout should
satisfy two conditions. First, the t consecutive elements fetched
together (with the same color) must be stored to different
buffers to avoid conflicts. Second, the on-the-fly twiddle factor
generation order when dc = 1 in Section III-C requires us to
use the t lanes for multiple row/column NTT operations on one
2-D plane, because now only ndc−1 = 1 plane uses the same
set of twiddle factors. Therefore, each group of t consecutive
elements along the rows and columns of the same plane (e.g.,
0 and 1, 0 and 4, 16 and 17, 16 and 20) should also be stored
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Middle: The natural layout incurs buffer conflicts when dc = 1. Two elements fetched in the same cycle need to be stored to the same buffer. Right: The
circular layout resolves all buffer conflicts for dc = 1, by circulating and distributing elements across all buffers.

in different buffers, so that we can read out one element from
each of the t rows/columns in parallel for the t NTT pipelines.

Our circular layout scheme satisfies the above requirements
in the following way. For an element at the position of row
r, column c, and plane p (all starting from 0) in the natural
layout, e.g., 24 is at position (r = 2,c = 0, p = 1), we put it
to the position (r′,c′, p′) in the circular layout, where

k = (p+ r) mod t (1)
r′ = (p ·n+ r)/t (2)
c′ = c (3)
p′ = (c+ k) mod t (4)

For example, 24 with (r = 2,c = 0, p = 1) has k = 1, and is
put to (r′ = 3,c′ = 0, p′ = 1). The idea is to distribute the t
elements (with consecutive column indices c) to the t buffers
(with consecutive p′) as in Equation (4), following a certain
circular shift distance k. The shift distance k is determined
by the original row index r in Equation (1), so elements in
consecutive rows are also distributed to different buffers.

We use a circular shift network-on-chip (NoC) across the
multiple compute lanes, to realize the mapping from c to
p′ for the t elements in each DDR access. It calculates the
required k value for shifting the elements. Since k can only
have t possible values (usually 4 to 16 in our design), we
use pipelined multiplexers to implement the shift network
in a straightforward way. We implement a simple buffer
address generator at each buffer to calculate r′ and c′, which
determines the location in the buffer to write the data to.

E. Additional Hardware Optimizations

NTT pipelines. SAM adopts its NTT pipeline design from
PipeZK [16]. As a size-n NTT unit, the pipeline has logn
stages. There are input/output FIFO buffers before/after each
stage, whose FIFO depth is equal to the desired access stride,
i.e., n

2i for stage i. Each stage of the pipeline receives one
input element per cycle, and outputs one result per cycle.
The FIFO buffers organize the data to realize the expected
strided accesses. This design has several advantages that match
our multi-dimensional decomposition. First, the pipeline reads
and writes one element per cycle, which reduces the data
bandwidth requirement and is very friendly to non-consecutive

FIFO M
U
X

FIFO M
U
X FIFO

Fig. 6. Using a W
2 -bit×W -bit modular multiplier to perform W -bit×W -bit

multiplications with half of the throughput.

data accesses. Second, it is easy to support the incomplete
dimension (if any) m < n for general power-of-2 values of N,
by skipping the first few stages in the pipeline. Third, this
design has good scalability on FPGA, especially for the way
to support strided data selection, where FIFOs are relatively
easy to instantiate than a large number of multiplexers [10].

However, this NTT pipeline has a critical issue, where the
fully pipelined modular multiplier at each stage is only 50%
utilized. This is because only one element enters the stage in
each cycle, but it requires two elements to compute. The stage
i works for n

2i cycles and then sits idle for another n
2i cycles.

To tackle this issue, we propose an improved design that
uses a half-throughput modular multiplier at each pipeline
stage. We reduce the modular multiplier width from W -bit×
W -bit to W

2 -bit×W -bit, and add additional operand and result
FIFOs before and after it, as shown in Fig. 6. Specifically,
for input operands x and y, we first compute xL × y (we omit
modulo in this paragraph) and store to the result FIFO, while
buffering both xH and y in the operand FIFOs. After all input
data of this phase are fed in and during the idle time, xH and
y are popped from the operand FIFOs for computing, and the
result is shifted and added to the corresponding product xL×y
from the result FIFO, to obtain the final result x×y. In many
cases y is always a constant, and the second operand FIFO can
be removed. This optimization reduces the DSP consumption
by roughly 1/3 without any negative performance impact.

Data prefetching. So far, SAM uses t compute lanes to pro-
cess t 2-D data planes in parallel. In general, these 2-D planes
have non-consecutive elements along the rows and columns,
while Section III-B ensures that the elements along the plane
dimension are always consecutive, and thus fetching multiple



planes together increases the DDR burst access granularity
and correspondingly the bandwidth utilization. However, t is
limited by the available FPGA logic resources. On a typical
FPGA, DSP units are more precious than RAM blocks. If we
only fetch and buffer t planes, we would underutilize the RAM
space, while the DDR access burst length is still insufficient.

We hence introduce a buffer capacity extension factor b to
decouple data processing and data buffering. SAM actually
fetches b groups of t 2-D planes together, with the buffer in
each lane also enlarged by b×. These b groups of planes are
processed sequentially. All the b× t planes within one fetch
have consecutive base addresses, making each DDR access of
btW bits. Thus a sufficiently large b can fully utilize the on-
chip RAM space to achieve high DDR bandwidth utilization.

Having b× more available work on-chip also helps hide
the long NTT pipeline latency. When switching from column
NTTs to row NTTs, we must wait until the output from the
last column NTT to be written back to the buffer, before we
can read out the first row to start the first row NTT. In our
multi-stage NTT pipeline [16], such dependencies result in
long pipeline stalls. With b groups of planes, we adjust the
execution order, to first perform the row NTTs on all b groups,
and then start the column NTTs.

IV. DESIGN SPACE EXPLORATION

SAM contains three main design parameters, the size of
each NTT pipeline n, the number of parallel lanes t, and
the buffer capacity extension factor b. They exhibit various
tradeoffs. A larger n consumes more on-chip resources, but
also supports larger NTT kernels natively and reduces the
decomposition overheads. Increasing t improves paralleliza-
tion and thus performance, but is limited by both the on-chip
DSP resources and the off-chip DDR bandwidth. Finally, b
should be large enough to better utilize the memory bandwidth,
subject to the FPGA RAM space limit.

To determine these parameters, we consider latency match-
ing between computations and data accesses for double buffer-
ing. SAM uses one DDR channel for data reads and another for
writes. We empirically find on our platform that the DDR burst
length per channel must be no less than L = 1kB to achieve
the maximum sustainable bandwidth of B = 11GB/s. When
W = 256bits, we can achieve a frequency of f = 100MHz.
For the compute latency, there are N logN

2 butterfly operations,
and our NTT pipeline needs 2 cycles for each. So

Latencycomp =
N

t f logm
+

N(logN −1)
t f logn

where the first term specially considers the incomplete dimen-
sion m. For the memory latency, we multiply the data size NW
by the number of rounds, and divide by the bandwidth.

Latencymem =
NW

B
⌈ logN

2logn
⌉

Letting the two latencies equal, and simplifying by omitting
the ceiling function and assuming m = n, we get t = 2B

W f ≈ 6.9.
Because t must be a power of 2 as required by the buffer layout

Fig. 7. Resource consumption of various n values for t = 4 at 256 bits.

in Section III-D, it may be 4 or 8. We find that for large N
values, there are many large strided accesses that decrease the
effective bandwidth B, which in turn lowers the optimal value
of t. We thus choose t = 4. Accordingly, b = L

Wt = 8.
Finally, to decide n, we see both the compute and memory

access latencies above decrease with logn, making us use an
n as large as possible. However, we are limited by the on-chip
FPGA resources. As shown in Fig. 7, the DSP count eventually
restricts SAM to use n = 64.

Similarly, we calculate another configuration of SAM for
W = 64bits with a frequency f = 165MHz. Repeating the
above procedure, we have t = 16, b = 8, n = 64. Narrower
multipliers use fewer DSPs and allow for more parallel lanes.

V. EVALUATION

In this section, we evaluate SAM against the CPU baseline
and previous NTT accelerators on FPGAs.

A. Experimental Methodology

We implement the RTL design of SAM in Verilog, and
synthesize it using Xilinx Vitis 2021.1, targeting the Alveo
U250 card with 12284 DSP slices, 2547 instances of 36 kbit
BRAM, and 1280 instances of 288 kbit URAM. We set the
target frequency to 100 MHz (256 bits) or 165 MHz (64 bits)
for the core logic, and 300 MHz for the I/O and memory
interface. We have extensively verified the correctness using
random tests and comparing with the CPU baseline [30]. The
host server has an Intel Xeon Gold 5120 CPU with 14 physical
cores at 2.2 GHz, and 252 GB of DDR4 memory.

We compare SAM with several state-of-the-art FPGA-based
NTT accelerators [8], [12], [14]–[16], as well as a CPU
baseline that uses libsnark [30] optimized for large-scale
256-bit NTTs in ZKP. We evaluate NTT sizes in the range
of 216 to 228. This range is commonly used for HE and
ZKP applications. It not only covers the problem sizes in
previous work [8]–[13], [17]–[19], but also extends to larger
scales rarely supported before. For each bitwidth W , the same
hardware configuration can work for different N values. All
reported results of SAM are from real on-board executions.
The input data of the desired size N are initially stored in



TABLE I
OVERALL COMPARISON RESULTS.

Design Platform W (bits) Freq (MHz) Data LUT / REG / RAM (kb) / DSP N Latency (ms)

SAM (Ours) XCU250 256 100 & 300 Off-chip 593073 / 533675 / 81684 / 6776

216 1.24
220 12.61
224 183.56
228 4023.49

CPU [30] Intel Xeon 256 2200 Off-chip -
216 511.47
220 1244.68
224 19970.75

PROTEUS [14] XCU250 256 125 On-chip 356000 / - / 55620 / 2640 216 1.05

PipeZK-Scaled [16] - 256 100 (scaled) Off-chip - 220 33.00

SAM (Ours) XCU250 64 165 & 300 Off-chip 267132 / 328486 / 76536 / 2736

216 0.38
217 0.56
218 0.99
220 2.84
224 34.12
228 750.14

HEPCloud [8] XC6VLX240T 30 100 & 200 On-chip 72163 / 63086 / 3420 / 250 216 0.48

FCCM’20 [12] XCVU190 62 200 On-chip 365000 / - / 81304 / 1332 217 0.98

PROTEUS [14] XCVX485T 64 135 On-chip 31300 / - / 9180 / 300 216 0.44

CNTT-4 [15] VU55P 64 300 HBM 53026 / 46026 / 13824 / 74 220 2.12
224 42.57

CNTT-6 [15] VU55P 64 161 HBM 563677 / 319104 / 82944 / 691 218 0.10
224 8.08

CNTT-6-Scaled [15] - 64 161 Off-chip - 218 0.88
224 71.44

the FPGA board memory. The latency measurements do not
include data transfers between the host and the FPGA board.

B. Results

Table I summarizes the overall comparison between SAM
and the baselines. First, for W = 256bits, SAM uses t = 4,
b = 8, n = 64. It achieves 376×,99×,109× speedups at
N = 216,220,224, respectively, compared to the CPU baseline.
Among previous FPGA-based NTT accelerators, only PRO-
TEUS [14] reported performance for 256 bits, but it assumed
all data fit on-chip and only supported up to N = 216. Neverthe-
less, SAM almost matches this on-chip performance with 18%
slowdown despite that its data are from off-chip, demonstrating
that our design parameter selection in Section IV effectively
hides most memory access latencies. We also compare with
a scaled version of PipeZK [16]. PipeZK was an ASIC
design and had a much higher frequency. We scale down the
frequency to be the same as SAM, and optimistically assume
linear performance scaling. SAM outperforms PipeZK-Scaled
by 2.6× at N = 220, the largest size PipeZK could support.

For the 64-bit version of SAM, we use t = 16, b= 8, n= 64.
HEPCloud [8], FCCM’20 [12], and PROTEUS [14] were all
on-chip designs and only supported small NTT sizes up to 216

or 217. Nevertheless, SAM is able to perform slightly faster
than all of them, even though it needs to access off-chip data.
CNTT-4 and CNTT-6 were two different configurations in

CycloneNTT [15], which used an HBM-capable FPGA board.
CNTT-4 utilized 6 HBM channels, while CNTT-6 utilized 24
HBM channels; but they only supported logN as multiplies
of 4 and 6, with limited flexibility. It is not surprising the
much higher memory bandwidth helps CycloneNTT perform
better. However, if we scale down their bandwidth to match
SAM, e.g., by 0.11× from CNTT-6, SAM would achieve
a 2.1× speedup at N = 224. Furthermore, CycloneNTT was
specially optimized for the Goldilocks field, which reduced
the resource consumption and boost its frequency. SAM could
also be specialized to a certain field, but we opt for generality.

VI. CONCLUSION

In this paper, an FPGA-accelerated NTT architecture, SAM,
is designed based on the recursive multi-dimensional decom-
position of the NTT algorithm. SAM can flexibly support
a wide range of NTT kernel sizes commonly seen in HE
and ZKP algorithms, up to 228. It has specific optimizations
for its on-chip data layout and off-chip data accesses under
the execution flow of multi-dimensional decomposition. SAM
achieves significant speedups over previous NTT accelerators.
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