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ABSTRACT
Graph mining is an emerging application of high importance and
also with high complexity, thus requiring efficient hardware ac-
celeration. Current accelerator designs only utilize coarse-grained
parallelism, leaving large room for further optimizations. Our key
insight is to fully exploit fine-grained parallelism to overcome the
existing issues of hardware underutilization, inefficient resource
provision, and limited single-thread performance under imbalanced
loads. Targeting pattern-aware graph mining algorithms, we first
comprehensively identify and analyze the abundant fine-grained
parallelism at the branch, set, and segment levels during search tree
exploration and set operations. We then propose a novel graph min-
ing accelerator, FINGERS, which effectively exploits these multiple
levels of fine-grained parallelism to achieve significant performance
improvements. FINGERS mainly enhances the design of each single
processing element with parallel compute units for set operations,
and efficient techniques for task scheduling, load balancing, and
data aggregation. FINGERS outperforms the state-of-the-art de-
sign by 2.8× on average and up to 8.9× with the same chip area.
We also demonstrate that different patterns and different graphs
exhibit drastically different parallelism opportunities, justifying
the necessity of exploiting all levels of fine-grained parallelism in
FINGERS.

CCS CONCEPTS
•Computer systems organization→ Special purpose systems;
•Hardware→Hardware accelerators; •Mathematics of com-
puting → Graph algorithms.
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1 INTRODUCTION
By locating all subgraphs that are isomorphic to certain user-defined
patterns in a given graph, graph mining is a powerful analytics
tool that is widely used in different domains, ranging from so-
cial science [18, 19, 26, 58], bioinformatics [2, 13, 40, 41], to chem-
informatics [15, 20, 31, 46]. Unlike conventional graph process-
ing [24, 37, 42, 48, 51], graph mining is more challenging due to the
much higher algorithmic complexity. As a result, both specialized
software frameworks [29, 38, 39, 50, 53, 55] and hardware accelera-
tors [11, 30, 57] were proposed to improve its processing efficiency.

State-of-the-art graph mining algorithms are pattern-aware [38,
39, 50], in the sense that they compile the user-defined pattern into
an optimized execution plan to guide the mining process. The exe-
cution is characterized as exploring a search tree starting from each
individual vertex in the input graph, and using set intersection and
subtraction operations to determine the next candidate vertex to
extend on the partially matched subgraph. This paradigm greatly re-
ducesmemory footprints and achieves significant speedups over the
previous pattern-oblivious approaches [53], and thus is a promising
target for further hardware acceleration [4, 11, 30, 47].

However, existing hardware accelerators have not fully and ef-
fectively exploited the abundant parallelism in graph mining. The
most recent work, FlexMiner [11], only leveraged coarse-grained
parallelism among separate search trees rooted at different input
graph vertices, and followed a depth-first search (DFS) order to
explore each tree. This results in several inefficiencies. First, the
hardware processing elements (PEs) are underutilized due to long
memory access stalls caused by the intrinsic dependencies in DFS,
analogous to long pipeline stalls in conventional processors. Second,
by having each PE execute serial tree search, the resources are inef-
ficiently provisioned. The complex control logic and the expensive
local caches dominate the area, analogous to expensive out-of-order
scheduling overheads in conventional processors. Third, the search
trees starting from different vertices may suffer from load imbal-
ance with real-world power-law graphs. This requires us to provide
superior single-PE performance to alleviate the serial bottleneck.

To address these issues, our key insight is that we need to addi-
tionally exploit the multiple levels of fine-grained parallelism within
each individual tree search inside each PE. This allows us to dis-
cover more independent workload to tolerate the pipeline stalls
(analogous to multi-threading processors). We can also provision
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more compute units to amortize the expensive control and caching
modules with better area and power efficiencies (analogous to vec-
tor processors), as well as providing better single-PE performance
through parallel processing.

In this paper, we first comprehensively identify and analyze
the three levels of fine-grained parallelism in pattern-aware graph
mining algorithms in addition to the existing coarse-grained paral-
lelism (Section 3). Branch-level parallelism explores different search
tree branches simultaneously instead of strictly following DFS. It
introduces more independent tasks but also increases memory foot-
prints. Set-level parallelism processes the multiple set operations
in each task in parallel and improves data reuse. But different sets
vary significantly in terms of sizes and computations. Segment-level
parallelism further parallelizes each set operation by dividing each
set into non-overlapping segments. However, processing on differ-
ent segments has irregular dependencies on both input and output,
complicating the hardware design.

We next propose a novel graph mining accelerator, FINGERS,
which effectively exploits the aforementionedmultiple levels of fine-
grained parallelism to achieve significant performance improve-
ments (Section 4). To our best knowledge, FINGERS is the first
graph mining hardware accelerator that systematically optimizes
fine-grained parallelism. Besides the coarse-grained parallelism
across multiple PEs, FINGERS enhances the design inside each PE
with multiple parallel compute units for set operations. We propose
a pseudo-DFS order that determines the proper degree of branch-
level parallelism with balanced benefits and overheads. We use
novel segment pairing and load balancing methods to distribute
workloads onto multiple compute units in a PE to leverage set-level
and segment-level parallelism. We also design an efficient result
aggregation mechanism that ensures correct communication and
collaboration among the compute units. A single type of hardware
unit for set intersection is used for all types of operations include
(anti-)subtraction. The results are collected from multiple compute
units in a bitvector format using bitwise OR.

We extensively evaluate FINGERS using widely used patterns
and popular real-world graph datasets (Section 6). We demonstrate
that with the same chip area budget, FINGERS outperforms the
state-of-the-art design [11] by 2.8× on average, and up to 8.9×.
Such improvements are mostly from the better PE architecture,
where the single-PE performance improves by 6.2× on average and
up to 13.2×, at the cost of less than twice of the area. In partic-
ular, we find that different patterns and different graphs exhibit
drastically different degrees of each fine-grained parallelism. For
example, loosely connected patterns result in high set-level and
segment-level parallelism, while dense clique listing primarily bene-
fits from branch-level parallelism. This further justifies the necessity
of exploiting all levels of fine-grained parallelism in FINGERS.

In summary, our key contributions in this paper include:
• We identify several inefficiencies in the state-of-the-art graph
mining accelerators that only make use of coarse-grained
parallelism, including hardware underutilization, inefficient
resource provision, and limited single-thread performance
under imbalanced loads.

• We present and analyze the three additional levels of fine-
grained parallelism in pattern-aware graph mining, namely
branch-level, set-level, and segment-level parallelism.

• We propose a novel graph mining accelerator, FINGERS,
that effectively exploits the aforementioned multiple levels
of fine-grained parallelism. FINGERS enhances the design
inside each PE with parallel compute units for set operations,
and efficient techniques for task scheduling, load balancing,
and data aggregation.

• We evaluate FINGERS on different patterns and different
graphs, compared against the state-of-the-art baseline. FIN-
GERS achieves 2.8× on average, and up to 8.9× speedups
with the same chip area budget.

• We demonstrate different patterns and graphs exhibit dras-
tically different degrees of each fine-grained parallelism,
further justifying the necessity of exploiting all levels of
fine-grained parallelism in FINGERS.

2 BACKGROUND AND MOTIVATIONS
2.1 Graph Mining Algorithms and Systems
Given a graph G(𝑉 , 𝐸) and a set of patterns 𝑆𝑝 , the graph mining
algorithm tries to find all the subgraphs in G that are isomorphic
to each of the patterns 𝑝 ∈ 𝑆𝑝 . Such isomorphic subgraphs are
called the embeddings of the pattern 𝑝 . For example, in Figure 1, the
tailed triangle pattern 𝑝 is described by four vertices {𝑢0, 𝑢1, 𝑢2, 𝑢3},
and the graph mining algorithm searches in the input graph for all
its embeddings, such as {2, 1, 3, 5}. There are two ways to define
subgraphs in G(𝑉 , 𝐸). An edge-induced subgraph G′(𝑉 ′, 𝐸 ′) has
vertices 𝑉 ′ ⊆ 𝑉 and edges 𝐸 ′ ⊆ 𝐸. In contrast, a vertex-induced
subgraphG′(𝑉 ′, 𝐸 ′) has vertices𝑉 ′ ⊆ 𝑉 and its edge set 𝐸 ′ contains
exactly those edges in G whose both endpoints are in 𝑉 ′.

Graph mining is powerful to solve many graph analytics prob-
lems. For example, the most general form subgraph listing, either
vertex-induced or edge-induced, aims to list all embeddings of a
defined pattern 𝑝 in a graph G. k-clique listing is a special but com-
mon case of subgraph listing, which only focuses on the pattern of
the size-𝑘 clique, i.e., a complete subgraph with 𝑘 vertices. k-motif
counting, on the other hand, only counts the number of occurrences
for each size-𝑘 pattern rather than listing the embeddings. Our
hardware supports all these variants.

Graph mining software systems. Previously, various graph
mining problems usually used different hand-optimized special-
purpose algorithms, such as for triangle counting [22, 25, 27, 43, 44],
clique listing [12, 14, 21], motif counting [1, 35, 45], and subgraph
listing [5, 6, 32, 33, 36, 49, 52]. However, it requires substantial
programming efforts to hand-tune each algorithm individually for
correctness and performance. Recently, many generic graph mining
software frameworks have been proposed to improve programma-
bility and also optimize performance in a generally applicable way.
Representative examples of such systems include Arabesque [53], G-
Miner [7], G-thinker [56], RStream [55], Fractal [16], AutoMine [39],
GraphZero [38], GraphPi [50], Pangolin [10], Peregrine [29], Sand-
slash [9], DwarvesGraph [8], and aDFS [54].

The above graph mining frameworks can be classified into two
main categories. Early systems are pattern-oblivious (also known
as embedding-centric) [7, 10, 16, 53–56]. They represent the graph
mining problem as a large search tree, whose level 𝑘 contains all the
possible embeddings of size 𝑘 + 1 that are extended from the parent
level. The tree keeps extending in a breadth-first search (BFS) [53] or
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Figure 1: Pattern-aware graph mining algorithm for the tailed triangle pattern.

depth-first search (DFS) [16, 54] manner. At each intermediate level,
the partial embeddings that cannot match the pattern could be early
pruned. At the leaf level, all final embeddings go through expensive
isomorphic checks. This leads to high computation complexity and
exponential memory footprint growth.

In contrast, pattern-aware (a.k.a., set-centric) systems exploit the
structure of the pattern to first synthesize an efficient execution plan,
including the orders and the conditions of adding each new vertex
into the candidate embedding [9, 29, 38, 39, 50]. Following such
an optimized plan allows us to greatly reduce the time and space
complexity. Our work focuses on these pattern-aware algorithms,
which we further introduce in details below.

Pattern-aware graph mining algorithms. Figure 1 uses the
tailed triangle pattern with four vertices as an example to illus-
trate the pattern-aware algorithm [38, 39]. We aim to mine vertex-
induced subgraphs for now, and explain edge-induced cases later.
Before mining on the input graph, the framework compiles the
pattern to generate an execution plan as follows. First, it deter-
mines the order of vertices to consider in the pattern [39], which
in our example is assumed to be 𝑢0, 𝑢1, 𝑢2, 𝑢3, i.e., 𝑢𝑖 is an ancestor
of and considered earlier than 𝑢 𝑗 only if 𝑖 < 𝑗 . Second, for each 𝑢𝑖
to be added at each step, the compiler generates its set operation
schedule 𝑆𝑖 , which describes the candidate vertex set that 𝑢𝑖 can
be mapped to according to the connections to its ancestors. Essen-
tially, 𝑢𝑖 should be a common neighbor to all connected ancestors,
but exclude the neighbors of disconnected ancestors. For example,
𝑆3 = 𝑁 (𝑢0) − 𝑁 (𝑢1) − 𝑁 (𝑢2) (𝑁 (𝑢) denotes the neighbors of 𝑢) in
Figure 1 because 𝑢3 is connected to 𝑢0 but not 𝑢1 and 𝑢2. At each
step, these set operation schedules will be materialized to concrete
candidate vertex sets after the ancestors are determined during the
search. Third, the plan also includes symmetric breaking restrictions,
if the pattern has non-trivial automorphisms [38]. As in Figure 1,𝑢1
and 𝑢2 are symmetric in the pattern, so exchanging their mapped
vertices results in automorphic embeddings. We would like to only
count such embeddings once, and also prune the mining process
early rather than extending both to the end, to save time and mem-
ory usage. To do so, a set of restrictions are applied to the mapped
vertex IDs in the input graph, e.g., forcing 𝑢1 > 𝑢2. How to com-
pile an optimized execution plan is an extensively studied topic

1 𝑆0 = 𝑉 ;
2 for 𝑢0 ∈ 𝑆0 do
3 𝑆1 = 𝑆2(1) = 𝑆3(1) = 𝑁 (𝑢0) ;
4 for 𝑢1 ∈ 𝑆1 do
5 𝑆2 = 𝑆2(1) ∩ 𝑁 (𝑢1) = 𝑁 (𝑢0) ∩ 𝑁 (𝑢1) ;
6 𝑆3(2) = 𝑆3(1) − 𝑁 (𝑢1) = 𝑁 (𝑢0) − 𝑁 (𝑢1) ;
7 for 𝑢2 ∈ 𝑆2 do
8 if 𝑢2 > 𝑢1 then break;
9 𝑆3 = 𝑆3(2) − 𝑁 (𝑢2) = 𝑁 (𝑢0) − 𝑁 (𝑢1) − 𝑁 (𝑢2) ;

10 for 𝑢3 ∈ 𝑆3 do
11 output {𝑢0,𝑢1,𝑢2,𝑢3 }

Figure 2: Algorithm for mining the tailed triangle pattern.

in graph mining algorithms [29, 38, 39, 50]. Our hardware design
is compatible with these proposals as it works with the generic
execution plan format described above.

The execution plan guides the mining process on the search tree
as shown in Figure 1. Figure 2 represents the algorithm as nested
loops following the DFS manner. At each level 𝑖 , we extend the
current partial embedding with a new vertex from the input graph,
which is mapped to 𝑢𝑖 in the pattern. This new vertex is chosen
from the candidate vertex set materialized from the set operation
schedule 𝑆𝑖 , and different choices grow to multiple branches in the
next level. For example, if at level 0 we choose 𝑢0 = 2, then at level
1, 𝑢1 can be any vertex in 𝑆1 = 𝑁 (𝑢0) = {1, 3, 4, 5}, corresponding
to the four branches 2-1, 2-3, 2-4, 2-5 in Figure 1.

During the tree search, we obtain the concrete candidate vertex
sets from the set operation schedules after each vertex is determined.
Such materialization is done incrementally, i.e., for the candidate
vertex set 𝑆 𝑗 of level 𝑗 , at each previous level 𝑖 < 𝑗 we incrementally
update a partial result 𝑆 𝑗 (𝑖) as follows.

𝑆 𝑗 (𝑖+1) =


𝑆 𝑗 (𝑖) ∩ 𝑁 (𝑢𝑖 ) intersection
𝑆 𝑗 (𝑖) − 𝑁 (𝑢𝑖 ) subtraction
𝑁 (𝑢𝑖 ) − 𝑆 𝑗 (𝑖) anti-subtraction

(1)
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Depending on whether 𝑢 𝑗 is connected to 𝑢𝑖 or not, intersection
or subtraction is used, respectively. Anti-subtraction is used when
𝑢 𝑗 is only connected to 𝑢𝑖 but none of the previous ancestors. In
this case, logically 𝑆 𝑗 (𝑖) stores the negation of the partial candidate
vertex set, i.e., the union of all ancestor neighbor lists that should
be subtracted from 𝑁 (𝑢𝑖 ) with anti-subtraction. Such union results
are quite large and have high memory overheads. In our design, we
postpone the actual computation until reaching the first connected
ancestor and use multiple anti-subtractions instead.

𝑆 𝑗 (𝑖) takes into account the connections of already determined
ancestors until the current level. All the lower levels will share
this same set of ancestors, and thus the partial result can be reused
by the entire subtree without recomputing. For example, assume
we are on branch 2-3 and at level 2 in Figure 1. We can compute
𝑆3(2) = 𝑁 (𝑢0) −𝑁 (𝑢1) = {4, 5} (Figure 2 Line 6). This result can be
reused by different instances of 𝑢2 to obtain the final 𝑆3 (Figure 2
Line 9). E.g., when 𝑢2 = 1, 𝑆3 = 𝑆3(2) − 𝑁 (𝑢2) = {4, 5}, resulting in
the final results 2-3-1-4 and 2-3-1-5.

Symmetric breaking restrictions are also applied to prune the
search tree at corresponding levels. Figure 2 Line 8 requires𝑢2 < 𝑢1.
Therefore although 𝑢2 = 3 ∈ 𝑆2 on the branch 2-1, it does not
produce a valid embedding because 2-1-3 is automorphic to 2-3-1.
The search along it can be immediately terminated, saving compute
time and memory space.

Set operations and representation. From Equation (1) we can
see that the key computations in graph mining are set operations,
including set intersection (∩) and set subtraction (−). In the above
vertex-induced cases, both operations are needed. For edge-induced
subgraph mining, however, the set subtractions should be removed,
as we do not enforce absence of edges in the subgraphs for exact
edge matches. By supporting both set intersection and subtraction,
our design is general and works for both scenarios.

In this work, we use a common representation for sets as ordered
lists of vertex IDs. Calculating the intersection or difference of two
sets then becomes a merge using one-pass sequential scans over
the two lists. In this way, the outputs of these operations are still
ordered lists. As long as the input graph’s original vertex neighbor
lists are sorted (potentially after a one-time pre-processing pass),
the result of any merge will also be sorted, and the mining process
will not require any explicit sort operations. Such merge-based set
operations can be efficiently implemented in hardware [11, 47].

Multi-pattern mining. Although we present the above algo-
rithm for a single pattern, it could be easily extended to support
mining multiple patterns simultaneously [39]. Basically, if the pat-
terns share some identical components, their search trees can be
merged so that the intermediate results for the identical part can
be reused. Multi-pattern mining only extends the search tree with
more branches, and does not affect the overall computations [11].

2.2 Existing Hardware Accelerators
Graph mining algorithms are quite compute-intensive, and mining
large-scale real-world graphs may require several hours or days
even on modern multi-core processors [39]. As a result, specialized
hardware acceleration has recently been applied to graph mining.
Gramer [57] was one of the first graph mining accelerators. It
used specially designed caches to leverage locality and pinned

frequently accessed data on chip. However, Gramer followed the
sub-optimal pattern-oblivious paradigm, and the huge performance
gap compared to pattern-aware algorithms could not be closed by
hardware acceleration, making Gramer even slower than software-
based systems like AutoMine [39]. More recent designs instead used
the better pattern-aware algorithms and focused on efficient set
operations. TrieJax [30] used a worst-case-optimal-join algorithm
to perform set intersections, but it could not mine vertex-induced
subgraphs due to the lack of set subtraction support. IntersectX [47]
enhanced conventional general-purpose processors with stream
instruction set extensions for efficient set operations. It added a
special hardware unit that accepted the two input sets as streams
flowing through a numeric comparator for set intersection and
subtraction. SISA [4] also designed a special instruction set for set
operations on processing-in-memory (PIM) architectures. Our work
exploits fine-grained parallelism in graph mining, which was not
the main focus of these prior designs.

FlexMiner [11], as a state-of-the-art accelerator design, adopted
multiple hardware processing elements (PEs) to exploit the mas-
sive amount of coarse-grained parallelism in graph mining. Such
coarse-grained parallelism comes from the independent tasks start-
ing from different initial root vertices, i.e., level 0 in Figure 1 and
Figure 2 Line 2. Each PE therefore executes DFS on a separate
search tree, controlled by a scheduler and an ancestor vertex stack.
A global shared cache and per-PE private caches are used to reuse
frequently accessed data. We use FlexMiner as our baseline, and
further improve its performance.

2.3 Motivations for Fine-Grained Parallelism
As described above, FlexMiner leverages coarse-grained parallelism
by executing separate search trees on multiple PEs. We consider
such a design analogous to the multi-core architecture. While the
number of vertices is usually large enough to enable sufficient
parallelism for FlexMiner, there are still several inefficiencies.

First, the PEs may be underutilized, due to long memory stalls
caused by the intrinsic dependencies between adjacent search tree
levels when following the DFS order. For example, for each newly
extended vertex 𝑢2 in Figure 2 Line 7, the PE needs to fetch its
neighbor list 𝑁 (𝑢2) from memory to compute the candidate vertex
set 𝑆3 in Line 9. Only after that, the PE can start the next level
in Line 10. Essentially, each level must be sequentially explored
following DFS. If a neighbor list misses in the caches, the PE has no
other work to do, and must stall during the long-latency memory
access. This issue is analogous to long pipeline stalls due to accessing
dependent data from memory in conventional processors.

Second, the PE design suffers from inefficient resource provi-
sion. Each PE in FlexMiner needs complex hardware modules for
scheduling the DFS execution and caching data, while the actual
compute unit for set operations only takes a small portion of the
area. In fact, a FlexMiner PE costs 0.18mm2 under 15 nm, while
a set intersect unit needs less than 0.01mm2 under 28 nm in our
implementation (Section 6.1). This issue is analogous to expensive
out-of-order scheduling overheads in conventional processors.

Third, despite abundant individual initial vertices, solely relying
on coarse-grained parallelism still causes load imbalance when
processing real-world power-law graphs. Because each individual
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search tree DFS is assigned to a single PE and not further paral-
lelized, the search trees rooted at a few very-high-degree vertices
will require much longer time than others, and potentially become
the bottleneck. Just as in conventional processors, if a task is domi-
nated by long sequential work, multi-core parallelization can only
provide limited benefits.

To address the above issues, our key insight is that we need to
additionally exploit the multiple levels of fine-grained parallelism
within each individual search tree on a single PE. By discovering
more fine-grained independent tasks both at each tree level and
across different tree branches, we can effectively utilize the PE and
tolerate memory stall overheads, analogous to multi-threading pro-
cessors. Also, by using multiple compute units in one PE to process
the fine-grained tasks in parallel, we can amortize the expensive
scheduling logic and cache modules to get better performance per
area, using the same philosophy as vector processors. Finally, by
parallelizing the search tree DFS inside each PE, we can achieve
higher single-thread performance and therefore are able to provide
significant speedup even for skewed workloads.

3 FINE-GRAINED PARALLELISM IN GRAPH
MINING

In this section, we first introduce the key characteristics of the three
levels of fine-grained parallelism in pattern-aware graph mining.
We build our novel accelerator, FINGERS, in the next section, to
exploit such fine-grained parallelism for better performance and
efficiency.

3.1 Tree-Level (Coarse-Grained) Parallelism
In pattern-aware graph mining, different search trees rooted at dif-
ferent initial vertices in the input graph are completely independent
and can be processed in parallel. As in Figure 1, the root can be each
of the five vertices. This coarse-grained parallelism is the one that
FlexMiner leveraged across its multiple PEs [11]. However, as dis-
cussed in Section 2.3, purely relying on coarse-grained parallelism
is not a perfect solution.

3.2 Branch-Level Parallelism
A conventional processor or a FlexMiner PE sequentially processes
an individual search tree in the DFS order [11, 39]. DFS is efficient
for such sequential processing because it reduces the memory con-
sumption for intermediate results during tree traversal. However,
the search tree can actually be traversed in any order, either DFS
or BFS, without affecting correctness. This means that different
branches at each level in the search tree (e.g., 2-1, 2-3, 2-4, 2-5
in Figure 1), which are generated by choosing different vertices
mapped to 𝑢𝑖 , can be freely processed in parallel. From another
perspective, such branch-level parallelism is equivalent to paral-
lelizing the for loops in Figure 2. Actually, branch-level parallelism
is a generalization of the tree-level parallelism, where the latter
only parallelizes the root vertex choices, and the former also paral-
lelizes the lower tree levels. aDFS [54] exploited such branch-level
parallelism in its software implementation, in order to increase
the parallelization opportunities to fully utilize multi-core proces-
sors when the tree-level parallelism was limited due to selection
constraints on the initial vertex.

neighbor
list

candidate
vertex sets

N(ui)

Si+1(i)

Si+2(i)

Si+3(i)

in cache

stream
"   "

"   "

"   "

Figure 3: Set-level parallelism improves neighbor list reuse.

Benefits & challenges. Beyond parallelizing over multiple PEs,
our key insight is that branch-level parallelism also enables more
available tasks to schedule on each single PE, to tolerate memory
access latencies due to dependencies across tree levels in DFS, and
thus improves PE utilization. Again consider the example in Figure 1
where we have four branches following the root vertex 2. If the
caches contain the neighbor list of vertex 3 but not that of vertex 1,
we can first schedule branch 2-3, and at the same time prefetch the
neighbor list of vertex 1 to prepare for branch 2-1. This is similar
to multi-threading processors that dynamically switch to a ready-
to-execute context when the current one is stalled.

On the other hand, exploring too many branches simultaneously
would greatly increase the intermediate data size, causing cache
contention or even using up the memory capacity [55]. Also the
workloads on different branches are imbalanced. Hence we must
carefully decide the execution order and the degree of branch-level
parallelism at each tree level.

3.3 Set-Level Parallelism
Within each task of extending a new vertex to the partial embedding,
i.e., growing a branch in the search tree, we apply Equation (1) to
incrementally materialize the candidate vertex sets for future levels
using the neighbor list of the current vertex 𝑢𝑖 . At level 𝑖 , there are
at most 𝑘 − 𝑖 independent candidate vertex sets 𝑆 𝑗 (𝑖) , 𝑗 = 𝑖 + 1, . . . , 𝑘
that can be updated in parallel, where 𝑘 is the size of the pattern. For
example, Lines 5 and 6 in Figure 2 compute two such sets. Many such
sets usually share some common operations. E.g., 𝑆1, 𝑆2(1) , 𝑆3(1) in
Figure 2 Line 3 are identical, and we only compute once.

Benefits& challenges.Besides offeringmore independentwork-
loads for parallel scheduling, set-level parallelism also improves
data reuse. From Equation (1) we see that different sets 𝑆 𝑗 (𝑖) , 𝑗 =
𝑖 +1, . . . , 𝑘 share the same neighbor list of𝑢𝑖 (Figure 2 Lines 5 and 6).
For a high-degree vertex with a large neighbor list that does not
fit in the cache, if these sets are sequentially updated, the neighbor
list must be refetched from the memory multiple times. Instead, if
the sets are processed in parallel as in Figure 3, we can stream the
neighbor list into the cache and fully utilize each chunk for all sets.

Nevertheless, the computations on these sets could differ sub-
stantially. Depending on how the vertex is connected to the ances-
tors, the set updates can be either intersection or (anti-)subtraction,
resulting in different workloads. Also, the amount of set-level par-
allelism (≤ 𝑘 − 𝑖) is limited due to common computations and de-
creases when getting deeper in the tree, requiring flexible resource
allocation for high utilization.
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Figure 4: Segment-level parallelism. The irregular segment
pairing between the two sets could be alleviated with the
load balance strategies described in Section 4.2.

3.4 Segment-Level Parallelism
For each set operation, we can divide the two input sets (in the
form of ordered lists) each into multiple segments of distinct ranges,
apply the operations to each pair of (partially) overlapped segments
in parallel, and finally aggregate the results. We observe that in
Equation (1), one input is a partially materialized candidate vertex
set, and the other is always a neighbor list of a vertex. Because both
intersections and subtractions reduce the result set size, usually the
first input set 𝑆 𝑗 (𝑖) is shorter, and the second set 𝑁 (𝑢𝑖 ) is longer. We
thus call them short and long input sets. To leverage segment-level
parallelism, each vertex neighbor list (the long set) is pre-divided
into read-only fixed-length segments of size 𝑠𝑙 = 16 in our design.
The short set is also divided into segments of size 𝑠𝑠 = 4 during the
computation. Each long segment will be paired with several short
segments which are overlapped with it, and the set operations are
applied to all such segment pairs, to calculate their intersections or
differences through one-pass merge. For example in Figure 4, the
two input sets are respectively divided into four and five segments.
The first segment [3, 12] in the first set overlaps with both of the
first two segments [2, 8] and [9, 25] in the second set. Finally, the
results from these segment pairs need to be properly aggregated
and merged (see below).

Benefits & challenges. Segment-level parallelism enables each
set operation to be parallelized, which is particularly effective for
very-high-degree vertices with huge neighbor lists. Such paralleliza-
tion can be enabled without changing the upper-level execution
order of the search tree, meaning that the parallel units can amor-
tize the other costly logic in the PE, similar to vector processors.
Thus the idea of segment-level parallelism has been exploited in
SIMD-based software implementations [28]. Additionally, our new
insight is that for specialized accelerators, segmenting the sets into
similar sizes results in fine-grained individual workloads that can
potentially achieve more balanced parallel execution.

However, the challenges here include how to efficiently pair the
segments from the two sets with overlapped ranges. Each segment
in a set may be paired with zero, one, or multiple segments in the
other set as in Figure 4. We need an effective strategy to ensure load
balance under potentially irregular workload distribution. Finally,
how to aggregate the results into a well-formed ordered list is also
non-trivial, especially for set subtraction.
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Figure 5: FINGERS architecture overview.

3.5 Summary of Design Challenges
To efficiently exploit the aforementioned fine-grained parallelism,
we must address the following key challenges. First, we should
carefully decide resource allocation among different parallelism
levels, i.e., how many branches/sets/segments to process in paral-
lel on the limited number of hardware units. Different allocations
lead to tradeoffs between data reuse, intermediate data footprint,
and resource utilization. Second, the parallel hardware units must
involve effective load balance strategies, as the workloads with
different branches/sets/segments are highly irregular due to the
diverse vertex degree distribution in input graphs. Third, paralleliz-
ing an individual set operation requires special hardware support
for communication and cooperation among segments, such
as input pairing and output aggregation.

Note that the above three levels of fine-grained parallelism could
also be used in software frameworks [28, 54]. However, parallelizing
with increasingly finer workload distribution on general-purpose
cores would incur high overheads of thread launching and coopera-
tion, eventually diminishing the return. We thus opt for specialized
hardware, and leave software approaches as future work.

4 FINGERS ARCHITECTURE
We propose a novel graph mining accelerator, FINGERS, which
efficiently exploits the multiple levels of fine-grained parallelism in
Section 3 to achieve significant performance improvements. Figure 5
illustrates the overall architecture of FINGERS. FINGERS contains
multiple PEs connected through a network-on-chip (NoC). Data
are fetched from/to the off-chip DRAM, and buffered in an on-chip
shared cache. A global scheduler assigns individual search trees
rooted at different vertices in the input graph to separate PEs. The
exploration of each tree is entirely done in one PE. Such high-
level architecture is similar to FlexMiner and utilizes the coarse-
grained parallelism [11], so they could share the same programming
interface and system integration choices.

The key features of FINGERS reside inside each PE, where we
further utilize fine-grained parallelism to speed up single-PE pro-
cessing. The tree search executed on each PE is decomposed into
tasks. We define a task as the work to extend a new vertex to the cur-
rent partial embedding. For example, growing the tree in Figure 1
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from the root vertex 2 to branches 2-1 and 2-3 are two individual
tasks; extending 2-3 to 2-3-1 is also a task. Each task thus involves
updating multiple candidate vertex sets for the future tree levels.
One of these sets becomes a fully materialized candidate vertex set,
which is used to spawn new tasks for the next tree level. Conse-
quently, the set and segment levels of parallelism are within each
task, while the branch-level parallelism affects how many separate
tasks are available to the PE.

Each PE has multiple intersect units (IUs) as the main compute
units for various set operations. We use 24 IUs per PE as default, and
explore the impact in Section 6.4. We store all candidate vertex sets
during the tree search in the PE’s private cache, and only spill to the
shared cache if they overflow. These sets are always associated with
specific tasks, so we can manage them in collaboration with the task
stack. On the other hand, the neighbor lists of input graph vertices
bypass the PE private cache and are only buffered in the shared
cache. Their access patterns are mostly streaming (see Figure 3). In
addition, such neighbor lists are larger than the candidate vertex
sets and thus are harder to cache. Furthermore, our task scheduling
can effectively tolerate their fetch latencies.

The PE realizes a 5-stage macro pipeline. (1) We first pop one or
more tasks from the stack to schedule, and fetch their candidate
vertex sets and vertex neighbor lists from the PE private cache
and the shared cache, respectively (Section 4.1). (2) Next, the data
controller receives the input sets and generates a head list from each,
which contains the first elements (heads) from all segments of the
set. During the head list generation, symmetric breaking restrictions
are applied to prune entire segments with no valid vertices. (3) The
head lists are then sent to the task dividers for segment pairing
and load balancing (Section 4.2). The set operations are divided
by segments into parallel workloads. (4) The task dividers then
issue the workloads to the IUs for intersection or subtraction. (5)
Finally, the results from separate IUs for the same set operation are
properly aggregated in the result collector (Section 4.3). We apply
the symmetric breaking restrictions again to filter invalid vertices
in the results. The fully materialized candidate vertex sets become
the new tasks and are pushed to the stack.

As FINGERS processes generic search tree structures, it naturally
supports multi-pattern mining just like FlexMiner does [11]. The
first few tree levels are common, until the point where different
patterns diverge to separate tree trunks. The trunks of different
patterns are treated similarly to different branches in single-pattern
execution, but with additional marks to differentiate their patterns.

4.1 Resource Allocation and Task Scheduling
With multiple levels of parallelism, a key question is how to allocate
the limited number of IUs in the PE. For example, with 4 IUs, we can
process either 4 individual tasks, 4 set operations in one task, 4 seg-
ments in a single set operation, or any mix of these. We notice that
a single task usually includes multiple set operations on multiple
segments, therefore its set- and segment-level parallelism is already
abundant. To simplify scheduling, a PE primarily parallelizes each
task on its IUs, while sequentially executing different tasks.

To parallelize a task on the multiple IUs, we prioritize set-level
parallelism to improve data reuse. We execute all the set opera-
tions simultaneously on the IUs, so the neighbor list of the newly
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Figure 6: The pseudo-DFS task scheduling order to traverse
search trees with appropriate branch-level parallelism.

extended vertex can be shared and maximally reused by all these
operations as explained in Figure 3. Usually the number of set op-
erations is smaller than the number of IUs in a PE (24), so each set
operation would still use a few IUs, where the segment-level par-
allelism can be utilized. Because these set operations have diverse
workloads, IUs are not uniformly allocated among them, but instead
follow the load balance strategies introduced later in Section 4.2.

On the other hand, we do not need to heavily exploit branch-
level parallelism to have multiple tasks execute in parallel. However,
maintaining a small number of available tasks is still necessary in
order to hide the memory access latency and keep the PE macro
pipeline well utilized (Section 3.2). We propose the pseudo-DFS task
scheduling order illustrated in Figure 6 as a slightlymodified version
of DFS, to traverse the tree with appropriate degrees of branch-level
parallelism. Specifically, we gather a small number of tasks spawned
from the same parent task as a task group before pushing them into
the task stack. For example, 𝑣1 and 𝑣2 in Figure 6 form a task group,
both spawned from the root 𝑣 . The tasks in a group are popped from
the stack together. Then we first execute those tasks whose input
neighbor lists are already in the shared cache while fetching the
others. Such selection is implicitly done without explicitly tracking
the cache content. We simply issue all tasks to the cache; hits return
immediately to resume the corresponding tasks, while misses cause
a task towait. The branch-level parallelized tasks also share the 𝑆 𝑗 (𝑖)
data in the PE private cache. The task group size, i.e., the degree of
branch-level parallelism, is a configurable parameter. It is chosen to
fully utilize the hardware while preventing too large intermediate
data. For simplicity, we set it as the minimum number of tasks to
fully occupy the IUs in a PE, where the IU count needed for each
task is estimated using the average sizes of the two input sets: vertex
neighbor lists and candidate vertex sets. Using average set sizes
is good enough, as different tasks may cancel each other’s error.
We observe that performance is insensitive to these parameters.
Overall, pseudo-DFS is able to improve PE resource utilization while
not exponentially expanding intermediate data.

4.2 Segment Pairing and Load Balancing
To distribute the multiple set operations in a task to the multiple IUs
in a PE, the task dividers use the head lists of these sets for segment
pairing and load balancing. Recall that a head list contains the first
elements (heads) from all segments of the set. Each task divider
can match a pair of head lists with up to 15 heads for the long set
(corresponding to a vertex neighbor list of size 15×𝑠𝑙 = 240) and up
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Figure 7: The task divider unit for input segment pairing and
load balancing.

to 24 heads for the short set (corresponding to a candidate vertex
set of size 24 × 𝑠𝑠 = 96). Such limits are sufficient for most vertices
in real-world graphs. Further increasing the head list sizes would
increases the hardware cost. In rare cases with even longer head
lists, they can be split into chunks to be matched on multiple task
dividers or processed sequentially (see below).

To pair overlapped long and short segments, as in Figure 7, we
organize the 15 long heads as a binary tree, and stream in each short
head to compare with them. This hardware-based binary search is
only used to match among the heads for segment pairing; the actual
intersection/subtraction of paired segments uses the merge-based
IUs as described in Section 4.3. The resultant index for the 𝑖th short
head, pos𝑖 , indicates the position of a long head immediately larger
than it, so the 𝑖th short segment should be paired with the long
segments from pos𝑖 − 1 to pos𝑖+1 − 1 (both included). We use this
pos𝑖 − 1 to index into a load table, and update the corresponding
columns. The load table only needs 15 columns and 2 registers per
column to store the number and the starting index of the short
segments paired with each long segment. Such a small table can
be implemented efficiently with separate registers for concurrent
accesses.

The task divider next distributes the loads of the long segments
to the IUs. We let each IU process one long segment with multiple
paired short segments. Segments have fixed lengths, so the load can
be described by the number of short segments. Each long segment
with its paired short segments can be assigned to one or multiple
IUs for load balancing, similar to Figure 4. We first omit any long
segment that has no short segments paired with it (load = 0 in
the load table, the blue box in Figure 7) except for anti-subtraction.
Using a pre-determined maximum load threshold, we further split
the too many short segments paired with the same long segment
onto multiple IUs (load = 3 > 2 for long segment #2 in the load
table, the red box). The load assignments after balanced are stored
into a task table, which records the long segment index and the
range of the paired short segments for each IU.

Coordination between multiple task dividers. Each PE has
multiple task dividers (default 12 per PE). Each task has multiple set
operations to be scheduled to the IUs. Also, some input sets could
be quite large in power-law graphs and their head lists must be
split into chunks. The task dividers share the same set of physical
IUs in the PE, and they issue their task table columns to available
IUs for execution. We further load balance between different task

dividers by monitoring the last scheduled segment index in their
task table, to approximately ensure similar progress among them.

Overheads of task dividers.The area of a task divider is mostly
on the two tables, which are simply registers of a few hundreds
of bytes. The latencies of each individual task divider and their
coordination do not dominate the pipeline stages. The set operations
on the IUs take relatively long time proportional to the entire set
sizes, while the task dividers only work with the head lists that are
shorter by a factor of 𝑠𝑙 or 𝑠𝑠 .

4.3 Input Distribution and Result Aggregation
By leveraging segment-level parallelism, we distribute a single
operation onto multiple IUs with the help of the task dividers in
Section 4.2. To avoid excessive data bandwidth of transferring the
relatively large and different segments to all IUs simultaneously, the
PE distributes the input data in a round-robin fashion, one segment
at a time, multicast to all IUs that require it. If the next IU has not
finished its last workload, input data distribution would stall. Such
a design is not a performance bottleneck, as it matches with the
sequential processing style of the IUs, which also takes many cycles
for set operations (see below).

On the output side, these separately computed results must be
aggregated with caution. For example, assume a subtraction in
Equation (1), where we subtract the long set from the short set. A
short segment {11, 18} is paired with two overlapped long segments
{3, 5, 7, 12} and {13, 15, 18, 22}. The differences are {11, 18} and {11}.
The final result should be the common subset, {11}, which requires
another round of intersection, potentially across many IUs. This
issue also exists for anti-subtraction if multiple short segments pair
with one long segment.

FINGERS resolves this difficulty with an efficient and unified
solution for all three set operations. Note that with two sets𝐴 and 𝐵,
𝐴−𝐵 = 𝐴− (𝐴∩𝐵). We always compute the intersection of the two
input segments on an IU regardless of the required operation, using
a simple compare unit that streams in the two input lists similar
to previous work [11, 47], as illustrated in Figure 8. The result is
stored as a bitvector with the same length 𝑠𝑙 as the long segment,
with different meanings for different operations. For intersection
and anti-subtraction, the bitvector indicates whether each element
in the long segment is in the intersection result; for subtraction
(Figure 8), it indicates whether each element in the short segment
is in the intersection result (padding with 1s).

To aggregate the results, we let the result collector sequentially
receive the bitvector and its associated segment from each IU in a
round-robin fashion, as shown in Figure 8. If the segment of the
current IU does not match with the previous one, they belong to
distinct ranges. We thus know that the previous segment has been
fully collected and aggregated. It is now translated back to the list
representation and concatenated with the existing result set. The
new incoming segment stays in the result collector to wait for the
next result.

Otherwise, if the same segment is received by the result col-
lector, we need to aggregate the two bitvectors with bitwise OR.
For intersection this is intuitive as we keep both results because
𝐴 ∩ (𝐵1 ∪ 𝐵2) = (𝐴 ∩ 𝐵1) ∪ (𝐴 ∩ 𝐵2). For (anti-)subtraction, the
results are the elements with 0s in the bitvector, as the set difference
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Table 1: Evaluated real-world graph datasets.

Dataset # Vertices # Edges Avg Deg Max Deg

AstroPh (As) [34] 18.8 K 198 K 21.1 504
Mico (Mi) [17] 80.0 K 432 K 10.8 936

Youtube (Yo) [34] 1.1 M 3.0 M 5.3 28,754
Patents (Pa) [23] 3.8 M 16.5 M 8.8 793

LiveJournal (Lj) [34] 4.8 M 42.9 M 17.7 20,333
Orkut (Or) [34] 3.1 M 117.2 M 76.3 33,313

is the complement of the set intersection. Because 𝐴 − 𝐵1 − 𝐵2 =
(𝐴 − 𝐵1) ∩ (𝐴 − 𝐵2), we need to keep the elements with 0s in both
bitvectors, i.e., again using bitwise OR.

In summary, both input distribution and result aggregation are
done in a round-robin fashion among IUs. Both these serial time
periods are proportional to the number of IUs in the PE. If this
number is smaller than the cycles needed to perform set operations
inside the IU, the input/output latencies can be well hidden by the
computations. This is indeed the case with FINGERS, where we use
24 IUs per PE, and the IU processing time for one long segment
paired with two or three short segments is about 𝑠𝑙 + 3 × 𝑠𝑠 = 28.

5 METHODOLOGY
Benchmarks. We evaluate FINGERS with six commonly used pat-
terns: 3- (i.e., triangle), 4-, and 5-clique (tc, 4cl, 5cl), tailed triangle
(tt), 4-cycle (cyc), and diamond (dia). We also evaluate a multi-
pattern mining task, 3-motif (3mc), which demonstrates the gener-
ality of FINGERS. We use six real-world graphs, as listed in Table 1.
All input graphs are undirected with no self-loop or duplicated
edges.

Baselines. We mainly compare FINGERS with the latest, state-
of-the-art graph mining accelerator, FlexMiner [11]. The two de-
signs have the similar high-level architecturewhich allows for direct
and fair comparisons. FlexMiner has been demonstrated an order
of magnitude faster than the CPU baselines AutoMine [39] and
GraphZero [38], as well as the prior hardware design Gramer [57].

Implementations and configurations. We implement all the
newly added components in the FINGERS PE design in Verilog and
synthesize using Synopsis DC in 28 nm to estimate the area and
power, as reported in Section 6.1. The SRAM caches are modeled

using CACTI [3]. We further implement a cycle-accurate simula-
tor to evaluate the performance of FINGERS. Following the same
configurations of FlexMiner, we use a 4MB shared cache, with four
channels of DDR4-2666 off-chip DRAM that provide 85GB/s. By
default, each FINGERS PE uses 24 IUs, 12 task dividers, and a 32 kB
private cache. There are also two 8 kB streaming buffers in front
of the IUs to temporally store the segments to be processed. The
overall FINGERS chip uses 20 PEs in order to keep iso-area with
FlexMiner (see Section 6.1).

The same simulator is also used to reproduce the results for our
baseline FlexMiner. This is fair as the high-level architecture is
quite similar between the two, so we can just tune the concrete
PE designs. We validate that the performance trends match with
the results reported in the FlexMiner paper [11]. One noticeable
difference is the c-map module in FlexMiner, which FINGERS does
not use. This is due to the different algorithmic details in the two
accelerators. FlexMiner used the c-map module to cache the union
of neighbor lists of all vertices along the path from the search tree
root to the current task [9]. In contrast, FINGERS aggregates these
neighbor lists into the partially materialized candidate vertex sets
(𝑆 𝑗 (𝑖) ) [39] and caches them in the PE private cache using similar
or smaller spaces. Therefore, c-map is unnecessary in FINGERS.

We use the same execution plans when executing the bench-
marks on both architectures, including vertex orders, set operation
schedules, and symmetric breaking restrictions (see Section 2.1).
Such information is generated by a compiler similar to that pro-
posed in FlexMiner [11], which is orthogonal to our architectural
improvements.

6 EVALUATION
In this section, we first report the synthesized results from the RTL
implementation of a single FINGERS PE. Then we demonstrate the
performance improvements of FINGERS using both single-PE and
multi-PE configurations. Finally we study the detailed impacts of
each individual parallelism level.

6.1 PE Area, Power, and Frequency
Table 2 breaks down the area consumption of a single FINGERS
PE, which is about 0.9mm2 in 28 nm. We conservatively infer the
“Others” part, including control logic, NoC interface, and data fetch-
ers, by scaling from FlexMiner. We can see that the 24 IUs only
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Table 2: Area breakdown of one FINGERS PE.

Components Area (mm2) % Area

24 Intersect Units 0.115 12.3%
12 Task Dividers 0.069 7.4%
2 Stream Buffers 0.214 22.9%

Private Cache 0.118 12.6%
Others 0.418 44.8%

PE Total 0.934 100%

contribute to a small portion of the area, and each IU takes only
0.005mm2. The task dividers are also cheap components. Most of
the area is spent on the local caching buffers and the control logic.
Such results validate our design principle that scaling a PE into
fine-grained parallel processing incurs little extra cost.

FlexMiner uses a PE of 0.18mm2 under 15 nm. When scaled to
the same technology, the FINGERS PE (0.26mm2 in 15 nm) is less
than twice large as the FlexMiner PE, despite the much higher
processing throughput (up to 13.2×, Section 6.2).

One FINGERS PE consumes 98.5mW power on the compute
logic and 85.6mW on the caches. With 20 PEs per chip (see below),
the total power of FINGERS would be just a few watts. FlexMiner
did not report power results so we cannot directly compare, but it
is likely the two behave similarly.

Our PE achieves 1GHz frequency in 28 nm. We suspect it could
match the 1.3 GHz of FlexMiner after scaled to 15 nm.

6.2 Single PE Performance
We first compare the single-PE performance between FINGERS and
FlexMiner, to demonstrate that exploiting fine-grained parallelism
within each PE can greatly improve performance. Figure 9 shows
the results. The FINGERS PE outperforms the FlexMiner PE by 6.2×
on average and up to 13.2× over all seven patterns and six graphs.
We observe that different patterns and different graphs exhibit
quite different speedups. This is mainly because of the different
available types and drastically varying amounts of fine-grained
parallelism that FINGERS can leverage in these benchmarks. We
discuss the details below. Such diverse and irregular distribution
necessitates FINGERS to simultaneously support all levels of fine-
grained parallelism.

Impacts of patterns. Clique counting does not have set-level
parallelism as the candidate vertex sets for all future levels are
always identical, so tc, 4cl, and 5cl show lower improvements
than the other patterns. Larger clique patterns use deeper search
trees. The branch-level parallelism decreases as the tree goes deeper,
because fewer vertices can be valid candidates that connect to all
ancestors. This reduces the benefits of FINGERS in As, Pa, Yo, and Or
when the clique size increases, but not for Lj which has more large
cliques and actually sees better performance. This is because the
lower tree levels have better on-chip data reuse, as their demanded
neighbor lists may already be fetched into the shared cache by the
ancestors.

The tt, cyc, and dia patterns generally see the highest speedups
among all patterns. This is because their set operation schedules
involve (anti-)subtractions to produce large sets, which result in

high parallelism that FINGERS can exploit. In particular, tt usually
has large 𝑆3(2) (Figure 2), which leads to abundant segment-level
parallelism when using it to calculate different 𝑆3 later. cyc gener-
ates large 𝑆2, which leads to high branch-level parallelism when
used as the candidate vertex set for the next level. On the other
hand, the subtraction operations in dia are only at the lower tree
levels, where the sets are already shrunk small, so it shows lower
benefits than the other two.

These three patterns all have size of 4 vertices, same as 4cl. Their
performance differences are attributed to the symmetric breaking
restrictions. 4cl has more connections and thus more restrictions,
reducing valid vertices and hence tasks to process.

Finally, 3mc is a multi-pattern task mining both triangles and
wedges, which incurs more workloads than the single pattern of
tc, and thus exhibits higher speedups.

Impacts of graphs. As and Mi are small graphs that all fit in the
on-chip shared cache (see their tiny cachemiss rates in Figure 13), so
they enjoy higher improvements from the stronger PE design. As is
actually so small that there are only a few embeddingsmatchedwith
each pattern, so the independent workloads are limited. Mi has more
cliques and thus even higher speedups. These small graphs are used
to evaluate the on-chip parallelism and load balance capabilities.

On the other hand, Yo generally has the lowest speedups because
of its lowest average degree (Table 1), which results in short neigh-
bor lists and small sets, limiting the overall available parallelism
for FINGERS. Yo is particularly good with tt and cyc, in which
cases its candidate vertex sets are large (see above). Pa has very few
high-degree vertices (i.e., low maximum degree, Table 1) and hence
also limited benefits.

In contrast, Lj and Or are both very large graphs that exceed
the on-chip cache size and are able to stress our memory system
(Figure 13). They contain rich structures with many embedding
matches, and thus exhibit abundant parallelism. Or has similar
performance to Lj except for the patterns of large cliques, because
it has fewer dense vertex clusters.

6.3 Overall Performance
With the additional coarse-grained parallelism at the PE level, we
next demonstrate the overall performance improvements of FIN-
GERS over FlexMiner in Figure 10. Since a FINGERS PE uses less
than twice the area of a FlexMiner PE, for an iso-area evaluation
we compare a 20-PE FINGERS chip with the 40-PE FlexMiner chip,
which is its largest configuration used in the original paper [11].
Overall, FINGERS achieves on average 2.8× and up to 8.9× speedups
over the baseline.

The general trends across patterns closely follow those in the
single-PE setting as Figure 9. The impacts of input graphs become
more significant. As mentioned above, As and Mi are small graphs
fitting in the shared cache, so they see good scalability with more
PEs. Their speedups are roughly half of those in Figure 9 due to
the half number of PEs, but still reach 4.2× on average. Yo and Pa
are large graphs with most vertices having low degrees, leading
to large amount of data but limited work, especially on tc, 4cl,
and 5cl. So their memory access latency cannot be fully hidden
by computations even with the help of branch-level parallelism
in FINGERS, leading to limited speedups. Although Lj and Or are
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Figure 9: Single-PE speedups of FINGERS over FlexMiner.
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Figure 10: Overall speedups of FINGERS with 20 PEs over FlexMiner with 40 PEs.
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Figure 11: Speedups from branch-level parallelism and
pseudo-DFS order.

also large, they exhibit more parallelism due to higher degrees, and
thus their speedups are higher. One orthogonal way to improve
memory access performance would be to simultaneously schedule
search trees with nearby starting root vertices on different PEs,
so they access similar vertices with high locality in the shared
cache. Alternatively, FINGERS can be combined with processing-
in-memory technologies [4]. We leave this study as future work.

6.4 In-Depth Studies
Figure 11 presents the performance differences when enabling and
disabling the pseudo-DFS order used in FINGERS (Section 4.1),
to reflect the impacts of the branch-level parallelism. We present
the results of three graphs; Mi, Pa, Or are similar to As, Yo, Lj,
respectively. We see that leveraging branch-level parallelism in
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Figure 12: PE scalability in terms of numbers of IUs with Yo.

FINGERS provides up to 5× performance gains. The tc, 4cl, and 5cl
patterns benefit particularly significantly, because of their limited
set-level and segment-level parallelism (see Section 6.2). Branch-
level parallelism is the major chance they can leverage.

Figure 12 studies the scalability of the FINGERS PE in terms
of number of IUs, which closely relates to the utilization of set-
level and segment-level parallelism. Because using more IUs also
increases area, we use an iso-area scaling approach, by keeping
the product of the number of IUs and the long segment length
constant, i.e., # IUs × 𝑠𝑙 ≡ 24 × 16. We show three patterns with
the challenging Yo graph whose benefits are among the worst.
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Figure 13: Shared cache miss curves (miss rate vs. capacity).

Table 3: IU utilization and load balance in one PE with Mi.

tc 4cl 5cl tt cyc dia 3mc

Active Rate 55.3% 80.8% 81.5% 94.7% 89.9% 88.9% 65.6%
Balance Rate 67.3% 66.4% 66.3% 68.2% 70.3% 71.4% 69.3%

tt and cyc exhibit good scalability until 16 to 24 IUs, and the
performance drops at 48 IUs. This is limited by area. If we allow
unlimited area, the performance can further improve, as shown in
tt-unlimited. In contrast, 4cl has poor scalability. The reason is still
its limited set/segment-level parallelism, and it should use branch-
level parallelism instead (Figure 11). These results again motivate
FINGERS to exploit all three levels of fine-grained parallelism.

To better understand the memory and shared cache behaviors
in FINGERS, Figure 13 varies the shared cache capacity (default at
4MB) and measures its miss rates when running the cyc pattern
with three different graphs, using the same configurations as in Sec-
tion 6.3. Mi (As similarly) is a small graph that fits in the cache, so
its miss rates are consistently low in both FINGERS and FlexMiner.
Although Yo (Pa similarly) is large and constantly requires mem-
ory accesses, it has a small average vertex degree (Table 1) that
allows most neighbor lists to stay in the shared cache for multiple
times of reuse by the requesting PE, before being evicted by other
neighbor lists. So the miss behaviors are similar in both designs and
insensitive to the cache capacity. In contrast, Lj (Or similarly) is a
large graph and has long neighbor lists, so it exhibits higher cache
pressure. FINGERS more efficiently uses the shared cache with
lower miss rates than FlexMiner, because it has fewer individual
PEs competing for capacity. The pseudo-DFS order also decreases
the miss rates by prioritizing the tasks whose data are already in
the cache. In addition, with set-level parallelism, a long neighbor
list could be streamed only once from memory to a PE and simulta-
neously reused by multiple candidate vertex sets (Figure 3), without
polluting the small PE private cache as in FlexMiner. These trends
validate our analysis of different graphs in Sections 6.2 and 6.3.

Finally, Table 3 lists the utilization and the load balance behavior
of the IUs in a PE, with the default 24 IUs. The active rate is the
percentage of clock cycles during which workloads are assigned to
the IUs. Recall that we assign each compute load to a subset of IUs

(Section 4.2). Within these cycles on each subset of IUs that execute
a compute load, we further study load balance using the balance
rate, which is the sum of the individual IU active cycles divided
by the total cycle of this load times the subset size. For example,
assuming 4 IUs, and only 2 IUs are assigned a load executed for 10
cycles. Then in a 20-cycle period, the active rate is 25%. If in those 10
cycles, one IU is fully used but the other is only active for 5 cycles,
then the balance rate is only 75%. We can see that in general the
utilization is high (well exploiting branch-level parallelism) and the
load balance is good (well exploiting set/segment-level parallelism).

7 CONCLUSIONS
In this paper we propose FINGERS, a novel graph mining acceler-
ator that exploits fine-grained parallelism at the branch, set, and
segment levels during search tree exploration and set operations
of pattern-aware graph mining. FINGERS efficiently handles re-
source allocation, task scheduling, load balancing, and input/output
communication with a pipelined processing element architecture
enhanced with multiple compute units. Compared with a state-
of-the-art baseline that only utilizes coarse-grained parallelism,
FINGERS achieves up to 8.9× performance improvements at the
same chip area, and benefits from different parallelism levels in
different patterns and graphs.
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