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Abstract—Oblivious RAM (ORAM) is an important crypto-
graphic primitive that aims to protect against data access
pattern leakage. With the recent theoretical improvements
in ORAM protocols and the introduction of hardware-based
trusted execution environments (TEEs), ORAM has become an
increasingly practical design that starts to be adopted in real-
world secure systems. In this paper, we study the bulk loading
problem of ORAM, i.e., constructing an ORAM structure with
a large amount of data, which can benefit many scenarios in
secure cloud systems, such as data recovery, layout conversion,
and query processing. We propose BULKOR, an extension of
the state-of-the-art Path ORAM protocol. BULKOR supports
the deployment with TEEs in untrusted servers, and satisfies
the doubly-oblivious requirement to alleviate the side channel
concerns in modern TEEs. BULKOR improves both the the-
oretical complexity from O(N log3 N) to O(N log2 N), and
the practical performance of ORAM bulk loading, without
sacrificing the security guarantees. It significantly outperforms
the baseline designs Oblix and ZeroTrace by 8.7× to 54.6× and
5.8× to 533.1×, respectively, in various settings that implement
ORAM on hard disks or in memory.

1. Introduction

As data security increasingly gains attentions, secure
database and data analytics systems quickly emerge in recent
years. They support various kinds of privacy-preserving pro-
cessing, from data storage outsourcing to encrypted query
processing [1], [2], [3], [4]. However, although modern
encryption and authentication techniques can protect data
contents, advanced attacks can still be performed by the
adversary to derive a significant amount of private informa-
tion, by merely observing the access patterns to the sensitive
data [5], causing severe security vulnerabilities.

Oblivious RAM (ORAM) protocols have been the stan-
dard and generic cryptographic solution to defend against
this issue. It has been proposed [6] and improved [7], [8],
[9], [10], [11] for decades, and now there exist practical
designs that incur reasonable overheads compared to the
non-oblivious setting. Currently, the most prevalent ORAM
protocol is tree-based ORAM with O(logN) bandwidth
cost per access, where N denotes the total number of
data blocks. Path ORAM [9], [12] is one such example.

In the meantime, besides the theoretical improvements,
hardware security techniques, in particular hardware-based
trusted execution environments (TEEs), also are introduced
to ORAM to reduce the networking communication cost
between the remote client and the server [13]. A trusted
domain known as the enclave can be instantiated at the
untrusted server side as a local proxy. However, different
from the fully trusted client, TEEs protect the data contents
but not their access patterns. Double obliviousness [14] is
required in such scenarios for both trusted and untrusted
memory, which requires more complex ORAM controller
designs inside TEEs. Nevertheless, with the progress from
both the theoretical and system sides, ORAM techniques
are becoming increasingly pragmatic, and have started to
be applied to build oblivious database systems [14], [15].

In this paper, we motivate an opportunity to further
improve ORAM systems in a previously less studied sce-
nario — data bulk loading. Bulk loading is a well-known
problem in database systems, which refers to loading a large
amount of data and building a data structure, such as an
index, from scratch as a whole in a short time [16], [17],
[18], [19]. It is mostly used during system initialization,
layout conversion, and data recovery. Although Oblix [14]
proposed a bulk loading protocol, it was not significantly
better than simply and serially performing write of each
data block into ORAM in terms of both time complexity
O(N log3 N) and practical performance. In this work, we
aim to improve performance in both theory and practice
without sacrificing security.

1.1. Motivation

We believe bulk loading for ORAM is an important
topic, as there are many real-world scenarios that can benefit
from a more efficient and secure bulk loading process.
Below we describe several of such motivating use cases. We
later formalize the problem in Section 2.3. We specifically
target the scenarios where the server is equipped with a TEE
and the clients would like to outsource all their private data
to the server due to limited local storage.

Case 1: building block for oblivious algorithms.
ORAM has been widely utilized in many applications as
a basic building block for specially designed oblivious al-
gorithms, such as database table join [20], stable match-



ing [21], [22], and breadth-first search [21], [23]. Although
some designs [20] treat ORAM construction as a prepro-
cessing step, when the oblivious algorithm needs to be per-
formed on intermediate results (e.g., results of sub-queries),
they would need to build ORAM structures on-the-fly, which
is a major performance bottleneck. Therefore, it is important
to explore the fast ORAM construction method, i.e., bulk
loading, to reduce the end-to-end query processing latency.
Cheap ORAM construction will also inspire more oblivious
algorithm designs using ORAM, as we will demonstrate in
more details in Section 6.3.

Case 2: data recovery. For the widely-used trusted
proxy model of ORAM [24], [25], [26], [27], Vuppalapati
et al. [28] pointed out that if the state of the centralized
proxy is lost, the ORAM structure must be reconstructed
on a new proxy, which involves downloading/uploading
and decrypting/encrypting all the data and metadata. This
would cause a long period of system unavailability. Since
the TEE can be viewed as a trusted proxy located on an
untrusted server that may crash, the aforementioned issue
also exists in the TEE setting. If we could accelerate ORAM
reconstruction, we can greatly reduce service unavailability
and corresponding revenue loss.

Case 3: cloud storage services. Cloud storage services
(e.g., Google Drive, Dropbox) allow users to store their
data in cloud-side storage and also provide highly available
access to these data. Such services are typically priced by
storage capacity. Since an ORAM structure has larger size
(e.g., 4×) than the non-oblivious layout, a more space-
efficient approach to offering secure cloud storage services
would be to store data in the non-oblivious layout at rest, and
only convert into the ORAM structure when the user would
like to perform oblivious accesses. Such a layout conversion
should be fast enough to reduce user access delays. While
converting an ORAM back to a simple layout is easy, e.g.,
through obliviously sorting all real and dummy blocks and
dropping all dummy blocks, bulk loading data to build an
ORAM requires specific optimizations. In addition to saving
user expenses, this approach is also of interest to the cloud
service providers to reduce their own infrastructure cost.

1.2. Our Contributions

In this paper, we investigate the bulk loading proce-
dure for state-of-the-art tree-based ORAM protocols such
as Path ORAM [9]. We mainly target scenarios with TEEs
available on the untrusted server, considering their increas-
ingly popular use and better efficiency. We consider their
side-channel vulnerabilities and design our algorithms in
a doubly-oblivious manner [14], i.e., both the access pat-
terns within and outside the TEE are oblivious. We aim
to improve both the theoretical complexity and the practical
performance of ORAM bulk loading, without sacrificing any
security guarantees. In other words, the bulk loaded ORAM
should provide the same protection as the naive way of serial
insertion [9, Section 3.4] for later normal accesses.

One key observation in our work is that, a simple ran-
dom shuffle of data to initialize the ORAM tree is insecure.

We therefore propose our efficient and secure construction,
BULKOR, which assigns the path label of each data block
in Path ORAM fully independently and randomly at the
very beginning. Then BULKOR efficiently and effectively
adjusts the actual location of each data block in the Path
ORAM tree to eliminate any overflow issue, without chang-
ing the previously assigned path. The entire process is done
obliviously, despite of the challenging task of moving data
blocks in the irregular tree structure. Therefore, BULKOR
achieves double obliviousness and can be used together with
TEEs. We leverage existing oblivious sort primitives, and
also propose two novel oblivious sub-procedures that are
customized to our block adjustment tasks. BULKOR achieves
O(N log2 N) time complexity using bitonic sort [29] or
even O(N logN) using bucket oblivious sort [30], improv-
ing upon the naive doubly-oblivious serial insertion which
is O(N log3 N) with TEEs. BULKOR supports the standard
Path ORAM recursion, so its space cost at the controller (in
the enclave) remains the same as O(log2 N) ·ω(1) [9]. The
BULKOR implementation is also multi-threading parallelized
to achieve good practical performance. Beyond Path ORAM,
BULKOR can also be adapted to other tree-based ORAM
protocols [10], [11], [31], [32], [33].

We implement BULKOR with Intel SGX, and evaluate
its practical performance on different settings, including
hard disks, in-memory, and fully in-enclave data storage, as
well as different data block granularities from 64 B to 1 kB.
We show that BULKOR is able to outperform the state-of-
the-art Oblix [14] by 8.7× to 54.6× as the ORAM size
increases. It also outperforms the ZeroTrace serial inser-
tion baseline [13] by up to 160.6× faster on hard disks,
493.6× and 533.1× with fully in-memory and in-enclave
data, respectively. When applied to real-world application
scenarios, BULKOR can accelerate various algorithms such
as oblivious join, oblivious binary search, and oblivious BFS
(case 1), improve the “9s” availability of database services
by enabling faster data recovery (case 2), and save bills by
roughly 50% for a cloud storage service using dynamically
converted ORAM layouts (case 3). We have open sourced
BULKOR at https://github.com/tsinghua-ideal/bulkor.

2. Preliminaries

2.1. Path ORAM

Path ORAM [9], [12] is a widely adopted ORAM
protocol that offers superior performance in practice. The
construction is split into two parts as the server and the
client. Table 1 summarizes our notations. The server main-
tains the server storage in the form of a binary tree with
N − 1 nodes (indexed from 1 to N ). Each tree node is
a bucket that holds Z data blocks (e.g., Z = 4). Thus
the total number of blocks is about n = Z · N , among
which up to N blocks are allowed to store encrypted real
data, while the others are dummy blocks (also encrypted).
We assign physical addresses to all blocks according to the
breadth-first sequential representation (i.e., the heap format)
of the ORAM tree. A block i belongs to the bucket αi, and

https://github.com/tsinghua-ideal/bulkor


TABLE 1. NOTATIONS.

Variable Meaning

n Total number of (data and dummy) blocks
N Maximum number of data blocks
L Height of ORAM tree, L = ⌈log2 N⌉ − 1
B Block size
Z Capacity of each bucket (in blocks)
ai Logical address of block i
pi Physical address of block i
αi Bucket in which block i is
xi Leaf label associated with block i

P (x) Path from leaf x to tree root
S Stash

position Position map from logical address to leaf label
Cs Stash capacity limit
Cp Position map capacity in controller storage

b = {bi}0≤i<d Input array of data blocks to be bulk loaded
a = {ai}0≤i<d Input array of logical addresses

d Length of input array (in blocks)

is located at the physical address pi ∈ [αiZ, (αi + 1)Z).
For example, the root bucket contains blocks with physical
addresses in [Z, 2Z).

The client keeps the controller storage, including a stash
that temporarily buffers data blocks, and a position map,
which records the mapping from the logical address ai of
block i to the leaf label xi, i.e., xi = position(ai). The
main invariant of Path ORAM guarantees that a block must
be either in the stash, or in one of the buckets along its
corresponding root-to-leaf path P (xi) = {xi+N/2, xi/2+
N/4, . . . , 1}, where xi ∈ [0, N/2) is its leaf label and xi +
N/2 is the index of the leaf bucket.

To perform an access to a block at ai, we first consult the
position map to find its path P (xi) where xi = position(ai).
For example in Figure 1, we access block 3 and fetch its
path P (0) from the ORAM tree. If this is the first write
to a block (so the block does not exist yet), we randomly
choose a leaf and its associated path. According to the main
invariant, the target block must reside either in a bucket on
the fetched path or in the stash, so we can now perform
the desired read or write operation on it. In the meantime,
we also reassign a new leaf label x′

i to the block through
uniformly random sampling, and update position(ai) = x′

i
(in Figure 1 position(3) is updated from 0 to 3). Finally, we
do eviction to minimize the number of blocks in the stash,
avoiding stash overflow. We greedily push the data blocks
in the stash or the buffer as far down the original path P (xi)
as possible while constrained by the main invariant. More
specifically, a block aj can be put into a bucket along the
path P (xi) if this bucket is also on its own path P (xj). In
Figure 1, we see that block 6 can be pushed down to depth
2 since its leaf label is 0; block 7, whose leaf label is 1, can
be pushed to depth 1. Now blocks 1 and 3 can be packed
into the empty places at depth 0. In this case all the five data
blocks are successfully evicted (with dummy blocks filling
in the empty space). The updated path P (xi) is written back
to the server ORAM tree.

Although the stash size is well bounded [9], [12], the
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Figure 1. A toy example of path eviction in Path ORAM.

above design of Path ORAM requires a position map in the
controller storage with a large O(N) space.1 Path ORAM
uses recursion to address this issue when |position| is larger
than the capacity limit Cp [33], [34]. The position map itself
is treated as data, stored and accessed in the same manner
as a Path ORAM, with the help of another level of smaller
position map. We recursively apply this technique until
the position map gets small enough, e.g., O(1) size after
O(logN) recursions. Essentially, recursion trades access
latency for controller storage.

2.2. Trusted Execution Environments

Trusted execution environments (TEEs), such as Intel
SGX [35], [36], [37], Intel TDX [38], ARM TrustZone [39],
and AMD SEV [40], create an efficient avenue for achieving
data security. They split the hardware execution environment
into a trusted domain (called an enclave) and an untrusted
domain. The hardware guarantees the in-system isolation
between the two domains, automatically encrypts and au-
thenticates data when data leave the enclave, and ensures the
legality of the code in the enclave through attestation [35].

However, existing TEEs are not a panacea. The security
of TEEs has been questioned due to various side-channel
vulnerabilities [41], [42], [43], [44], [45], [46], [47], [48],
among which an important one is related to the leakage of
access patterns, i.e., TEEs do not hide the address of each
sensitive data access. Consequently, to ensure full security,
even the accesses occurring inside the enclave would need
additional protection, e.g., being oblivious.

2.3. Problem Definition and Threat Model

In this work we consider the ORAM bulk loading prob-
lem, where the client has securely outsourced its data to a
remote server equipped with a TEE, and would like to run
the bulk loading algorithm Aload to construct a new Path
ORAM structure on the data, in preparation for subsequent
accesses (denoted as Aoram) to the loaded Path ORAM.

Specifically, following the notations in Table 1, the input
data of Aload are in the form of a block array b of length
d, and each block is of size B. Generally, the blocks are
not necessarily sorted in their logical addresses, i.e., each
block bi may have a logical address ai not equal to its
position i in the array. So we also take as input an array
of the logical addresses, a, of the same length d. The final

1. We consider constant-width addresses/labels, e.g., 64 bits, in typical
system implementations; otherwise the space is O(N logN).



output should be a valid Path ORAM structure, denoted
as R = (T, S,position), where T is a binary tree with
N − 1 nodes (N ≥ d), each containing Z blocks, and S
and position are a stash and a position map, respectively,
which do not exceed their capacity limits Cs and Cp. For
each data block bi in b, either there exists one and only one
location in T that contains the block, or the block is in S.
The position map should also contain consistent metadata,
i.e., for each logical address ai, the data block bi resides on
the path associated with the leaf label xi = position(ai).
Overall, the bulk loading algorithm Aload constructs the
expected ORAM structure R with a set of parameters:
R← Aload(b,a, N, Z,Cs, Cp).

After executing Aload, the ORAM controller, including
the position map and the stash, stays in the enclave. The
enclave acts as a local trusted proxy of the client [13],
[14], [15]. For each data access, only a single request and
a single response are transmitted between the client and
the server through networking; the heavy communication
including path fetch and eviction happens within the local
machine. This scenario also follows the proxy-based ORAM
model [25], [27], [49], which can conveniently and effi-
ciently handle multiple clients.

Threat model. The server is untrusted, potentially com-
promised by a malicious adversary, who may snoop, roll-
back, or tamper with the sensitive data. Thus we need to
ensure confidentiality, integrity, and freshness.

We assume the hardware processor of the server is
trusted, while all software running on the processor is
controlled by the adversary, except for the code inside the
enclave, whose legality has been verified through attestation.
The data values inside the enclave are protected, but the
memory, disks, and networking are exposed to the adver-
sary, who can observe the data stored/transferred on these
devices as well as their corresponding addresses and access
patterns. In other words, the enclave is not fully trusted,
and suffers from access pattern side channels. Hence we
aim to design a doubly-oblivious system [14], where the
Path ORAM algorithm protects the external accesses to
the server storage, and our oblivious implementation avoids
leaking the internal access patterns of the enclave code. The
security is hence nothing worse than the traditional client-
server ORAM model.

Following common practice, we do not consider denial-
of-service attacks, as well as physical attacks that exploit
other side channels such as electromagnetic [46], ther-
mal [47], and power [48].

3. Design Goals

In this work, we focus on improving the performance
of Path ORAM bulk loading in the scenario with TEEs,
while retaining the same security guarantees. We detail the
performance and security goals in Sections 3.1 and 3.2. We
show that such a construction is non-trivial by discussing
a simple design in Section 3.3, which seems secure but
actually violates some subtle requirements of ORAM.

3.1. Performance Goals

The most straightforward way to bulk load data blocks to
a Path ORAM is to sequentially insert those blocks through
the Path ORAM access protocol. Without loss of generality,
we assume d = N . For each of the N ORAM accesses
launched from the TEE, O(logN) blocks (i.e., a path) are
fetched/evicted from each of the O(logN) recursive levels.
The doubly oblivious requirement further restricts us to
conduct full scans over the data structures in the TEE [13],
[14], [15]. For example, when selecting candidate blocks to
pack into the evicted path, we need to obliviously scan the
stash, which brings an additional factor of O(logN) [13].
Therefore the total cost increases to O(N log3 N).

To our best knowledge, Oblix [14] was the only existing
(partial) solution but it omitted the position map construction
details. To build an ORAM tree, Oblix assigned blocks to
leaf buckets uniformly at random, followed by O(logN)
iterations to build the tree layer by layer, from bottom up.
In each iteration, it first gathered the blocks assigned to
the same buckets by oblivious sort. It then picked out the
overflowed blocks (those not fitting in the bucket capacity
Z) by another oblivious sort. These blocks were left to the
next iteration, e.g., to be placed at the buckets of upper tree
layers. Oblix still needed to pad each bucket with enough
dummy blocks to hide the actual size. Overall, the time
complexity was still O(N log3 N) despite optimization.

We aim to design a more efficient bulk loading algorithm
to reduce the complexity, i.e., lower than O(N log3 N). Our
algorithm does not increase the (trusted) controller storage,
keeping it at O(log2 N) · ω(1) [9]. Besides the asymptotic
improvements, our algorithm construction should also have
practically high performance, with good locality and paral-
lelism characteristics to leverage modern hardware.

3.2. Security Goals

Performance improvements are only valuable if we can
retain the same level of security guarantees. We adopt a
strong security model that follows all known binary-tree-
based ORAM algorithms and their variants [33], [50], [51],
and ensure that our bulk loading algorithm is statistically
secure (excluding encryption [52], [53]). Furthermore, the
same security requirements apply to the subsequent normal
accesses after bulk loading. In other words, the final state
of the Path ORAM must be compatible with a state that
is reached through serial writes, i.e., for any subsequent
accesses from this state, the externally observed trace is
statistically independent. We illustrate a simple design that
violates this requirement in Section 3.3.

To specify the leakage, we consider the following for-
malization. We use params to denote the system parame-
ters (B, d,N,Z,Cs, Cp). Recall from Section 2.3 that the
doubly-oblivious bulk loading algorithm Aload takes params
and the arrays b={bi}, a={ai} as inputs, and constructs
the Path ORAM structure R; then subsequent accesses
−→y = ((opM , aM , dataM ), . . . , (op1, a1, data1)) with a poly-
nomial length M are performed on R using the Path ORAM



access algorithm Aoram. We define Traceload(params,b,a)
and Traceoram(R,−→y ) as the traces of these two processes,
and let Trace(params,b,a,−→y ) be the concatenated trace
Traceload(params,b,a) ∥ Traceoram(R,−→y ).

Definition 1. An ORAM built by bulk-loading is obliv-
ious, if ∀a, ∀b, and ∀−→y , there exists a probabilistic
polynomial-time simulator Sim such that Sim(params,M) ∼=
Trace(params,b,a,−→y ), where ∼= means the two sides are
statistically indistinguishable (excluding encryption).

3.3. A Simple but Insecure Construction

A straightforward idea of bulk constructing a new Path
ORAM would be to first randomly shuffle the blocks, treat
the resultant layout as the ORAM tree, and accordingly build
the position map afterwards. More specifically, we first pad
the input array b = {bi} to the length of n = Z ·N , which
is the total number of blocks in the final ORAM tree. Then
we randomly determine a permutation π : [n] → [n] (e.g.,
through format preserving encryption [54]), and shuffle the
padded input array, i.e., for the new array b′, b′π(i) = bi. The
shuffled array is treated as the ORAM tree layout, i.e., the
physical address pi = π(i) for block i. We next determine
the associated leaf label xi of each data block according to
its pi. This can be done by randomly choosing a leaf that
belongs to the subtree under the tree node αi = pi/Z (the
one in which pi locates). This ensures that block i is on the
path associated to leaf xi. Note that a block with pi ∈ [0, Z)
(bucket 0) can be seen as in the stash, so it can be associated
with any leaf. Finally we build the position map as recursive
levels of ORAM, using mappings of ai → xi for i ∈ [0, N).

Such a bulk loading protocol is simple and efficient.
However, it does not satisfy Definition 1. Consider two
access sequences −→y = ((read, 0,⊥), (read, 1,⊥)) and −→y ′ =
((read, 0,⊥), (read, 0,⊥)) respectively performed just after
finishing bulk loading. We abuse P (·) to denote the ORAM
path for each access. Since π is a permutation, the physical
addresses of blocks pi = π(i) and pj = π(j), i ̸= j will not
be statistically independent. Hence for −→y , the probability
that both accesses have the same path can be calculated by
categorizing whether the two blocks are (1) in the same
bucket, (2) in different buckets but on the same path, or
(3) on different paths. However for −→y ′, the leaf for block
0 is randomly re-sampled after the first access. So the
second path for block 0 is independent of the first one. This
makes the probability different from the above. We formally
calculate and prove Pr[P (−→y 0) = P (−→y 1)] ̸= Pr[P (−→y ′

0) =
P (−→y ′

1)] in Appendix A. This result means that we cannot
construct one Sim(params, 2) for two different distributions.

4. ORAM Bulk Loading with BULKOR

We propose BULKOR, an efficient and secure algorithm
for ORAM bulk loading, achieving the performance and se-
curity goals in Section 3. Section 4.1 explains the BULKOR
algorithm, with more details of its sub-procedures in Sec-
tions 4.2 to 4.4. We specifically illustrate the interaction

Algorithm 1: Path ORAM Bulk Loading
1 function BulkLoad(B, A, N , Z, Cs, Cp):

Input: data block array B, logical address array A,
number of buckets N , bucket capacity Z,
stash capacity Cs, position map capacity Cp.

Output: tree set T , stash set S, top-level position
map P .

/* Assign leaf label to block and initialize metadata array.
Each element in M has following fields: original array
index i, logical address a, leaf label x, bucket index α,
new physical address in output tree p. */

2 M ← AssignLeaf(A);

/* Recursively build position map. */
3 BP , AP , ← BuildPosMap(M, Cp);
4 if AP is ∅ then
5 T , S, P ← ∅, ∅, BP ;
6 else
7 T , S, P ← BulkLoad(

BP , AP , |BP |, Z, Cs, Cp);

/* Compute the height of ORAM tree. */
8 L← ⌈log2 N⌉ − 1;

/* Adjust bucket IDs to resolve bucket overflow. */
9 OSort(M, .α) ; // sort by bucket index

10 OAdjustBucketID(M, L, Z);
11 OSort(M, .α) ; // sort by bucket index

/* Assign physical addresses. */
12 OAssignPhyAddr(M);

/* Place and fill in missing physical addresses. */
13 OPlace(M, .p) ; // place by physical address
14 OAssignPhyAddrDummy(M);

/* Use metadata to place data blocks. */
15 OSort(M, .i) ; // restore to original order
16 OSort((M, B), .p) ; // sort by new physical address

17 Split B and append to T , S;
18 if |S| > Cs then Abort ;
19 return T , S, P;

with TEEs in Section 4.5. Section 4.6 analyzes the security
guarantees of our algorithm. Finally, Section 4.7 extends
BULKOR to support other tree-based ORAM protocols.

4.1. Overview

We summarize the overall algorithm of BULKOR in
Algorithm 1. The key point to avoid the security issue
in Section 3.3 is that, we must sample the leaf label of
each data block independently and uniformly at random, to
strictly confine with the Path ORAM definition [9]. There-
fore, for each block i, we sample its leaf xi from the range
[0, N/2) uniformly at random, and associate it with the
block’s logical address ai to initialize the auxiliary metadata
array (Line 2). These leaf assignments are final, and will not
change in the later stages of bulk loading. We temporarily
designate the block to the leaf bucket, i.e., αi ← xi +N/2.
These bucket assignments will be adjusted later due to
bucket capacity overflow, in a way that does not change the



Algorithm 2: BuildPosMap
Input: metadata array M, position map capacity Cp.
Output: data block array BP , logical address array AP ,

both for the position map itself.

1 if current recursion depth = 0 then
2 OSort(M, .a) ; // sort by logical address
3 OPlace(M, .a) ; // place by logical address

4 AP ← [ ]; BP ← [ ];
5 a← 0;
6 foreach m ∈M do
7 b← m.x;
8 Append a, b to AP , BP ;
9 a ← a+ 1;

10 if |BP | ≤ Cp then return BP , ∅ ;
11 else return BP , AP ;

above finalized leaf assignments. The physical address pi is
left uninitialized. In addition, to hide data length and ensure
obliviousness, we must pad the input blocks with dummy
blocks to the full size of the resultant tree, i.e., n = Z ·N .
All dummy blocks are initially designated to the dummy
bucket 0 (the tree root starts at bucket 1).

The following design of BULKOR is quite different from
and more efficient than Oblix [14]. With the finalized leaf
assignments of all data blocks, we can now obliviously
build the position map with all the leaf label mappings from
the metadata array (Lines 3 to 7). Algorithm 2 shows the
detailed process. First, we need to ensure the metadata are
in the ascending order of logical addresses. This is done
only once at the first recursion level, using the primitives of
OSort and OPlace that will be explained shortly. Then, the
leaf labels {xi} are treated as the data and form a new array,
where each block may fit multiple leaf labels. If the position
map capacity is within the limit, we finish the recursive
build; otherwise we recursively invoke the bulk loading
procedure. Figure 2 illustrates the result of the above Path
ORAM recursion. There are three ORAM trees and a top-
level, trivial position map in this case. The trivial position
map and the first two trees together serve as the full position
map, similar to multi-level page tables in operating systems.
For each block in the tree at recursion level l+1, the leaves,
which indicate paths in level l, are sorted by the associated
logical addresses. Hence the leaf for level l can be directly
indexed by ai,l+1. Moreover, since the logical addresses are
already in order, we omit the process of OSort and OPlace.

The core part of bulk loading is Lines 9 to 16 in Algo-
rithm 1. To avoid the cost of moving large data blocks during
layout adjustment, we primarily operate on the smaller
metadata array, until their physical address assignments are
finalized (Line 15). There are two key challenges that need
to be addressed when determining the physical address of
each block. First, as we designate all blocks to leaf buckets
through independent random sampling, there would be non-
negligible overflow happening. Therefore we need to adjust
the assigned buckets without changing the leaf labels. This
can be done by pushing the overflowed blocks up along their
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Figure 2. The recursive position map structure. The logical address ai is
split into several parts. The leaf label xl,j denotes a leaf belonging to the
tree at level l. In a block at each level l, the metadata are the current
logical address and the leaf label xl,j ; the data are several leaf labels for
the previous level {xl−1,j}.

paths to the tree root, but needs a collaborative way across
all paths, and in a doubly-oblivious and efficient manner.
Second, after we assign the final buckets, the placement
of data blocks in the final tree must be done in a doubly-
oblivious way. This is non-trivial considering the irregular
bucket assignments resulted from the previous step. There
could be holes between the actual data blocks in the ORAM
tree layout, so simply sorting the blocks by their assigned
physical positions will not work; dummy blocks must be
placed in between. To overcome these issues, we propose
two novel algorithms, OAdjustBucketID (Section 4.3) and
OPlace (Section 4.4).

More specifically, in OAdjustBucketID (Line 10) that
adjusts the bucket IDs, we first obliviously sort the metadata
array by the current temporarily assigned bucket IDs. Then
we scan the sorted array to check any violation of bucket
overflow and adjust the block’s bucket ID by pushing it to
its parent. When the root bucket overflows, we move blocks
to the stash space. At the end, we obliviously sort again to
maintain the order by the new bucket IDs.

At this point, all buckets except the special dummy
bucket 0 should satisfy the capacity constraint. Next, in
OAssignPhyAddr (Line 12), we (obliviously) walk through
the metadata array in the order of their bucket IDs, to assign
the physical address to each block in the bucket. We only
need O(1) auxiliary space. When encountering a new bucket
ID, we set the block’s physical address to the beginning of
that bucket. If the bucket ID is the same as the last block,
we increment the physical address by 1. The blocks in the
stash also get contiguous physical addresses in the stash
range. The dummy blocks in the dummy bucket 0 all obtain
a dummy physical address 0 in this step.

With the physical address of each real data block, we
then use OPlace (Line 13) to obliviously place them, where
dummy blocks from the dummy bucket 0 fill the holes in
between. Then we can fill in the physical address fields in all
dummy block metadata according to their current positions,
so that all physical addresses in the entire range are assigned
to either real blocks or dummy blocks. All blocks in the
stash are placed after those in the tree in this algorithm.

Finally, we use the metadata array to place the actual
data blocks (Lines 15 to 16). We first restore the original
order of the metadata array to pair them with the data array.
Then we sort them in tandem by the new physical addresses.
As the physical addresses of the stash are larger than those



of the tree, a simple split gives both the ORAM tree and
the stash at the current recursion level, which are appended
to the full sets T and S. We prove that the resultant size of
the stash |S| may only be larger than the capacity limit Cs

with negligible probability (Section 4.3).
Complexity. We first analyze the non-recursive case.

Most of the sub-procedures in Algorithm 1, includ-
ing AssignLeaf, BuildPosMap, OAssignPhyAddr, and
OAssignPhyAddrDummy, only need a scan on the input of
O(N), with O(1) temporary space at the controller storage.
In the later subsections we show that other procedures
all have time complexity up to O(N log2 N), and need
controller storage lower thanO(log2 N)·ω(1). So the overall
time complexity of BULKOR is O(N log2 N).

Further considering the recursive case, each recursion
level needs a bulk loading. With typical parameters like
64 B blocks and 64-bit leaf labels, each block can con-
tain χ ≥ 2 leaves. Therefore, the time complexity is
O(N · log2 N +N/χ · log2(N/χ) +N/χ2 · log2(N/χ2) +
· · · ) = O( Nχ

χ−1 log
2 N).

It is also possible to reduce the time complexity down
to O(N logN) if using bucket oblivious sort [30] (Sec-
tion 4.2). But we find the empirical performance becomes
worse despite the better asymptotic complexity.

4.2. Choices of Oblivious Sort

The most frequently used building block in BULKOR
is oblivious sort, which can be constructed from scratch or
from oblivious shuffle [30]. There exist several practical,
off-the-shelf designs. Some methods, e.g., Melbourne Shuf-
fle [55] and Cache Shuffle [56], have low bandwidth cost
O(N) with O(

√
N) controller storage. However, they are

not doubly oblivious and thus cannot be applied.
Bitonic sort [29] with time complexity O(N log2 N) is

one of the most prevalent oblivious sort designs used in
oblivious algorithms [15], [57]. It is also naturally doubly-
oblivious for TEE scenarios. Another choice is bucket obliv-
ious sort [30], the state-of-the-art O(N logN) algorithm. To
make the bucket oblivious sort algorithm doubly-oblivious,
we need to make some adjustments to hide the access pattern
in the trusted domain, i.e., by invoking bitonic sort in the
MergeSplit step. To avoid notation confusion, we alias Z
in bucket oblivious sort as θ [30]. The execution time is
roughly 2N logN log2 θ with O(1) controller storage.

Although bucket oblivious sort has better asymptotic
time complexity, to reduce the overflow probability to the
standard 2−80, we have to set θ = 512, and the constant
factor 2 · log2 512 = 162 in big O is large. Therefore, based
on our empirical measurements, we prefer bitonic sort as
the building block of BULKOR in practice, despite resulting
in an overall time complexity of O(N log2 N).

4.3. Oblivious Bucket ID Adjustment

Recall that at the beginning of bulk loading, we ran-
domly assign a leaf xi to each block and temporarily put

Algorithm 3: OAdjustBucketID
Input: metadata array M, height of ORAM tree L,

bucket capacity Z.
Output: adjusted metadata array M.

1 occ← all 0s of length L+ 1 ; // occupancy counters
2 lastid← 0;
3 foreach m ∈M do

/* Find the first bit where bucket ID differs from the last,
which decides the depth of the common ancestor anc. */

4 bitarr← lastid⊕m.α; lastid← m.α;
5 first← true; anc← −1;
6 for k ← 0 to L do
7 c← bitarr[k] == 1 ∧ first;
8 cmov(c, first, false) ; // conditional move
9 cmov(c, anc, k);

10 cmov(first, anc, L+ 1) ; // same as last bucket ID

/* Reset path occupancy below common ancestor. */
11 for j ← 0 to L do
12 c← j ≥ anc;
13 cmov(c, occ[j], 0);

/* Adjust bucket ID to the first ancestor with free space. */
14 first← true;
15 for j ← L to 0 do
16 c← occ[j] < Z ∧ first;
17 cmov(c, first, false);
18 cmov(c, m.α, shift right m.α by L− j bits);
19 cmov(c, occ[j], occ[j] + 1);

/* No free space along path; set to stash. */
20 cmov(first, m.α, S);

21 return M;

the block in its leaf bucket αi ← xi+N/2. This may result
in some leaf buckets having more than Z blocks and thus
overflow. Hence we need to adjust the bucket ID of each
overflow block to the parent bucket ID, by αi ← αi/2, so
the block is still on its path, satisfying the main invariant of
Path ORAM. If the parent is also full, we iteratively adjust
the bucket ID to the grandparent until the block finds a
empty slot. If no slot is found on the path until the root, the
block is sent to the stash. If the stash is full, the algorithm
fails (only with negligible chances).

Oblix [14] conducted such bucket ID adjustment by
invoking oblivious sort for logN times (Section 3.1). We
propose a better and novel algorithm to achieve the same
effect, as in Algorithm 3. OAdjustBucketID modifies the
bucket ID fields, α, of the metadata array. The input meta-
data array must be sorted by the initially assigned bucket
IDs. αi = 0 is the dummy bucket for dummy blocks;
αi ≥ N/2 is a leaf bucket. When completed, the bucket
IDs fall in the range α ∈ [0, N) ∪ S, where S is the stash
range whose addresses are larger than any bucket IDs.

The core part of the algorithm uses an array of L + 1
counters (L is the tree height) to record the occupancy of
the buckets on the current path, i.e., how many real blocks
are in those buckets. The algorithm sequentially visits the
sorted initial bucket IDs of all blocks. For each new block,
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Figure 3. Oblivious bucket ID adjustment, with N = 8, Z = 2, L = 2.
Padding (to 16) is omitted. Each bucket in the tree is marked by the orange
bucket ID. The initially assigned bucket IDs of the blocks in (a) need
adjustments. The blue background color means the block is finalized in
that bucket and the initial bucket ID is changed to the orange number
besides it. The gray background in the occupancy array denotes counter
reset. The red occupancy number is the one to be incremented in this step.

it compares the bucket ID with the last block, and finds their
common ancestor in the tree (Lines 4 to 10). The occupancy
counters below the common ancester’s depth are reset to 0,
corresponding to the part of the path that changes (Lines 11
to 13). With the occupancy information, we can now try
to push the block up along the path, until finding a bucket
with free space (Lines 14 to 19). If there is no space, we
use the stash (Line 20). The entire algorithm is oblivious by
using the cmov (conditional move) assembly instruction and
always iterating over the full range of each loop (Section 5).

We show an example in Figure 3. In (a) we show the
initially assigned bucket IDs for the 8 data blocks. At the
state of (b), we have processed the first three blocks that
were all assigned to bucket 4 (the leftmost leaf), but one
must be pushed up to bucket 2. The occupancy counters
show the path 1-2-4, with 0, 1, and 2 blocks. Now we are
looking at the first block that was assigned to bucket 5. The
first different bit between the bucket IDs is the last one, so
we reset the last counter to 0. Now the counters represent
the path 1-2-5. We find that this block can stay at the empty
bucket 5. Similarly, for (c) when we are at the last block,
we reset the last two counters when changing path to 1-3-6.

Complexity. It is clear from Algorithm 3 that we iterate
three loops of size L = O(logN) for each block, so the total
time complexity is O(N logN), with the controller storage
O(logN) attributed to the occupancy counters.

Overflow probability. We have the following theorem.

Theorem 1. With OAdjustBucketID in Algorithm 3, for
Z ≥ 2, there exist some constant CZ and αZ between 0
and 1, such that for sufficiently large N , the probability
that the stash overflows (denoted by poverflow) has an upper
bound

poverflow < CZα
R
Z (1)

where R is the size of the stash.

In particular,

Z = 2, poverflow ≤ 0.0407× 0.313R (when N > 212)

Z = 3, poverflow ≤ 0.0076× 0.291R (when N > 210)

Z = 4, poverflow ≤ 0.0021× 0.289R (when N > 210)

Z = 5, poverflow ≤ 0.0021× 0.288R (when N > 210)

Recall that the overflow probability given in Path ORAM [9]
is 14× 0.6R when Z = 5. Our method does not incur more
failure risk than Path ORAM itself.

Proof sketch. The upper bound can be proved by
estimating the moment-generating function (MGF) of the
random variable Xroot, which denotes the number of blocks
pushed to the root. First, the MGF of a tree leaf is easy to
compute, since it follows a binomial distribution. Second,
for a non-leaf node, the random variables of block numbers
pushed to its children are “negatively correlated”. By strictly
formalizing the negative correlation we then prove that the
MGF of the sum of these two random variables is no
more than the product of their MGFs. Now the MGF of
Xroot can be estimated by a recursion through the binary
tree. The probability of overflow is finally upper bounded
by choosing appropriate parameters in MGF and applying
Markov’s Inequality. The full proof is in Appendix B.

4.4. Oblivious Placement

As mentioned in Section 4.1, after assigning final phys-
ical addresses to blocks, a simple sort cannot place them to
their correct positions in the tree layout due to the missing
dummy blocks in between. We thus use our customized
OPlace in Algorithm 4. OPlace is inspired by bitonic
sort [29]. It requires the input array already sorted in the
ascending order by the key. OPlace is invoked in two places
in BULKOR. Algorithm 1 Line 13 uses the newly assigned
physical address2 as the key, to place blocks into their final
positions. Algorithm 2 Line 3 uses the logical address as the
key to process the input when building the position map.

Algorithm 4: OPlace
Input: sorted metadata array M, key (address) field k.
Output: placed metadata array M.
Data: Invalid key ⊥ for unoccupied slot.

1 n← |M| ; // Input should be padded to a power-of-2 size

2 T = n/2;
3 for r ← 1 to ⌊log2 n⌋ − 1 do
4 for M ∈ {0, 2T, 4T, . . . , n− 2T} do
5 s = M + T ;
6 for i←M to M + T − 1 do
7 j = i+ T ;
8 x←M[i].k; y ←M[j].k;
9 c← (x ̸= ⊥ ∧ x ≥ s) ∨ (y ̸= ⊥ ∧ y < s);

10 oswap(c, M[i], M[j]) ; // oblivious swap

11 T ← T/2;

12 return M;

Figure 4 explains the algorithm with an example. In each
stage with a new T , we obliviously swap each pair of out-of-
order elements with a distance of T . After O(logN) stages,
all elements are in their desired positions.

2. Because now blocks are sorted by bucket IDs and OAssignPhyAddr
assigns ascending physical addresses in each bucket, all blocks are already
sorted by physical addresses.
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Figure 4. An example of oblivious placement. 0 denotes an invalid address.
The blue background color denotes the blocks to be swapped in that stage.

Complexity. The algorithm runs in O(N logN) time
with O(1) controller storage.

Correctness. The full proof is in Appendix C. The proof
is based on the observation that the algorithm is recursive.
Each round of the main loop separates the array into two
subarrays of half length. Each separated subarray has two
interesting properties. First, each of its element has either
an invalid key or a key that falls into the correct range of
the subarray. Second, the set of valid keys are always in a
contiguous range (if allowed to “rotate” around the subar-
ray), and are strictly increasing. These two properties can be
proved by induction. After the final round, all subarrays are
of length 1, and now the desired result is a simple corollary
of the first property.

4.5. Interaction with TEEs

We illustrate the interaction between BULKOR and
TEEs, using Intel SGX as a representative TEE choice.
Other TEEs can be used in a similar manner. The full
procedure of Algorithm 1 runs inside the enclave. The
data block and address arrays (B and A) are loaded into
the enclave and decrypted. N , Z, Cs, Cp are all public
parameters. As the output, the initialized ORAM tree T is
encrypted and stored outside, while the stash S and the top-
level position map P stay inside the enclave in plaintext.

If the enclave memory is sufficiently large, e.g., with
the newer SGX in Intel Scalable processor families [58],
during the execution of Algorithm 1 the intermediate data
can well fit within the enclave. Otherwise, if the enclave
memory is limited, data would need to be encrypted, stored
outside, and later loaded in and decrypted. To amortize
repetitive enclave data swaps, such data loading happens in
a batched manner, i.e., loading a large chunk of data each
time. This is straightforward for streaming data accesses,
e.g., AssignLeaf. However, OPlace and OSort have more
complex patterns, for which we adopt customized batch-
ing methods. Specifically, for OPlace (Algorithm 4), the
metadata array M may exceed the enclave memory size.
We partition it into chunks and each time load two chunks
whose elements need swaps. For example, the algorithm
swaps M[i] and M[i+ T ] in each step (Line 10). We can
load two chunks M[i : i+ len] and M[i+ T : i+ T + len],
swap the elements within the chunks, and then load the next
two chunks. For OSort instantiated with bitonic sort, we
adopt a similar manner.

Similar to the basic Path ORAM, BULKOR also naturally
supports integrity and freshness protection against a mali-
cious adversary (besides encrypting data). The basic unit of
data transfers between the enclave and the external world is
a chunk. We can authenticate accordingly, by appending a
MAC to each chunk. For intermediate results that are only

written/read as a whole through scans, we can simplify to
use one checksum across the entire data array.

BULKOR involves multiple times of reads and writes of
data bins, which is thus vulnerable to replay attacks. For
example, in OPlace, a set of new chunks are generated in
each round, acting as input to the next round. The adversary
can replace them with stale chunks. Therefore, whenever a
new set of data are generated, they are authenticated with
a fresh random nonce, which is kept in the enclave for
verification. The final ORAM tree is also protected with
a mirrored Merkle tree [59], as the standard protocol [9].

4.6. Security Analysis

Theorem 2. A doubly-oblivious Path ORAM built by our
bulk loading algorithm BULKOR satisfies Definition 1.

Proof. We need to construct a simulator Sim that generates
the trace with only public information (i.e., the algorithm
itself, and the system parameters including the input size),
following the same distribution as the real trace.

In the bulk loading algorithm Aload, we observe that, (1)
all loop boundaries and branch conditions are determined by
public information, which is independent of the input sensi-
tive data b, a; (2) conditional statements that must depend on
the input are implemented through oblivious primitives (e.g.,
cmov instructions); (3) the memory operations (reads or
writes) and accessed addresses in Aload are a fixed sequence
determined by public information. Thus, Sim first generates
random bits for the ciphertexts of inputs b, a. Then for each
memory access, Sim also generates random bits of the same
length as the encrypted content. Sim is able to generate these
traces because the access pattern is deterministic.

For subsequent normal accesses Aoram, we rely on ex-
isting doubly-oblivious Path ORAM constructions like Ze-
roTrace [13] to make the manipulation on the stash and the
trivial position map in the controller storage oblivious. As
for Traceoram(R,−→y ), we denote the access sequence seen by
the adversary as positionM [aM ], positionM−1[aM−1], . . . ,
position1[a1]. Notice that for any positioni[ai], 0 < i ≤M ,
it is either filled in Algorithm 2 with statistically indepen-
dent values sampled uniformly at random, or reassigned
randomly if the block has been accessed before. Therefore,
Sim can just sample a sequence of positions uniformly at
random and independently for each access, and generate
random bits for the ciphertexts.

Finally Sim outputs the concatenation of both simulated
traces. In this way, Sim generates an identical trace distribu-
tion as the real algorithm without the knowledge of the real
input, so an adversary cannot extract any information about
the input by eavesdropping on the memory traces.

4.7. Supporting Other Tree-based ORAM

To our best knowledge, currently only Path ORAM has
doubly-oblivious implementations [13], [14]. Nevertheless,
we remark that BULKOR can be easily adapted to other tree-
based ORAM schemes, as long as their doubly-oblivious de-
signs for normal accesses are available. Note that tree-based



ORAMs [9], [10], [11], [31], [32], [33] typically maintain
an ORAM tree in the server storage, and a position map and
a stash in the controller storage. The main differences lie in
the protocol sub-procedures and their metadata structures.
These sub-procedures mainly influence the normal access
procedure, and hence their differences are nearly orthog-
onal to ORAM initialization. Therefore, for different tree-
based ORAM schemes, we only need to consider how to
specifically initialize the corresponding metadata in the bulk
loading procedure.

We give an example of how to extend BULKOR to Ring
ORAM [10]. In Ring ORAM, each bucket contains Z +D
slots. The additional D slots are solely for dummy blocks,
i.e., it is not allowed to store more than Z real blocks
in each bucket. Therefore, the core part in Algorithm 1
(Lines 9 to 16) is performed with bucket size Z. After that,
we run a scan-based sub-procedure to insert D additional
dummy blocks in each bucket, and randomly and obliviously
permute the blocks within each bucket. Ring ORAM also
uses additional metadata for each bucket, e.g., ptrs indicate
the in-bucket offsets for real blocks, count records the
number of times the bucket has been touched, and valids
indicate the validity of the Z + D blocks [10]. They can
all be filled in during the aforementioned scan. Specifically,
ptrs are filled with the encrypted permuted locations, while
count and valids are filled with 0 and 0/1 bits, respectively,
only in authenticated plaintexts [10].

5. Implementation

We use Intel SGX [35], [36], [37], one of the most
widely used TEE techniques. We implement BULKOR in
Rust for high performance and memory safety, and we use
Rust SGX SDK [60] for the enclave code. Our implemen-
tation consists of 7900 lines of code, in which about 5400
are enclave code that contributes to the trusted computing
base (TCB). All basic oblivious functions, such as cmov
and oswap, are implemented in assembly, mainly using the
CMOV and CMOVZ x86 instructions, similar to ZeroTrace [13].
We also leverage Intel’s AES-NI instructions to accelerate
encryption/decryption. For leaf assignment and nonce gen-
eration, we use the true random number generator in SGX.

In-memory caching. Our implementation keeps the
server storage in the external storage (e.g., hard disks) on
the server. It is known that, manually caching the top of
the ORAM tree in memory, instead of solely relying on OS
page caches, could significantly improve performance [13].
We thus implement and extend the two-tier structure to a
three-tier structure in BULKOR, i.e., enclave trusted memory,
untrusted server memory, and disks. The top of the ORAM
tree is cached in the enclave, free of costly encryption
and authentication. The middle part is cached in untrusted
memory, for faster accesses than the on-disk bottom part.

Parameters. The parameters involved in BULKOR are
all configurable. For each block, we separately store its
data and metadata, which are aligned with 64 B and 8 B,
respectively. So the minimum size of a data block is 64 B.
The choices for bucket capacity Z and stash size Cs are

important. Larger values reduce overflow probability, but
increase the cost of fetching/evicting a path and scanning
the stash. If the position map exceeds its configured limit
Cp, we use recursion. The capacity of the controller storage
is configurable to allow BULKOR efficiently running in SGX
enclaves with different sizes (e.g., 128 MB to 1 TB [58],
[61]). We carefully manage the working set in the controller
storage as described in Section 4.5. The configurable param-
eters also include the size constraints for the top and middle
parts of the three-tier ORAM tree.

Parallelism and locality. We parallelize BULKOR with
a multi-thread implementation for the major performance
bottlenecks, oblivious sort and placement, which take over
95% of the total execution time. We follow the natural
parallelization methods [62]. The other sub-procedures are
currently sequential for ease of implementation, as they
do not dominate overall execution. As for locality, steps
like OAdjustBucketID only need sequential scans, exhibit-
ing good locality. Moreover, when implementing on-disk
ORAM, previous studies showed that when there are two
disks, there exists a locality-friendly implementation of
bitonic sort, which sorts n elements using O(n log2 n)
bandwidth in only O(log2 n) disk seeks, denoted by
(2,O(log2 n))-locality [63]. We have not yet integrated this
optimization in our current implementation and leave it for
future work, as our test platform only has a single disk.

6. Evaluation

In this section, we empirically evaluate BULKOR with
both micro-benchmarks and practical case studies.

6.1. Experimental Setup

Platform. To evaluate BULKOR, we use a server
equipped with an Intel Xeon Gold 5317 processor of 3 GHz,
377 GB DDR4 memory, and external storage of a 2.4 TB,
10 kRPM, 12 Gbit/s hard disk (HDD). The processor sup-
ports SGX with a 64 GB enclave page cache (EPC). It
runs Ubuntu 18.04 with Linux kernel 5.4.0. All experi-
ments run on a single disk. We try to avoid the OS page
cache impact, by using the command nocache to mini-
mize the page cache effect. We also insert sync all and
fadvise(POSIX FADV DONTNEED) into the code, to make
each write immediately flush to the disk and then clear
the relevant page cache, isolating and better explaining the
performance impact.

Parameters. For the ORAM data block size, we pre-
dominantly focus on 64 B (the minimum permitted size in
our implementation) and 1 kB, corresponding to cacheline-
level and page-level buckets [13]. The recursion ORAM
block size is the same. We fix the bucket capacity Z =
4, which is a typical setting achieving balance between
the stash overflow probability and the memory bandwidth
cost [9]. It has been shown [9, Table 3] that when Z = 4,
a stash size of Cs = 89 suffices for a negligible overflow
probability 2−80. We set the capacity limit of the trivial
position map Cp to 4 kB.
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Figure 5. Comparison of overall performance on disks.

Moreover, the sizes of the top and middle tiers cached
in memory greatly influence performance (Section 5). For
fair comparisons, we set the size of the top tier (in-
side the enclave) equal to the controller storage consumed
during BULKOR execution, which mainly holds the data
chunks currently being processed by the multiple threads
of BULKOR. We vary different size choices for the middle
tier (in the server untrusted memory), but always ensure the
same setting for both BULKOR and the baselines.

Baselines. We evaluate BULKOR for bulk loading N
data blocks, against three baselines: the original C++ Ze-
roTrace [13], our re-implemented Rust ZeroTrace, and
Oblix [14]. The first two baselines insert N blocks by
performing N individual accesses to an initially empty
Path ORAM. We implement the algorithm in Oblix in
Rust by ourselves due to lack of code access. Same as
ZeroTrace [13], we only measure the time for the controller
(i.e., the enclave) to process data blocks, but omit the client-
server communication to transfer queries or responses. We
run each experiment for 10 times and use the average
result. The cost of guaranteeing confidentiality and integrity
is always included. Since BULKOR additionally supports
multi-threading by design, we also evaluate this aspect. In all
the figures, we use Oblix (x) and BULKOR (x) to represent
running with x threads.

6.2. Benchmarking Overall Performance

We evaluate the overall performance of the four systems,
C++ ZeroTrace, Rust ZeroTrace, Oblix, and BULKOR, on
various cases. For page-sized 1 kB blocks, we assume that
all blocks are stored on the disk, and only a portion of them
can be cached in memory. We adjust the ratio for the in-
memory part. For cacheline-sized 64 B blocks, we mainly
test the in-memory case where the memory holds all the
blocks. We only run C++ ZeroTrace in the fully in-memory
scenarios due to the broken implementation for disks [64].

First, we investigate the performance of loading 1 kB
data blocks on the disk, under different in-memory ratios,
i.e., the ratio for how many blocks could be cached in mem-

ory. Figure 5 shows the execution time comparison. With an
in-memory ratio of 1/16, single-thread BULKOR achieves
22.8× to 34.2× speedups and 15.5× to 21.9× speedups
over Rust ZeroTrace and Oblix, respectively. 16-thread
BULKOR is 139.1× to 160.6× faster than Rust ZeroTrace,
and 8.7× to 10.1× compared to 16-thread Oblix. As N gets
larger, the speedup increases, which matches the trend of the
asymptotic complexity improvement.

As the in-memory ratio increases, the performance of all
systems improves due to fewer accesses to the slower disk.
The speedups of BULKOR (and Oblix) over Rust ZeroTrace
slightly decrease. BULKOR has more regular access patterns
than those in Rust ZeroTrace (Section 5). Because the
memory can better support random accesses than disks, the
advantage of BULKOR becomes smaller for the in-memory
case than that on disks. Hence, for in-memory ratios of
1/8, 1/4, and 1/2, the average speedups of single-thread
BULKOR over Rust ZeroTrace are 24.2×, 15.1×, and
9.9×; those of 16-thread BULKOR over Rust ZeroTrace are
135.7×, 114.5×, and 90.2×, respectively. The speedups of
BULKOR over Oblix are rather stable across different ratios.

Next we evaluate bulk loading for both 64 B and 1 kB
data blocks entirely in memory. As shown in Figures 6a
and 6b, for both block sizes, as the number of blocks N
grows, the execution time increases, and more importantly,
the speedup of BULKOR improves following the algorithm
complexity advantage (Section 4.1). We note that our re-
implementation Rust ZeroTrace has similar performance
to the original C++ ZeroTrace, so we mostly focus on
comparing BULKOR with Rust ZeroTrace and Oblix. For
1 kB blocks, the speedup of single-thread BULKOR over
Rust ZeroTrace ranges from 5.8× to 8.8×, while using
16 threads increases the speedup to 21.3× to 83.9×. The
performance gains of BULKOR slightly decline compared
to the on-disk settings. Again, this is because the random
access overhead is reduced when all accesses occur in
memory. The speedup of BULKOR over Oblix ranges from
11.4× to 20.9× for 1 thread and from 5.3× to 17.8×
for 16 threads. For 64 B blocks, the speedup of single-
thread BULKOR over Rust ZeroTrace ranges from 21.5× to
54.2×, and multi-threading significantly improves the gains
to 144.2× to 493.6×. The speedup is higher than that of
1 kB blocks, since smaller blocks lead to more recursive
levels and contribute a logN factor to ZeroTrace. Since
BULKOR has more hardware-friendly sequential accesses,
the speedups of BULKOR over Oblix are higher than those
in 1 kB block settings, ranging from 28.3× to 54.6×.

Figures 6c and 6d evaluate the cases when all data
entirely fit in the enclave, for both 64 B and 1 kB data block
sizes. We see slightly higher performance improvements of
BULKOR over the baselines than the previous experiments
which only cache 16 MB in the enclave. For 1 kB blocks,
the speedups of single-thread and 16-thread BULKOR over
Rust ZeroTrace are 6.2× to 10.3× and 30.3× to 90.4×,
respectively. For 64 B blocks, the corresponding speedups
range from 21.3× to 51.8× (single-thread) and from 121×
to 533.1× (16-thread). The main reason is that BULKOR
needs repetitive encryption and decryption when swapping
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Figure 6. Comparison of overall performance in memory.

data out of the enclave, especially when performing bitonic
sort and oblivious placement. Although ZeroTrace also
needs to do so when fetching or evicting a path, it is not
as frequent as in BULKOR. Caching all data inside enclaves
alleviates these disadvantages of BULKOR over ZeroTrace.

Finally, we point out that, although currently BULKOR is
not completely parallelized, the benefits of multi-threading
are already significant because of the dominance of oblivi-
ous sort and placement. The performance of BULKOR can
be further improved by adding more disks and optimizing
locality as described in Section 5.

6.3. Practical Application Case Studies

We next evaluate BULKOR in the three application cases
in Section 1.1, to show its potential usage and benefits.

Building block for oblivious algorithms. Certain obliv-
ious algorithms have incorporated ORAM as a building
block, and require constructing an ORAM structure on the
latency-critical online phase (see Section 1.1 case 1). Here
we show that BULKOR can be used to reduce end-to-end
latencies of some algorithms and can also inspire more
oblivious algorithm designs. In the following evaluations,
we make all the data inside the TEE and use only 1 thread.

For oblivious join [20], we evaluate several sort-merge
join benchmarks SE1-SE3 [20] on social graphs [65].
BULKOR reduces the end-to-end latencies (including ini-
tialization) of the three benchmarks by 47.9%, 44.4%, and
42.8%, respectively. It means that initialization would take
nearly half of the time if we cannot rely on preprocessing to
build ORAM, e.g., when computing on intermediate results.

Next we consider oblivious search [21]. Apparently, for
just a few search queries, it is better to use simple linear scan
for obliviousness. Only when there are sufficient numbers
of queries, the cost of building an ORAM to apply binary
search can be amortized. So there exists a tradeoff point
in terms of the number of queries, below which linear
scan is preferred, and above which using ORAM is better.
BULKOR is able to lower the tradeoff point by optimizing
the initialization phase. In Table 2, we show the tradeoff
points across different dataset sizes. With BULKOR, the
tradeoff points greatly decrease, benefiting performance.

For oblivious breadth-first search (BFS), existing so-
lutions [21], [23], [66] have used customized oblivious
algorithms. The design in [66] (denoted as DOGA) does
not use ORAM and is more suitable for dense graphs,
with a time complexity O(V 2 log V ) for a graph with V
vertices. ObliBFS [23] is ORAM-based and targets sparse
graphs, with a time complexity O(VM log3 V ).3 However,
it requires to know M , i.e., the upper bound of the number
of adjacent nodes, which potentially leaks data information.
ObliBFS also performs bad on dense graphs that have M =
O(V 2). To support our claim that BULKOR could inspire
more oblivious algorithms that use ORAM, we design a
better doubly-oblivious BFS with O((V +E) log3 (V + E))
as described in Appendix D.4 We evaluate these algorithms
using real-world graphs [67]. We further apply BULKOR to
our algorithm to improve the overall performance. As seen
in Table 3, BULKOR improves the speedups of our algo-
rithm over DOGA from the range 0.8×–9.1× to 1.2×–13.7×.
Particularly, without BULKOR, our algorithm is slower than
DOGA when the graph is dense (e.g., 4k vertices and 90k
edges); BULKOR eliminates this degradation.

Data recovery. We then consider case 2 in Section 1.1,
where an ORAM-based service fails and restarts. During
data recovery, the service is in an unresponsive state. We
compute the availability A using the mean time between fail-
ures (MTBF, from restart to next failure) and the mean time
to recover (MTTR) [68], as A = MTBF/(MTBF+MTTR),
assuming a single machine without replication. Typical MT-
TRs could be several hours [69], [70], while a common

3. [23] stated O(VM log2 V ) without double obliviousness.
4. [21] mentioned an oblivious BFS but without algorithm details.



TABLE 2. THE TRADEOFF POINTS (IN TERMS OF SEARCH QUERY NUMBERS) ABOUT THE TWO APPROACHES FOR OBLIVIOUS SEARCH.

# of 64 B blocks 221 222 223 224 225 226 227 228

One search w/ linear scan (ms) 72 150 330 650 1200 2400 4900 9700
One search w/ ORAM (ms) 35 42 50 59 69 82 95 110

Tradeoff point w/o BULKOR 1.9× 106 1.6× 106 1.5× 106 1.7× 106 2.0× 106 2.4× 106 2.7× 106 3.1× 106

Tradeoff point w/ BULKOR 3.2× 103 2.4× 103 2.1× 103 2.1× 103 2.4× 103 2.5× 103 2.6× 103 2.8× 103

TABLE 3. OBLIVIOUS BFS PERFORMANCE (IN SECONDS).

Graph: (V ,E) (4k,90k) (5k,15k) (6k,21k) (8k,26k)

DOGA 136 379 461 622
ObliBFS 2536 302 434 587

Ours w/o BULKOR 166 41 57 72
Ours w/ BULKOR 110 28 38 48

specification for PATA and SATA drives has an MTBF of
300,000 hours [71]. For hundreds of GB of data, BULKOR
would reduce the bulk loading overheads from hundreds of
hours to several hours. Expressed as the class of “9s” defined
by c = ⌊− log10(1−A)⌋, the improvement of BULKOR over
the baseline is about 2 “9s”, determined by the two orders
of magnitude speedup demonstrated in Section 6.2.

Cloud storage services. Assume a user outsources
20 GB data to a cloud storage. During the day, data are
stored in the ORAM format; at night, data are condensed
into normal encryption to save space (and thus cloud bills).
Such daily data conversion must be fast enough to realize the
benefits, e.g., within an hour compared to every 24 hours.
In the disk setting of 1 kB data blocks and Z = 4, it takes
around 4×105 s for Rust ZeroTrace to do such a conversion,
impossible to achieve the goal, while BULKOR spends less
than an hour. With the enabled 4× space saving, the user
could save the expense by roughly 1− 8 h×4+16 h×1

24 h×4 = 50%.

7. Related Work

This work motivates the problem of bulk loading for
tree-based ORAM protocols, in particular Path ORAM [9].
The tree-based ORAM protocol was first proposed by [33],
and later designs [9], [10], [32] extended upon the original
construction. All these protocols were statistically secure,
had rather simple concepts, and exhibited practical per-
formance results. They mostly focused on optimizing the
bandwidth cost and the client storage size from a theoret-
ical perspective. Our work takes a system’s perspective to
consider the diverse real-world application scenarios.

The introduction of TEEs [35], [36], [37], [39], [40]
further enlarges the use cases of ORAM, as it allows to
instantiate a trusted enclave closer to the untrusted storage,
greatly reducing the network communication cost. However,
it may suffer from more side-channel vulnerabilities than
the traditional remote client-server model. ZeroTrace [13]
was the first to combine tree-based ORAMs (Path ORAM
and Circuit ORAM) with Intel SGX [35], [36], [37]. It
designed oblivious memory primitives to avoid exposing

the access patterns of the code inside enclaves. Oblix [14]
conceptualized the doubly-oblivious requirement for both
the implementations inside enclaves and the original external
accesses. It designed higher-level oblivious data structures,
e.g., (multi-)maps. While Oblix tried to serve transaction
processing (i.e., OLTP), Opaque [57] focused on data ana-
lytics (i.e., OLAP). It designed several oblivious operators,
such as join and aggregation. The key building block in
Opaque was also oblivious sort. ObliDB [15] designed a
set of new oblivious query processing algorithms and fur-
ther supported more general query workloads. It carefully
selected between two storage methods for database tables
according to the query selectivities. For high selectivities,
queries were served by an oblivious B+tree, similarly as in
Oblix [14]; for low selectivities, they were served in the
flat storage, typically with several rounds of scans. It aimed
to support both OLTP and OLAP. Our proposed algorithm,
BULKOR, can be readily applied to them to further optimize
the initialization phase and data recovery through oblivious
bulk loading.

8. Conclusions

We implemented BULKOR, an optimized Path ORAM
bulk loading algorithm that supports double obliviousness
when incorporating hardware enclaves at the untrusted
server side. BULKOR achieves O(N log2 N) time complex-
ity, improving upon the naive serial insertion, with the same
space cost at the controller. When practically measured,
BULKOR also outperforms the baseline by two orders of
magnitude. Given its efficiency and security, BULKOR could
be useful in various real-world cases.
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Appendix A.
Probability Calculation of Section 3.3

For −→y , the probability that both accesses have the same
path can be calculated by categorizing whether two blocks
are in the same bucket, or in different buckets but on the
same path, or on different paths. We treat the bottom layer as
the 0th layer, and there are in total L layers. The probability
that two blocks are assigned to a specific path and put into
the same bucket in the ith layer is f0(i) =

Z
ZN

1
2i ·

Z−1
ZN−1

1
2i ,

while the probability that one block is put into the bucket in
the ith layer and the other block is at a bucket in other layers
is f1(i) =

Z
ZN

1
2i ·

Z
ZN−1 (1−

1
2i ). Let g(i) = f0(i) + f1(i)

be the probability that the two blocks are on the same
path in the ith layer. Then, for all the N/2 paths and
across all L layers, we have Pr[P (−→y 0) = P (−→y 1)] =
N
2

(∑L
i=0 g (i) + g (L)

)
, where the second term is for the

stash space.
However for −→y ′, the leaf for block 0 is randomly re-

sampled after the first access. So the second path for block
0 is independent of the first one. Similar to the above, the
probability that block 0 is initialized to a specific path in
the ith layer is Z

ZN
1
2i , and the probability that block 0 is

assigned to the same path by the normal Path ORAM algo-
rithm is simply 2/N . Therefore, Pr[P (−→y ′

0) = P (−→y ′
1)] =

N
2

Z
ZN

(∑L
i=0

1
2i +

1
2L

)
2
N = 2

N .
So Pr[P (−→y 0) = P (−→y 1)] ̸= Pr[P (−→y ′

0) = P (−→y ′
1)].

Appendix B.
Proof of Overflow Probability

Let T be the ORAM tree. T is a perfect binary tree
of height L, thus having N = 2L+1 − 1 nodes and n = 2L

leaves. For each node u in T , let Xu be the random variable
representing the maximum number of blocks it contains
during the process. Let Yu = max{Xu − Z, 0} for any u.

Lemma 1. For every node u in T , if p and q are its children,
then for all t ∈ R,

E [exp (tYp)] · E [exp (tYq)] ≥ E [exp (t(Yp + Yq))] (2)

Proof. For every node u in T , let Bu be the total num-
ber of blocks in the subtree rooting at u. Then Bu =
Bp + Bq. Given b and t, for any β ≥ 0, let rβ =
E [exp(tYp) | Bp = β], sβ = E [exp(tYq) | Bq = b− β],
and kβ = E [Bp = β] = E [Bq = β] (the second equality
comes from symmetry). Since each block is placed indepen-
dently, rβ is non-decreasing with β, and sβ is non-increasing
with β.

Now for any b ≥ 0,

E [exp(t(Yp + Yq)) | Bu = b] (3)
= E [exp(tYp) · exp(tYq) | Bp +Bq = b] (4)

=

b∑
β=0

E [Bp = β]

https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
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https://github.com/sshsshy/ZeroTrace#other-notes
http://snap.stanford.edu/data
http://en.wikipedia.org/w/index.php?title=Annualized%20failure%20rate&oldid=1024295897
http://en.wikipedia.org/w/index.php?title=Annualized%20failure%20rate&oldid=1024295897


· E [exp(tYp) · exp(tYq) | Bp = β,Bq = b− β] (5)

=

b∑
β=0

E [Bp = β] · E [exp(tYp) | Bp = β,Bq = b− β]

· E [exp(tYq) | Bp = β,Bq = b− β] (6)

=

b∑
β=0

E [Bp = β] · E [exp(tYp) | Bp = β]

· E [exp(tYq) | Bq = b− β] (7)

=

b∑
β=0

kβrβsβ (8)

where the equality relations in (6) and (7) come from the fact
that given the number of blocks in a subtree, its distribution
of blocks is independent of the blocks in the rest of tree,
since all blocks are placed independently.

In addition

E [exp(tYp) | Bu = b] (9)

=

b∑
β=0

E [Bp = β] · E [exp(tYp) | Bp = β] (10)

=

b∑
β=0

kβrβ (11)

Similarly

E [exp(tYq) | Bu = b] =

b∑
β=0

kβsβ (12)

Hence

E [exp(t(Yp + Yq)) | Bu = b]

− E [exp(tYp) | Bu = b] · E [exp(tYq) | Bu = b] (13)

=

b∑
β=0

kβrβsβ −
b∑

β=0

kβrβ ·
b∑

β=0

kβsβ (14)

=

b∑
β=0

kβrβsβ

b∑
β=0

kβ −
b∑

β=0

kβrβ ·
b∑

β=0

kβsβ (15)

=
1

2

b∑
β1=0

b∑
β2=0

kβ1
kβ2

(rβ1
− rβ2

)(sβ1
− sβ2

) (16)

≤ 0 (17)

Since the above inequality holds for any b, we conclude that

E [exp(t(Yp + Yq))]− E [exp(tYp)] · E [exp(tYq)] ≤ 0
(18)

Thus we complete the proof of the lemma.

For a leaf c in T , since Xc follows a (1/n, nZ)-Bernoulli
distribution, we have

E [exp (tXc)] =

(
1 +

1

n
(et − 1)

)nZ

(19)

Then if u has two children p, q, we have

Xu = max{p− Z, 0}+max{q − Z, 0} = Yp + Yq (20)

Then for any t > 0,

E [exp (tXu)] (21)
= E [exp (t(Yp + Yq))] (22)
≤ E [exp (tYp)] · E [exp (tYq)] (23)
= E [exp (tmax{Xp − Z, 0})]
· E [exp (tmax{Xp − Z, 0})] (24)

≤
(
1 + e−ZtE [exp (tXp)]

)
·
(
1 + e−ZtE [exp (tXq)]

)
(25)

Lemma 2. For 0 < p < 1/4, the sequence {an}n≥0 defined
by an+1 = (1+pan)

2 converges to 2
1−2p+

√
1−4p

if 0 < a0 <
1−2p+

√
1−4p

2p2 .

Proof. Notice that

α =
2

1− 2p+
√
1− 4p

(26)

β =
1− 2p+

√
1− 4p

2p2
(27)

are two solutions of the equation (1+px)2 = x on x. By the
monotonicity of quadratic polynomials, for all α ≤ x < β,
α < (1 + px)2 < x; for all 0 < x ≤ α, x ≤ (1 + px)2 ≤ α.

Therefore if α ≤ a0 < β, for all n, α < an+1 < an < β.
Applying the monotone convergence theorem, {an} has a
limit L. Since L = limn→∞(1+pan)

2 = (1+pL)2, L must
be α (it cannot be β because an < a0 < β).

If 0 < a0 ≤ α, for all n, 0 < an ≤ an+1 < α.
Similarly we deduce that {an} approaches to α by applying
the monotone convergence theorem.

Take cd as any node in the (L− d)-th level of the tree.
Then

E [exp (tXc0)] =

(
1 +

1

n
(et − 1)

)nZ

< eZ(et−1) (28)

Consider the sequence {an}n≥0 defined by a0 =

eZ(et−1), an+1 = (1 + e−Ztan)
2. Since E [exp (tXc0)] <

a0, applying inequality (25), we deduce by induction that
E [exp (tXcd)] < ad for every d ≥ 0.

According to lemma 2, the sequence {an}n≥0 converges
if

eZ(et−1) <
1

2
e2Zt(1− 2e−Zt +

√
1− 4e−Zt) (29)

⇐⇒ eZ(et−2t−1) <
1

2
(1− 2e−Zt +

√
1− 4e−Zt) (30)

When t = 1, the left side of (30) is smaller than 0.6, and the
right side is larger than 0.7. For a sufficiently large t, the
left side goes to infinity but the right side is smaller than 1.
Thus we can denote γZ > 1 to be the maximum value of t
such that the inequality (30) holds.



For some small δ > 0, let t = γZ − δ. Now {an}n
converges to 2(1−2e−Zt+

√
1− 4e−Zt)−1 based on lemma

2. Thus for a sufficiently large L,

aL <
2

1− 2e−Zt +
√
1− 4e−Zt

+ ϵ (31)

The stash overflows if and only if the root contains more
than Z +R blocks. By Markov’s Inequality,

poverflow = Pr [XcL > Z +R] (32)

= Pr
[
exp(tXcL) ≥ et(Z+R+1)

]
(33)

≤ e−t(Z+R+1)E [exp (tXcL)] (34)

≤ e−(γZ−δ)(Z+R+1)HZ (35)
= CZα

R
Z (36)

is the desired upper bound of overflow probability, where

HZ =

(
2

1− 2e−Z(γZ−δ) +
√
1− 4e−Z(γZ−δ)

+ ϵ

)
(37)

CZ = e−(γZ−δ)(Z+1)HZ (38)

αZ = e−(γZ−δ) (39)

In particular, pick δ = 0.01 and a sufficiently small ϵ,

C2 < 0.0407, α2 < 0.313 (when N > 212) (40)
C3 < 0.0076, α3 < 0.291 (when N > 210) (41)
C4 < 0.0021, α4 < 0.289 (when N > 210) (42)
C5 < 0.0006, α4 < 0.288 (when N > 210) (43)

Appendix C.
Correctness of Oblivious Placement

First we formalize the process of Oblivious Placement
in Algorithm 4. Without loss of generality, let 0 denote
the invalid key. Let n = 2k, and the outmost loop of
Oblivious Placement is iterated for k times. In the r-th
(r = 1, 2, . . . , k) time, the variable T = 2k−r, and we
denote it as the r-th round. Let a(r) be the array of the
keys (i.e., addresses) at the end of the r-th round. In
particular, a(0) is the original array. In the r-th round, for
any M ∈ {0, 2T, . . . , n − 2T} and i ∈ [M,M + T ), if
0 < a

(r−1)
i+T < M + T or a

(r−1)
i ≥ M + T , then a

(r−1)
i+T

and a
(r−1)
i are swapped in a(r); otherwise they are kept

unchanged in a(r).
To prove the correctness of Oblivious Placement, we

need to prove that after the final round k, a(k)i = i for any
i appearing in a(0), and a

(k)
i = 0 for all other i’s.

Proof. We will prove that for each r ∈ {1, . . . , k}, and
for each M ∈ {0, 2T, . . . , n − 2T} where T = 2k−r, the
subarray a

(r)
[M,M+2T ) satisfies the following properties:

Property 1. Nonzero elements are in the same range
of indices of the subarray. Formally speaking, if the
indices of the subarray take in the interval [p, q) (in

this case p = M, q = M + 2T ), any nonzero element
lies in the interval x ∈ [p, q).

Property 2. We can rotate the elements such that the
indices of all nonzero elements are continuous and
strictly increasing. Formally speaking, If the elements
in a(r) are not all zero, there exist some u, v ∈ [p, q)

such that either a(r)u < a
(r)
u+1 < · · · < a

(r)
v (then u ≤ v),

or a
(r)
u < a

(r)
u+1 < · · · < a

(r)
q−1 < a

(r)
p < a

(r)
p+1 < · · · <

a
(r)
v (then u > v); and all other elements in a(r) is 0.

If a subarray satisfies the above properties, say it is
(u, v)-cyclic, or cyclic in short, where u, v are taken the
same values as they are in property 2.

These properties can be proved by induction. The case
when r = 0 is just a re-statement of the assumption for the
elements in a(0). It suffices to prove the (r + 1)-th case if
smaller cases are proved. Again let T = 2k−r. For each
M ∈ {0, 2T, . . . , n − 2T}, the subarray B = a

(r)
[M,M+2T )

will be separated into two subarrays C1 = a
(r+1)
[M,M+T ) and

C2 = a
(r+1)
[M+T,M+2T ) after the (r + 1)-th iteration.

For an index u ∈ [M,M + T ), if a
(r)
u ≥ M + T , say

u is raised; for an index u ∈ [M + T,M + 2T ), if 0 <

a
(r)
u < M + T , say u is sunk. According to the induction

hypothesis, B is (u, v)-cyclic for some u, v. We will discuss
all possible cases of u and v, and prove that under all cases,
both C1 and C2 are cyclic.

Case 1. All elements in B are 0. Then all elements in
C1 and C2 are also 0.

Case 2. u ≤ v. Because nonzero elements in B are
strictly increasing, it is impossible that both sunk and raised
indices exist.

If there are neither sunk nor raised elements, then B
is unchanged from a(r) to a(r+1). According to the defi-
nitions of sunk/raised, property 1 is automatically satisfied
for C1 and C2. Furthermore the continuous set of indices
of nonzero elements, after cutting by half, are still two
continuous sets of indices. Hence property 2 is also satisfied.

If there is some index that is raised or sunk, according to
the symmetry, we may assume there is a sunk index without
loss of generality.

If u < M + T , there is some w ∈ [M + T, v] s.t. [M +
T,w] is the set of all sunk indices. Note that if no index is
sunk, we set w = M+T−1. We will follow this convention
when choosing w throughout the proof. Because a(r)w < M+

T (by the definition of sunk), a(r)w ≥ a
(r)
u +w−u (elements

are strictly increasing), and a
(r)
u ≥M (property 1), we have

u > w− T . Therefore during the (r + 1)-th iteration, these
sunk elements in [M+T,w] are swapped with the elements
in [M,w − T ] which are before a

(r)
u and thus all 0. The

resulted C1 becomes (u,w − T )-cyclic, and C2 becomes
(w + 1, v)-cyclic.

If u ≥M+T , then there is some w ∈ [u, v] s.t. [u,w] is
the set of all sunk elements. Therefore after swapping, C1

is (u− T,w − T )-cyclic and C2 is (w + 1, v)-cyclic.
Case 3. u > v. If there are neither sunk nor raised

elements, then B is unchanged from a(r) to a(r+1). Again



property 1 is automatically satisfied for C1 and C2. The
nonzero elements in C2 are still continuous, and the nonzero
elements in C1 are either continuous or continuous after
rotating. In both cases C1 and C2 are both cyclic.

If there exists some sunk or raised element, we will
consider three subcases.

1) a
(r)
M < M + T . Now a

(r)
u < a

(r)
M < M + T , implying

[u,M+2T ) are all indices being sunk. And there exists
some w ∈ [M + 1, v] s.t. [w, v] is the set of all raised
indices. Because a

(r)
w−1 ≥ a

(r)
u + (w − 1 + 2T ) − u

(elements are strictly increasing), a(r)w−1 ≤M + T − 1
(because it is not raised by the definition of w), and
a
(r)
u ≥M (property 1), we have w− 1 < u− T . Thus

sunk/raised elements only swap with zeros. Eventually
C1 is (u− T,w− 1)-cyclic and C2 is (w+ T, v+ T )-
cyclic.

2) a
(r)
M ≥ M + T and u ≥ M + T . Then all indices in

[M,v] are raised. And there exists some w ∈ [u,M +
2T ) s.t. [u,w] is the set of all sunk indices. Because
a
(r)
v ≥ a

(r)
w+1+(v+2T )−(w+1), a(r)w+1 ≥M+T , and

a
(r)
v < M + 2T , we have w + 1 > v + T . Thus C1 is

(u−T,w−T )-cyclic and C2 is (w+1, v+T )-cyclic.
3) a

(r)
M ≥ M + T and u < M + T . Again all indices in

[M,v] are raised. For some w ∈ [M + T,M + 2T ],
[M + T,w] is the set of all sunk indices. Similar to
above, by considering a

(r)
v and a

(r)
w+1, we have w+1 >

v+T . By considering a
(r)
w and a

(r)
u , we have u > w−T .

Thus C1 is (u,w−T )-cyclic and C2 is (w+1, v+T )-
cyclic.

From all cases discussed above, for each r, each one in
the corresponding subarrays is cyclic. Particularly, when r =
k, each subarray is of length 1. According to property 1, the
element is either equal to its index, or zero. Because during
the rounds the elements are only swapped, every nonzero
element in the original array still appears in the result array.
Thus our proof is complete.

Appendix D.
Oblivious BFS

Consider using an adjacent list G to represent the
graph. For each vertex v, we denote its row in G as
(v, c, v0, v1, . . . , vc−1), where c is the number of the adja-
cent vertices and vi is each adjacent vertex. We pre-process
G using Algorithm 5 and use G′ as the input to Algorithm 6.
Each item in the output ORAM V contains its parent vertex,
as well as the distance to the source. Note that in the
implementation, Line 9 and Line 20 of Algorithm 6 can be
merged into one ORAM access, corresponding to path fetch
and path eviction, respectively. Considering V and G′ can
be built with BULKOR, the algorithm invokes 4(V +E)+1
individual ORAM accesses.

Algorithm 5: Oblivious BFS pre-processing
Input: Adjacent list G.
Output: Packed adjacent list G′.

1 G′ ← ∅; l← 0;
2 foreach row (v, c, v0, v1, . . . , vc−1) in G do
3 Append (l, v, c) to G′, l← l + 1;
4 for i← 0 to c− 1 do
5 Append (l, vi, 0) to G′, l← l + 1;

6 return G′;

Algorithm 6: Oblivious BFS
Input: Packed adjacent list G′, number of vertices V ,

number of edges E, source vertex s
Output: ORAM V

1 Build an ORAM L from G′ with BULKOR. For each
item (l, v, cadj) in G′, treat l as the logical address and
(v, cadj) as the data element, to construct A and B in
Algorithm 1, respectively;

2 Pick all items (there are V such items) with cadj ̸= 0
from G′ using oblivious sort. Build an ORAM V from
these picked items with BULKOR. For each picked item
(l, v, cadj), treat v as the logical address and
(l, dis = 0, pa = ⊥) as the data element;

3 Build an empty ORAM Q;
4 Read (lnext, dis, pa) from V using address s;
5 qhead ← 0; qtail ← 0;
6 crem ← 0; disbase ← 0; paprev ← ⊥;
7 for i← 0 to V + E − 1 do
8 Read (v, cadj) from L using address lnext;
9 Read (lh, dis, pa) from V using address v;

10 re en ← pa ̸= ⊥;
11 cond ← cadj ̸= 0; // whether it is a heading vertex
12 cmov(cond, l, lh);
13 cmov(¬cond, l, lnext);
14 cmov(cond, disbase, dis);
15 cmov(¬cond ∧ ¬re en, dis, disbase + 1);
16 cmov(cond, crem, cadj);
17 cmov(¬cond, crem, crem − 1);
18 cmov(¬re en, pa, paprev);
19 cmov(cond, paprev, v);
20 Write (lh, dis, pa) to V using address v;
21 Write lh to Q using address ¬re en · qtail + re en · ⊥;
22 cmov(¬re en, qtail, qtail + 1);
23 cond ← crem = 0; // whether all neighbors are visited
24 cmov(¬cond, lnext, l + 1);
25 cmov(cond, qhead, qhead + 1);
26 Read ltmp from Q using address qhead;
27 cmov(cond, lnext, ltmp);

28 return V;



Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

The paper presents a bulk loading algorithm for Path
ORAM running in hardware-based trusted execution envi-
ronment (e.g., Intel SGX). Compared to naively running
the ORAM’s “write” operation N times or using the only
previous specialized algorithm for bulk loading, the new
algorithm is a log(N) factor faster.

E.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

E.3. Reasons for Acceptance

1) An asymptotically faster algorithm with new technical
ideas for a potentially important use-case of ORAM.

2) An implementation showing substantial practical im-
provements over prior approaches.
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