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Abstract Chemical shifts provide not only peak identities

for analyzing nuclear magnetic resonance (NMR) data, but

also an important source of conformational information for

studying protein structures. Current structural studies

requiring Ha chemical shifts suffer from the following

limitations. (1) For large proteins, the Ha chemical shifts

can be difficult to assign using conventional NMR triple-

resonance experiments, mainly due to the fast transverse

relaxation rate of Ca that restricts the signal sensitivity. (2)

Previous chemical shift prediction approaches either

require homologous models with high sequence similarity

or rely heavily on accurate backbone and side-chain

structural coordinates. When neither sequence homologues

nor structural coordinates are available, we must resort to

other information to predict Ha chemical shifts. Predicting

accurate Ha chemical shifts using other obtainable infor-

mation, such as the chemical shifts of nearby backbone

atoms (i.e., adjacent atoms in the sequence), can remedy

the above dilemmas, and hence advance NMR-based

structural studies of proteins. By specifically exploiting the

dependencies on chemical shifts of nearby backbone

atoms, we propose a novel machine learning algorithm,

called HASH, to predict Ha chemical shifts. HASH combines

a new fragment-based chemical shift search approach with

a non-parametric regression model, called the generalized

additive model, to effectively solve the prediction problem.

We demonstrate that the chemical shifts of nearby back-

bone atoms provide a reliable source of information for

predicting accurate Ha chemical shifts. Our testing results

on different possible combinations of input data indicate

that HASH has a wide rage of potential NMR applications in

structural and biological studies of proteins.
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Chemical shift prediction � Machine learning � Residual

dipolar couplings (RDCs) � Side-chain resonance

assignment � NOE assignment � Protein structure
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Introduction

Chemical shifts play a crucial role in determining protein

structures and studying protein dynamics via nuclear mag-

netic resonance (NMR). They provide peak identities for

NMR data analysis (Donald and Martin 2009; Zeng et al.

2008, 2009, 2011a). In addition, chemical shifts offer an

important source of conformational information for studying

protein structures (Shen et al. 2008; Wishart et al. 2008;

Mulder and Filatov 2010; Wishart 2011). In particular, Ha

chemical shifts provide important ‘‘anchors’’ for initializing

the nuclear Overhauser effect (NOE) assignments, serve as a
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reliable indicator of secondary structure, and contain rich

structural information (e.g., dihedral angles). Despite these

important properties of Ha chemical shifts, current studies of

protein structures requiring Ha chemical shifts still suffer

from the following three problems:

First, the Ha chemical shifts of large proteins can be dif-

ficult to assign using conventional NMR triple-resonance

experiments on uniformly 15N- and 13C-labelled samples,

primarily due to the fast transverse relaxation rate of Ca

nuclei in the large systems. Although recent progress (Shen

et al. 2008; Wishart et al. 2008; Raman et al. 2010; Rosato

et al. 2012; Thompson et al. 2012; Lange et al. 2012) has

shown that the atomic or medium resolution structures of

some proteins up to 40 kDa can be calculated using molec-

ular modelling and sparse data (e.g., chemical shifts), it is

still of interest to assign the dense NOE data that can be

collected for large proteins, and use their assignments to

calculate high-resolution structure from the data. This is

difficult without Ha and side-chain resonance assignments.

In (Zeng et al. 2011b), we developed a novel algorithm,

called NASCA, to assign both side-chain resonances and NOE

distance restraints from NOESY spectra. NASCA takes as

input NOESY spectra, backbone chemical shifts, and RDCs,

but does not require any TOCSY-type experiments. The

current version of NASCA relies on having Ha assignments

and geometric data such as NOEs and RDCs that involve Ha

nuclei. Therefore it is valuable to develop an algorithm that

could predict Ha chemical shifts given neighboring reso-

nances, and backbone structural information determined by

RDCs on spatially proximate backbone bond vectors.

For large proteins, two NMR samples are often prepared

for determining their solution structures. In the first sample,

proteins are deuterated (hence, the NMR signals of Ha are

muted) and used in NMR triple-resonance experiments to

obtain the resonance assignments of backbone atoms HN,

Ca , Cb and C0 and N. In these experiments, the Ha reso-

nances cannot be assigned. In the second sample, proteins

are protonated, and used in NOESY experiments to obtain

NOE assignments. Although the NOESY spectra resulting

from the second NMR sample contain a substantial number

of NOE cross peaks involving Ha that are important for

high-quality structure determination, the unassigned Ha

resonances make it difficult to assign these Ha-related

NOEs. Predicting accurate Ha chemical shifts can alleviate

the NOE assignment ambiguity resulting from the corre-

sponding missing resonance assignments, and thus facili-

tate NOE assignment and enable high-resolution structure

determination for large proteins.

Second, most previous chemical shift prediction

approaches (Neal et al. 2003; Shen and Bax 2007; Kohl-

hoff et al. 2009; Shen and Bax 2010) require either

(a) homologous models with high sequence similarity, or

(b) accurate backbone and side-chain structural

coordinates. Experimentally, it can be difficult to obtain

complete and accurate structural coordinates before

assignment, since this requires having an X-ray or NMR

structure already. Furthermore, it can be especially difficult

to determine the structures of the flexible or disordered

loop regions and side-chain conformations at the protein

surface. When structural coordinates are absent or of low

resolution, we must resort to other information to predict

Ha chemical shifts. Resonances of neighboring backbone

atoms, including HN , Ca, Cb and C0 and N, which can be

measured relatively easily from NMR experiments using a

deuterated sample, provide an alternative source of infor-

mation for inferring Ha chemical shifts.

In this paper, we develop a novel machine learning algo-

rithm, called HASH, to predict Ha chemical shifts by specifi-

cally exploiting the experimentally-assigned resonances of

neighboring backbone atoms (i.e., adjacent backbone atoms

in the sequence). HASH applies a combination of a new frag-

ment-based chemical shift search approach and a non-para-

metric regression model, called the generalized additive

model, to effectively solve the chemical shift prediction

problem. Using only the assigned resonances of nearby

backbone atoms, HASH can still predict accurate Ha chemical

shifts for a benchmark set of NMR data extracted from the

Biological Magnetic Resonance Bank (BMRB), with RMSD

0.333 ppm and Pearson correlation 0.807. This highly accu-

rate prediction result indicates that the chemical shifts of

nearby backbone atoms can provide reliable information for

predicting Ha chemical shifts. By combining experimentally-

measured chemical shifts of nearby backbone atoms with

sequence homology modeling and structural information,

HASH achieves excellent prediction accuracy, with RMSD

0.113 ppm and Pearson correlation 0.977. In an application

scenario in which only the chemical shifts of nearby backbone

atoms plus backbone structural coordinates are available (e.g.,

when they can be determined from residual dipolar coupling

data), HASH outperforms previous structure-based chemical

shift prediction approaches and achieves prediction accuracy

with RMSD\0.31 ppm.

The Ha chemical shifts predicted by our approach can be

useful for assigning the Ha-related NOEs from NOESY

experiments on protonated proteins samples, and thus

ensure high-resolution structure determination for large

proteins. In summary, the following contributions are made

in this paper:

1. The first approach to explicitly use the dependencies

between chemical shifts of nearby backbone atoms to

predict Ha chemical shifts in NMR structural studies;

2. A novel machine learning algorithm for Ha chemical

shift prediction that can use different combinations of

obtainable input data, such as primary sequence,

backbone structural coordinates determined from
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residual dipolar couplings (RDCs), and the chemical

shifts of nearby backbone atoms;

3. A combination of a new fragment-based search

approach and a statistical regression model to effec-

tively solve the chemical shift prediction problem, and

a novel application of a non-parametric learning

approach (i.e., generalized additive model) into chem-

ical shift prediction and NMR structural biology;

4. Filling the gap in NMR structural studies caused by the

missing Ha chemical shifts, which cannot be easily

assigned experimentally in large proteins, and the absence

of sequence homologues and structural coordinates;

5. Testing and promising results on both a benchmark set

of NMR data extracted from the BMRB and a set of

NMR data with RDC-defined backbone structures.

Related work

Previous chemical shift prediction approaches may be clas-

sified into two principal categories: sequence homology

search methods (Wishart et al. 1997) and structure-based

approaches (Iwadate et al. 1999; Xu and Case 2001; Moon

and Case 2007; Vila et al. 2009; Meiler 2003; Neal et al.

2003; Shen and Bax 2007, 2010; Kohlhoff et al. 2009; Han

et al. 2011). The sequence homology search methods predict

the chemical shifts of the target protein based on sequence

homologous models found from the sequence/chemical shift

database. These methods require at least 35 % sequence

identity between the target protein and existing models in the

training database (Wishart et al. 1997; Wishart 2011). On the

other hand, two proteins with high sequence identity can still

have different global folds, and result in significantly different

chemical shifts. For example, although two proteins GA88 and

GB88 have 88 % sequence identity, they have distinct fold

topologies and show significantly different chemical shifts

(He et al. 2008). Even proteins with almost identical

sequences can display different conformations in different

states (such as native or denatured states) or different chemical

environments (e.g., with different buffer pH) (Morrone et al.

2011). These facts indicate that, in order to robustly predict

accurate chemical shifts, other information in addition to

protein sequence information must be incorporated.

Most structure-based chemical shift prediction approa-

ches rely heavily on complete and accurate structural

coordinates to derive chemical shifts of a protein. Quantum

mechanical (QM) methods, one of the early attempts in

structure-based chemical shift prediction, calculate nuclear

shielding to predict chemical shifts using density functional

theory (DFT) (Mulder and Filatov 2010; Wishart 2011).

Although QM methods can calculate the chemical shifts of

nuclei with relatively good accuracy, they are computa-

tionally expensive and cannot capture the environmental

and dynamic effects (Wishart 2011). Chemical shifts are

related to multiple structure-based factors, such as back-

bone dihedral angles, hydrogen bonding and ring current

(Iwadate et al. 1999; Xu and Case 2001; Moon and Case

2007; Vila et al. 2009; Meiler 2003; Neal et al. 2003; Shen

and Bax 2007, 2010; Kohlhoff et al. 2009; Han et al. 2011;

Arun and Langmead 2006; Wishart 2011). These factors

are sometimes called structural factors or structural impact

factors on chemical shifts. The large number of high-

resolution protein structures in the Protein Data Bank (PDB)

and their corresponding assigned resonances deposited in the

Biological Magnetic Resonance Bank (BMRB) (Ulrich et al.

2007) have provided rich statistical (i.e., frequency) infor-

mation for deriving the empirical relationships between

various structural factors and chemical shifts. The empiri-

cally-derived dependencies between chemical shifts and

various structural parameters have been combined with

semi-classical methods, which derive simplified or empirical

equations from classical physics (Wishart 2011), to predict

chemical shifts from structural coordinates. These approa-

ches, called hybrid approaches, are probably the most

popular prediction tools to date, and can efficiently predict

chemical shifts to a good accuracy (Xu and Case 2001;

Moon and Case2007; Neal et al. 2003; Meiler 2003; Shen

and Bax 2007, 2010; Vila et al. 2009; Kohlhoff et al. 2009;

Mulder and Filatov 2010; Han et al. 2011; Arun and

Langmead 2006; Wishart 2011). Unfortunately, all these

approaches demand accurate and complete (i.e., both back-

bone and side-chain) structural coordinates. They do not

work without prior structural information. In contrast, our

approach specifically exploits the chemical shifts of nearby

backbone atoms, and can predict accurate Ha chemical shifts

in the absence of structural information.

In (Vila et al. 2010), the sequential nearest-neighbor

effects on quantum-chemical calculation of 13Ca have been

investigated. The correlations (i.e., dependencies) between

chemical shifts of different backbone atoms have been used

in NMR data analysis (Marin et al. 2004; Wang et al.

2005; Wang and Markley 2009). For example, in (Marin

et al. 2004), the patterns of correlations between different

backbone atoms have been exploited to predict amino acid

types from the NMR-measured chemical shifts. This

method has been applied to backbone resonance assign-

ment (Bailey-Kellogg et al. 2000; Langmead and Donald

2004; Langmead et al. 2004; Xiong et al. 2008; Apaydin

et al. 2008, 2010; Jang et al. 2011). In (Wang et al. 2005;

Wang and Markley 2009), a linear analysis of chemical

shifts (LACS) has been applied to detect and correct the

errors in chemical shift assignments. Despite these appli-

cations, to our knowledge, little work has been designed to

predict Ha chemical shifts by explicitly using the depen-

dencies between chemical shifts of Ha and nearby back-

bone atoms.

J Biomol NMR (2013) 55:105–118 107

123



Methods

Overview

A flow chart of the HASH algorithm is shown in Fig. 1. HASH

takes as input the chemical shifts of nearby backbone atoms

(i.e., HN , Ca, Cb and C0 and N). Protein structural coordi-

nates are optional input data, and can be fed into the program

when available. HASH first performs a fragment-based

chemical shift search (see Sect. ‘‘Fragment-based chemical

shift search’’) over a chemical shift database extracted from

the BMRB, and checks whether there exists a chemical shift

fragment (i.e., a short sequence segment with known back-

bone chemical shifts) such that the chemical shifts of nearby

backbone atoms in this fragment match those of each frag-

ment in the target protein. If such a matched chemical shift

fragment is found, the corresponding Ha chemical shifts are

used as the predicted values. Otherwise, the chemical shifts

of nearby backbone atoms, together with the obtainable

structural impact factors computed from the optional input

structural coordinates, are fed into a non-parametric regres-

sion model, called the generalized additive model, to predict

Ha chemical shifts (see Sect. ‘‘The regression model’’).

Our algorithm HASH differs from previous chemical shift

prediction approaches (Wishart et al. 1997; Iwadate et al.

1999; Xu and Case 2001; Moon and Case 2007; Vila et al.

2009; Meiler 2003; Neal et al. 2003; Shen and Bax 2007,

2010; Kohlhoff et al. 2009; Han et al. 2011) in the following

aspects. First, unlike previous chemical shift prediction

approaches, which can only use sequence homologues and

structural coordinates as input, HASH also exploits the

assigned resonances of nearby backbone atoms to predict Ha

chemical shifts. In other words, previous approaches heavily

depend on sequence homologues or accurate structural

coordinates to predict chemical shifts, while in our algo-

rithm, the problem caused by the lack of sequence homo-

logues and accurate structural coordinates can be overcome

by introducing the chemical shifts of nearby backbone atoms

as effective local chemical environmental indicators to infer

accurate Ha chemical shifts. Second, unlike most structure-

based chemical shift prediction approaches (Iwadate et al.

1999; Xu and Case 2001; Moon and Case 2007; Vila et al.

2009; Meiler 2003; Neal et al. 2003; Shen and Bax 2007,

2010; Kohlhoff et al. 2009; Han et al. 2011), which mainly

rely on specific empirical functions in a parametric fashion to

compute the influences on chemical shifts from different

structural factors, such as dihedral angles and ring current

effect, HASH applies a non-parametric model (see Sect. ‘‘The

regression model’’) to calibrate the relationships between

different structural factors and chemical shifts. Such a non-

parametric approach will allow us to derive a more accurate

regression function for Ha chemical shift prediction.

Fragment-based chemical shift search

Chemical shift provides a reliable indicator of the local

chemical environment for each atom in the protein. Two

atoms should have similar chemical shifts if they have

similar local chemical environments. Thus, two fragments

(i.e., short sequence segments) are likely to share similar

Ha chemical shifts if their chemical shifts of nearby atoms

are pairwise similar. Based on this observation, we propose

a new fragment-based search approach to predict Ha

chemical shifts by systematically searching over the

available chemical shift database BMRB based on the

chemical shifts of nearby backbone atoms.

Chemical shifts of nearby  
backbone atoms

Fragment-based 
chemical shift search

Chemical shift 
database

Find matched 
fragment?

Output matched         
chemical shift

Yes

Regression model

Compute structural 
impact factors

No

Structural coordinates (optional)

Chemical shift 
and structure 

database

Training

Predicted       chemical shiftsαH

αH

Fig. 1 A flow chart of the HASH prediction process. Protein structural coordinates are optional input data
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Our fragment-based chemical shift search approach is

described as follows. Let a be the target Ha proton whose

chemical shift need to be predicted, w be the length of a

chemical shift fragment, and t be the threshold to check

whether two chemical shifts are similar. Given a target Ha

proton a, we check whether the following criterion is sat-

isfied for each Ha proton b in the chemical shift database: If

chemical shifts of all nearby backbone atoms within the

residue number window of w/2 from b are within threshold

t from those of the corresponding backbone atoms around

a, we then output the chemical shift of b as the predicted

Ha chemical shift for proton a. We use RefDB (Zhang

et al. 2003) as the chemical shift database, which contains

the re-referenced chemical shifts of 2,372 proteins that

were extracted from the BMRB (Ulrich et al. 2007). We

choose w = 6 as the length of each chemical shift frag-

ment, and 0.06 ppm for HN and 0.6 ppm for heavy atoms
15N and 13C as the thresholds to determine whether two

chemical shifts are similar to each other during the search.

In the NMR structural biology literature, fragment-based

search approaches have been widely applied in NMR data

analysis and structural studies. Our fragment-based search

approach is different from previous fragment-based search

methods in that (1) the flow of information is different; (2)

our approach searches for chemical shift fragments rather

than structural fragments (Fig. 2). Previous fragment-based

search approaches can be classified into two categories.

The first category is mainly in the application of NMR

structure determination, which uses chemical shifts (or

RDCs) to search over the structure/chemical shift database

and find the structural fragments for structure generation

(Delaglio et al. 2000; Shen et al. 2008, 2009). We call

these methods chemical shift-to-structure search, in which

information flows from chemical shifts to structures

(Fig. 2A). The second category is mainly in structure-based

chemical shift prediction, which uses structural features

(e.g., dihedral angles) to search over the structure/chemical

shift database and find the structural fragments to infer the

unknown chemical shifts. We call these methods structure-

to-chemical shift search, in which information flows from

structures to chemical shifts (Fig. 2B). Our fragment-based

search is different from all above approaches. As shown in

Fig. 2C, our approach uses the chemical shifts of nearby

backbone atoms to search over the chemical shift database

and find the chemical shift fragments for Ha chemical shift

prediction. Our fragment-based search approach can be

regarded as chemical shift-to-chemical shift search, in

which information flows from the chemical shifts of nearby

backbone atoms to Ha chemical shifts.

The regression model

In most structure-based chemical shift prediction approa-

ches, the predicted chemical shifts are often formulated as

an additive model of contributions from different structural

factors on chemical shifts, as shown in the following

equation:

dp ¼ d0 þ
Xk

i¼1

Xi ð1Þ

where dp represents the predicted chemical shift, d0

represents the random coil shift, and Xi represents the

contributions on chemical shifts from different structural

impact factors, such as hydrogen bonding, ring current

effect, and dihedral angles. In the above additive model

(Eq. 1), contributions Xi from different structural impact

factors are usually calculated using specific empirical

functions (i.e., parametric models). In reality, it is difficult

to derive a precise empirical function or model to compute

contributions Xi on chemical shifts from different structural

impact factors. To relieve this problem, we improve the

Chemical shifts 
(or RDCs)

Structure/chemical 
shift database

Structural fragments

Structures

(A)

Structural features 
(e.g., dihedral angles)

Structural fragments

Chemical shifts

(B)

Chemical shifts of 
nearby backbone atoms

Chemical shift fragments

 chemical shifts

(C)

Structure/chemical 
shift database

Chemical shift 
database

αH

Fig. 2 Comparison of our approach to other fragment-based search

methods. A Chemical shift-to-structure search in NMR structure

determination (Delaglio et al. 2000; Shen et al. 2008, 2009). B
Structure-to-chemical shift search in chemical shift prediction (Shen

and Bax 2007). C Our chemical shift-to-chemical shift search in

chemical shift prediction. In A and B, the structure/chemical shift

database contains high-resolution X-ray structural coordinates

extracted from the PDB and corresponding chemical shifts extracted

from the BMRB. In C, the chemical shift database contains the

chemical shifts extracted from the BMRB. In A and B, structural

fragments are short peptide chains with structural coordinates and

known backbone chemical shifts. In C, chemical shift fragments are

short sequence segments with known backbone chemical shifts
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original additive model in Eq. 1 by introducing a non-

parametric regression model, called the generalized

additive model (GAM) (Hastie and Tibshirani 1990), into

Ha chemical shift prediction. To describe the generalized

additive model, we first introduce an additive linear model

of the following form:

EðY jX1; . . .;XkÞ ¼ b0 þ X1 þ � � � þ Xk ð2Þ

or

EðY jX1; . . .;XkÞ ¼ b0 þ b1X1 þ � � � þ bkXk ð3Þ

where Y is called the response variable, Xi is called the

predictor variable, and bi is the corresponding coefficient

for each predictor variable. The generalized additive model

is an extension of the above additive linear model, and has

the following form:

EðY jX1; . . .;XkÞ ¼ b0 þ f1ðX1Þ þ � � � þ f1ðXkÞ ð4Þ

where fi(Xi) are called the smooth functions, which are non-

parametric functions of predictor variables Xi. These non-

parametric functions fi(Xi) can be estimated using current

smoothing techniques, such as cubic smoothing spline,

LOWESS (locally weighted scatterplot smoothing)

(Cleveland and Devlin 1988), and kernel smoother (Wand

and Jones 1995). In general, a specific distribution, such as

Gaussian distribution or Poisson distribution, is used to relate

the expected value of the distribution to a set of predictor

variables, namely,

g EðY jX1; . . .;XkÞð Þ ¼ b0 þ f1ðX1Þ þ � � � þ f1ðXkÞ ð5Þ

where g is also called the link function. The generalized

additive model can be solved using the backfitting algo-

rithm (Hastie and Tibshirani 1990), which is similar to the

numerical Gauss-Seidel algorithm for solving a certain

linear system of equations.

In the context of Ha chemical shift prediction, the

response variable Y is the unknown Ha chemical shift to be

predicted, and the predictor variables Xi include the

chemical shifts of nearby backbone atoms, and contribu-

tions on chemical shifts from different structural impact

factors, such as ring current effect and backbone dihedral

angles, computed based on input structural coordinates. We

apply the cubic smoothing spline method to estimate the

non-parametric functions fi(Xi). We use Gaussian distri-

bution as the link function g in our generalized additive

model. This means that our model can compute a proba-

bility density distribution by reporting both mean (i.e.,

expected chemical shift) and standard deviation of a

Gaussian distribution for each predicted Ha chemical shift.

To our knowledge, our work is the first application of

the generalized additive model in chemical shift prediction

and NMR structural biology. Compared to the additive

linear model (Eq. 1) used in previous chemical shift

prediction approaches, our framework replaces the linear

form
P

i=1
k Xi by a sum of smooth functions

P
i=1
k fi (Xi).

Our new statistical model (Eq. 5) is non-parametric and

hence less dependent on the assumptions or subjective

models employed to describe the influences on chemical

shifts from different structural factors. Thus, our algorithm

can derive a more accurate regression function from

training data to predict Ha chemical shifts.

Program description

HASH is implemented in Java and R. HASH calls the library

GAM (Hastie 2011) in the R package to implement the

generalized additive model and perform the regression

process. HASH runs in a minute for a typical medium-size

protein. For example, it takes HASH about 30 s to predict Ha

chemical shfits for a 197-residue protein on a desktop PC

computer with Intel Core 2 Duo processors and 8 GB of

physical memory. The source code of HASH can be freely

downloaded from our server after publication of this paper,

and can be redistributed and modified under the terms of

the GNU Lesser General Public License (Gnu 2002).

Results and discussion

Training the regression model

To evaluate the performance of a chemical shift prediction

algorithm, data must be separated into a training data set

and a testing data set. Typically, most of the data is used

for training the regression model, and a smaller set of the

data is used for testing. We used the combination of the

TALOS database (Cornilescu et al. 1999) and the SHIFTX2

database (Han et al. 2011) to train our generalized additive

model (Eq. 5). The TALOS database contains high-resolution

(B2.4 Å) X-ray crystal coordinates and corresponding

backbone chemical shifts of 186 proteins, extracted from

the PDB and the BMRB, respectively. The SHIFTX2 data-

base contains high-resolution (B2.1 Å) structural coordi-

nates and corresponding chemical shifts of 174 proteins,

most of which are monomeric and free of bound DNA,

RNA or other cofactors. For Gly residues, the mean

chemical shifts of the two alpha hydrogens were calculated

as their Ha chemical shifts. The chemical shifts of the first

and last residues in the proteins, and those residues with

missing backbone resonance assignments were excluded.

In total 12,116 residues with available backbone chemical

shifts were used as training data. Each residue was con-

sidered as a training data point. For all training data points,

their secondary chemical shifts were calculated using the

reference random coil shift table from Kohlhoff et al.

(2009). The corrections for the effects of different amino

110 J Biomol NMR (2013) 55:105–118
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acids (Kohlhoff et al. 2009) from the proceeding residues

were added to the secondary chemical shifts of nitrogen

atoms in the current residues. For each training data point,

the influences of hydrogen bonding, ring current and

backbone dihedral angles on chemical shifts were com-

puted, using the same methods described in (Pople 1956;

Neal et al. 2003; Kohlhoff et al. 2009). In addition to the

backbone dihedral angles of current residue i, we also

computed the torsion angles in its neighboring residues,

namely residues i - 1 and i ? 1. By doing this, we also

considered the effects from the nearest neighbors of the

current residues.

The set of chemical shifts extracted from the TALOS data-

base and the SHIFTX2 database, and the computed influences

on chemical shifts from different structural factors were then

used to train our generalized additive model. The fit between

predicted and experimental chemical shifts of Ha on training

data is shown in Fig. 3. We measured both RMSD and

Pearson correlation between predicted and experimental

chemical shifts. The RMSD between predicted and experi-

mental chemical shifts was computed using the equation,

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Pm
i¼1ðpi � eiÞ2

q
, where m is the total number

of data points, ei is the experimental chemical shift, and pi is

the corresponding predicted chemical shift. Pearson corre-

lation, denoted by r, measures the strength of linear depen-

dency between two variables. Figure 3A shows the scatter

plot of predicted versus experimental chemical shifts of Ha

for all training data points. The RMSD between predicted

and experimental chemical shifts is 0.23 ppm with Pearson

correlation r = 0.91. To minimize the impact on parameter

estimation from possible chemical shift outliers or mis-

assignments in training data, we classified those data points

with more than three standard deviations from the predicted

values as outliers, and removed them from training data. In

total, 226 outliers were removed from the original training

data. The scatter plot for the remaining training data points

(i.e., after removing outliers) is shown in Fig. 3B. The new

RMSD and Pearson correlation between predicted versus

experimental chemical shifts of Ha were improved to

0.20 ppm and r = 0.93, respectively.

Compared to SPARTA (Shen and Bax 2007), which was

trained on a similar database and had RMSD 0.27 ppm and

Pearson correlation r = 0.85 between predicted and exper-

imental chemical shifts of Ha, our approach achieved better

prediction accuracy. Most likely this is because our gen-

eralized additive model is less dependent on the assumptions

made in the empirical functions to compute the contributions

on chemical shifts from different structural impact factors. In

addition, our model incorporates the chemical shifts of

nearby backbone atoms (e.g., HN, Ca, Cb and C0 and N). To

investigate the relationships between chemical shifts of Ha

and nearby backbone atoms, we checked the correlations

(i.e., linear dependencies) between them. Figure 4 shows the

scatter plots and Pearson correlations between chemical

shifts of Ha and nearby backbone atoms. A certain level of

linear dependency has been observed between chemical

shifts of Ha versus Ca, and Ha versus Cb (Fig. 4A, B). In

particular, the Pearson correlation (r = - 0.72) between

the chemical shifts of Ha and Ca (Fig. 4A) indicates that

there exists a strong linear dependency between them. These

linear dependencies between chemical shifts of Ha and

nearby backbone atoms, which is indicative of local geom-

etry (e.g., secondary structure), can provide a reliable source

of information for predicting accurate Ha chemical shifts.

(A) All training data points
(B) After removing outliers (i.e., > 3

standard deviations)

RMSD = 0.23 ppm
r = 0.91

RMSD = 0.20 ppm
r = 0.93
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Fig. 3 The scatter plots of predicted versus experimental chemical shifts of Ha on training data. A Shows the scatter plot of all training data

points. B Shows the scatter plot after removing the outliers that deviate more than three standard deviations from the predicted chemical shifts
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(A) Alpha carbon vs. alpha hydrogen shifts (B) Beta carbon vs. alpha hydrogen shifts

(C) Carbonyl carbon vs. alphahy drogen shifts
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Fig. 4 The scatter plots of chemical shifts of Ha versus nearby backbone atoms
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Performance evaluation

To evaluate the performance of our algorithm, we designed

the computational experiments according to different pos-

sible combinations of input data (Table 1), which reflect

different application scenarios. In all tests, HASH used the

chemical shifts of nearby backbone atoms as input. We say

that two proteins are sequence homologues if they have

[40 % sequence identity. The same sequence identity

cutoff was used in SHIFTY? (Han et al. 2011) to identify the

sequence homologues. The first three tests represent the

main applications scenarios of HASH, in which only partial

or no structural information is available. Two additional

tests representing the application scenarios, in which

complete structural information is available, are also pre-

sented. In Test 1, we assume the existence of sequence

homologues but no structural information in chemical shift

prediction. Test 2 models the situation in which neither

sequence homologues nor structural coordinates are avail-

able, but the chemical shifts of nearby backbone atoms can

be assigned through conventional NMR triple-resonance

experiments. In Test 3, we model the situation in which

backbone structural coordinates can be obtained through

the RDC-based structure determination approaches (Wang

and Donald 2004; Wang et al. 2006; Zeng et al. 2009;

Tripathy et al. 2012; Donald and Martin 2009) or other

methods such as protein threading (Xu et al. 1998), but

side-chain conformations are not available.

For each test, we compared HASH with other programs in

the literature that can take the same input data of sequence

and structural information. For example, in Additional Test

1, we compared HASH to the only program in the literature

that can take both sequence homologues and structural

coordinates as input. In Additional Test 2, we compared

our program to several state-of-the-art structure-based

chemical shift prediction programs in the literature. In Test

1, we compared our program to the latest version of the

only program in the literature that can take only sequence

homologues as input.

In Tests 1–2 and Additional Tests 1–2, we used a

benchmark data set from (Han et al. 2011) as testing data,

which contains structural coordinates and corresponding

chemical shifts of 61 proteins extracted from the PDB and

the BMRB, respectively. These 61 proteins were not

included in training data for fitting the regression model in

Sect. ‘‘Training the regression model’’. Among these 61

proteins in the testing data set, 35 proteins have sequence

homologues in the chemical shift database RefDB (Zhang

et al. 2003). In Test 3, we tested both the X-ray backbone

structures and the NMR-derived backbone structures,

which were determined mainly from RDCs using the

recently-developed techniques in (Wang and Donald 2004;

Wang et al. 2006; Zeng et al. 2009; Yershova et al. 2011;

Tripathy et al. 2012; Donald and Martin 2009).

Tests with incomplete or missing structural information

In Test 1, we ran HASH on the primary sequence and the

chemical shifts of nearby backbone atoms. Our test showed

that HASH performed better than SHIFTY?, which is to our

knowledge the latest version of the only program in the

literature that takes only sequence homologues as input. In

particular, HASH predicts accurate Ha chemical shifts with

RMSD 0.012 ppm, which is better than the prediction

accuracy of SHIFTY? (i.e., RMSD 0.085 ppm). Our com-

parisons indicate that incorporating the obtainable reso-

nances of nearby backbone atoms in addition to sequence

homologue information can improve the accuracy of Ha

chemical shift prediction. Even a small improvement in

chemical shift prediction accuracy is important for NMR

structure determination. For example, a 10 % improvement

in the predicted chemical shifts (a mere 0.02 ppm RMSD)

has been shown to narrow the molecular fragment

replacement (MFR) search by a factor of 40 (Shen and Bax

Table 1 Design of computational experiments according to different possible combinations of input data

Test Sequence

homologues

Backbone

coordinates

Side-chain

coordinates

Chemical shifts

of nearby atoms

Programs compared

Test 1 U U SHIFTY?

Test 2 U SHIFTX, SPARTA, SPARTA?,

CAMSHIFT, SHIFTX2

Test 3 U U SHIFTX, SPARTA, SPARTA?,

CAMSHIFT, SHIFTX?

Additional Test 1 U U U U SHIFTX2

Additional Test 2 U U U SHIFTX, SPARTA, SPARTA?,

CAMSHIFT, SHIFTX?

Tests 1–3 represent the application scenarios in which only partial or no structural information is available. Additional Tests 1–2 represent the

application scenarios in which complete structural information is available. In Test 2, SHIFTX, SPARTA, SPARTA?, CAMSHIFT and SHIFTX2 cannot run

the chemical shift prediction process in the absence of sequence homologue and structural information, while HASH can perform this task
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2007). As discussed in the Introduction section, even with

high sequence similarity, two proteins can still display

different chemical shifts in certain regions (e.g., loop

regions in the bound and unbound states). On the other

hand, the chemical shifts of nearby backbone atoms can

provide accurate local environmental indicators to identify

the accurate Ha chemical shifts from the available chemical

shift database.

In Test 2, we predicted Ha chemical shifts using only the

chemical shifts of nearby backbone atoms. Compared to

previous chemical shift prediction programs, including

SHIFTX, SPARTA, SPARTA?, CAMSHIFT and SHIFTX2, which

cannot run the chemical shift prediction process in the

absence of sequence homologue and structural information,

HASH can still predict reasonably accurate Ha chemical

shifts, with RMSD 0.333 ppm and Pearson correlation

0.807.

In Test 3, we predicted Ha chemical shifts using back-

bone structural coordinates and the chemical shifts of

nearby backbone atoms. To model different application

scenarios, we tested both the X-ray backbone structures

and the NMR-derived backbone structures. In this test, all

the tested proteins were not included in the training data.

The X-ray backbone structures were from the same test

data as used in (Shen and Bax 2007), excluding one protein

that does not contain Ha chemical shifts. The NMR-derived

backbone structures were previously determined from

RDCs using the recently-developed techniques (Wang and

Donald 2004; Wang et al. 2006; Zeng et al. 2009; Tripathy

et al. 2012; Donald and Martin 2009). As summarized in

Tables 2 and 3, on average HASH outperforms all previous

structure-based chemical shift prediction programs,

including SHIFTX, SPARTA, SPARTA?, CAMSHIFT and SHIFTX?,

when only backbone structural coordinates are available. In

our training data (see Sect. ‘‘Training the regression

model’’), most of the high-resolution X-ray structures are

monomeric and free of bound DNA, RNA or other cofac-

tors. Here, our test data (Table 3) covers X-ray backbone

structures at different resolutions, including those com-

plexes with different ligands, such as RNA or other pro-

teins. As shown in Table 3, even for low resolution X-ray

backbone structures, HASH still achieves a decent perfor-

mance. The bound ligands perturb the local chemical

environment, which makes it difficult to predict accurate

chemical shifts. In general, chemical shift predictors

achieve a below-average performance for these low-reso-

lution structures, when the chemical shifts are perturbed by

the bound ligands. On other hand, HASH’s use of neigh-

boring chemical shifts can remedy this situation and

improve the chemical shift prediction, since both chemical

shifts of Ha and neighboring backbone atoms are correla-

tively perturbed by the changed local chemical environ-

ment caused by the ligand binding.

In summary, for all three main tests, which model dif-

ferent useful application scenarios in NMR structural

studies, HASH predicts accurate Ha chemical shifts that

agree well with experimental chemical shifts. Previous

chemical shift prediction approaches either require

sequence homologues or depend heavily on complete and

accurate structural coordinates to predict chemical shifts.

In practice, it can be challenging to experimentally deter-

mine accurate conformations for the flexible or disordered

loop regions or surface side-chains. As demonstrated in

Tests 1–3, previous approaches cannot run in the absence

of sequence homologues and structural coordinates, or

Table 2 RMSD results of Test 3, in which the input data includes the

RDC-defined backbone structures and the chemical shifts of nearby

backbone atoms

Program RDC-defined backbone

GB1 UBQ hSRI pol g UBZ FF2 Average

SHIFTX 0.495 0.433 0.447 0.382 0.466 0.445

SPARTA 0.375 0.378 0.300 0.285 0.337 0.335

SPARTA? 0.445 0.360 0.285 0.321 0.369 0.356

CAMSHIFT 0.574 0.492 0.529 0.405 0.455 0.491

SHIFTX? 0.503 0.388 0.332 0.300 0.413 0.387

HASH 0.341 0.313 0.271 0.333 0.276 0.307

Table 3 RMSD results of Test 3, in which the input data includes X-ray backbone structures and neighboring chemical shifts of Ha atoms

Program X-ray backbone

3CBS 1KQR 1MMS 2IHB 1KMI 1BDO 1IAR 1IGD Average

(2.00 Å)a (1.40 Å)a (2.57 Å)a (2.71 Å)a (2.90 Å)a (1.80 Å)a (2.30 Å)a (1.10 Å)a

SHIFTX 0.357 0.481 0.377 0.451 0.378 0.275 0.297 0.414 0.379

SPARTA 0.276 0.412 0.286 0.357 0.272 0.250 0.219 0.386 0.307

SPARTA? 0.390 0.377 0.287 0.340 0.312 0.318 0.219 0.413 0.332

CAMSHIFT 0.330 0.447 0.309 0.358 0.284 0.249 0.376 0.375 0.341

SHIFTX? 0.406 0.548 0.384 0.416 0.387 0.294 0.228 0.451 0.389

HASH 0.297 0.382 0.271 0.298 0.265 0.270 0.238 0.342 0.295

a Resolution of the X-ray structure
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perform poorly using only backbone structural coordinates.

Previous structure-based prediction programs generally

require accurate side-chain structural coordinates to cal-

culate the ring current effect from aromatic side-chain

conformations, which plays an important role in chemical

shift prediction using structural information alone (Wishart

2011). As demonstrated in Tables 2 and 3, most structure-

based prediction programs performed poorly using only

backbone structural coordinates. On the other hand, HASH

can remedy this problem by exploiting the chemical shifts

of nearby backbone atoms, and still yield decent prediction

accuracy even without using side-chain structural infor-

mation. Therefore, the chemical shifts of nearby backbone

atoms (including HN, Ca, Cb and C0 and N), which can be

measured relatively easily from conventional NMR

experiments, provide an alternative and reliable source of

information for predicting Ha chemical shifts.

Tests with complete structural information

In addition to three main tests (Sect. ‘‘Tests with incom-

plete or missing structural information’’, in which struc-

tural information was missing or incomplete), we

performed two additional tests in which complete structural

information is available. Both additional tests model the

potential applications in structure-based NMR assignment

(Langmead and Donald 2004; Langmead et al. 2004;

Xiong et al. 2008; Apaydin et al. 2008; Apaydin et al.

2010; Jang et al. 2011), in which known X-ray or NMR

structural templates are used to facilitate NMR assignment.

In the first additional test, which models the ideal situation

with both sequence homologues and structural coordinates

available, HASH can predict accurate Ha chemical shifts

with RMSD 0.113 ppm, which is slightly better than the

prediction result of SHIFTX2 [RMSD 0.123 ppm, as reported

in Table 1 of (Han et al. 2011)], which is to our knowledge

the only program in the literature that can take both

sequence homologues and structural coordinates as input.

Table 4 summarizes the results of the second additional

test, and the comparisons to five state-of-the-art structure-

based chemical shift prediction approaches, including

SHIFTX (Neal et al. 2003), SPARTA (Shen and Bax 2007),

SPARTA? (Shen and Bax 2010), CAMSHIFT (Kohlhoff et al.

2009) and SHIFTX? (Han et al. 2011). Using both complete

structural coordinates and the chemical shifts of nearby

backbone atoms, HASH achieves RMSD 0.213 ppm with

Pearson correlation 0.923 for the predicted Ha chemical

shifts of 61 proteins in the testing data set. The compari-

sons show that HASH performs slightly better than SHIFTX?,

and outperforms four other structure-based chemical shift

prediction approaches.

In summary, in both of these additional tests, which

probe the suitability of our algorithm for a wide range of

applications in structure-based NMR assignment, HASH

performs slightly better than the competing programs.

These additional test results show that chemical shifts of

nearby backbone atoms provide additional information that

can be used to enhance the prediction of Ha chemical

shifts.

Application in high-resolution structure determination

To test whether the predicted Ha chemical shifts can con-

tribute to high-resolution protein structure determination,

we combined HASH with a high-resolution structure deter-

mination protocol previously developed in our lab that does

not require TOCSY data. The protocol has been previously

described in (Zeng et al. 2010, 2011b; Donald and Martin

2009; Donald 2011), which only utilized backbone chem-

ical shift information of HN, N, Ca, Cb, C0 and Ha. In this

study, we took out Ha information and utilized HASH to

predict Ha chemical shifts. Then these predicted Ha

chemical shifts were used in NASCA (Zeng et al. 2010,

2011b) to prune ambiguous resonance assignments which

are more than 0.4 ppm away from the predicted values.

Next, the remaining possible Ha resonance assignments

together with other input data, specifically, the assigned

resonances of other backbone atoms, NOE cross peaks and

the RDC-defined backbone, were fed into NASCA to per-

form side-chain resonance and NOE assignments. NASCA

does not use any TOCSY data, but assigns side-chain

resonances and NOE distance restraints using the NOESY

data. After that, the computed NOE assignments were fed

into XPLOR-NIH (Schwieters et al. 2003) for structure cal-

culation. We tested this new structure determination pro-

tocol on five proteins, including the FF Domain 2 of human

transcription elongation factor CA150 (FF2), the B1

domain of Protein G (GB1), human ubiquitin, the ubiqui-

tin-binding zinc finger domain of the human Y-family

Table 4 Summary of the results of the second additional test, in

which the input data includes complete structural coordinates and the

chemical shifts of nearby backbone atoms

Program RMSD (ppm) Correlation

SHIFTX 0.253 0.888

SPARTA 0.334 0.801

SPARTA? 0.312 0.847

CAMSHIFT 0.247 0.893

SHIFTX? 0.222 0.914

HASH 0.213 0.923

The test was performed on a benchmark data set of 61 proteins from

(Han et al. 2011), whose structural coordinates and chemical shifts

were extracted from the PDB and the BMRB, respectively. The

prediction results of SHIFTX, SPARTA, SPARTA?, CAMSHIFT, and SHIFTX?

were adapted from Table 1 and Table S9 in (Han et al. 2011)
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DNA polymerase Eta (pol g UBZ), and the human Set2-

Rpb1 interacting domain (hSRI). The numbers of residues

in these proteins are 62, 39, 56, 76 and 112 for FF2, pol g
UBZ, GB1, ubiquitin and hSRI, respectively. All NMR

data were collected at Duke University, except the RDC

data of ubiquitin and GB1 which were downloaded from

the Protein Data Bank. The testing results of Ha resonance

assignments, side-chain resonance assignments, NOE

assignments and final calculated structures are summarized

in Table 5. An Ha resonance assignment is said to be

correct if it is within the error window (i.e., 0.04 ppm)

from the reference shift which was assigned manually. On

average, NASCA assigned more than 85% correct Ha

chemical shifts using the chemical shifts predicted by HASH

(Table 5). Compared to our previous tests in (Zeng et al.

2010, 2011b), in which the manually-assigned Ha chemical

Table 5 Results on NMR assignment and final structure calculation for five proteins, ubiquitin, hSRI, pol g UBZ, GB1 and FF2, using the Ha

chemical shifts predicted by HASH

Ubiquitin hSRI pol g UBZ GB1 FF2

(a)

Percentage of correct Ha resonance assignments (%) 90.3 81.8 93.8 77.6 84.5

(b)

Completeness (%) 90.5 88.2 88.1 99.3 92.2

Correctness (%) 80.2 75.8 87.0 78.9 74.1

(c)

Total # of assigned NOEs 1,588 3,367 898 1537 1,331

Percentage of correct NOE assignments (%) 80.1 84.6 87.4 86.1 80.8

(d)

Average RMSD to mean coordinates

SSE region (backbone, heavy) (Å) 0.33, 0.71 0.29, 0.78 0.17, 0.44 0.46, 0.71 0.33, 0.74

Ordered region (backbone, heavy) (Å) 0.41, 0.79 0.38, 0.82 0.19, 0.51 0.50, 0.72 0.37, 0.96

RMSD to reference structure

SSE region (backbone, heavy) (Å) 0.65, 1.80 1.70, 2.65 0.80, 1.46 1.26, 2.40 0.96, 1.94

Ordered region (backbone, heavy) (Å) 1.33, 2.64 1.84, 2.85 1.15, 2.02 1.54, 2.32 1.77, 3.15

(a) Summary of the Ha resonance assignment results computed by NASCA, using the Ha chemical shifts predicted by HASH. (b) Summary of side-

chain resonance assignment results, computed by NASCA using the Ha chemical shifts predicted by HASH. NASCA (Zeng et al. 2010, 2011b) does

not use any TOCSY data, but assigns the side-chain resonances using the NOESY data. (c) Summary of NOE assignment results, computed by

NASCA using the Ha chemical shifts predicted by HASH. (d) Summary of final calculated structures, using the Ha chemical shifts predicted by HASH

Table 6 Results on NMR assignment and final structure calculation for five proteins, ubiquitin, hSRI, pol g UBZ, GB1 and FF2, without Ha

chemical shifts

Ubiquitin hSRI Pol g UBZ GB1 FF2

(a)

Completeness (%) 74.1 72.9 78.1 81.0 77.9

Correctness (%) 74.4 67.7 89.6 79.8 73.1

(b)

Total # of assigned NOEs 672 2356 571 901 858

Percentage of correct NOE assignments (%) 78.5 79.0 84.6 84.0 77.1

(c)

Average RMSD to mean coordinates

SSE region (backbone, heavy) (Å) 0.61, 1.15 0.53, 1.09 1.31, 1.60 0.19, 0.48 0.52, 0.92

Ordered region (backbone, heavy) (Å) 1.01, 1.62 0.57, 1.09 1.53, 2.06 0.28, 0.57 0.74, 1.43

RMSD to reference structure

SSE region (backbone, heavy) (Å) 0.80, 1.56 3.67, 4.36 2.80, 3.34 1.59, 2.52 1.24, 2.30

Ordered region (backbone, heavy) (Å) 1.39, 2.12 3.55, 4.34 5.01, 5.94 1.67, 2.38 1.79, 3.08

Compare to Table 5. (a) Summary of side-chain resonance assignment results without Ha chemical shifts. (b) Summary of NOE assignment

results without Ha chemical shifts. (c) Summary of final calculated structures without Ha chemical shifts

116 J Biomol NMR (2013) 55:105–118

123



shifts were used in the high-resolution structure determi-

nation pipeline, the chemical shifts predicted by HASH still

led to decent performance on NMR assignment and final

structure calculation (Table 5).

The benefit of HASH is best appreciated for a large

protein scenario, in which Ha chemical shifts can be dif-

ficult to assign, but its NOE cross peaks can be observed in

NOESY spectra. We also performed the tests of the large

protein scenario for the aforementioned five proteins, in

which the Ha chemical shifts were removed from the input

data. The results of side-chain resonance assignment, NOE

assignment and final structure calculation in these tests are

shown in Table 6.

The benefit of HASH in the large protein scenario is seen

by comparing Table 6 to Table 5, in which HASH was

employed. As shown in Tables 5 and 6, with the Ha

chemical shifts predicted by HASH, the completeness of

side-chain resonance assignment computed by NASCA was

improved by about 10 %. In addition, prediction of the Ha

chemical shifts allowed NASCA to assign more NOEs. The

presence of a sufficient number of NOE distance restraints

can improve the high-resolution structure calculation pro-

cess. For the structure determination of hSRI using Ha

chemical shifts predicted by HASH, the final computed

structures deviated from the reference structure by\1.9 Å

backbone RMSD (see Table 5). This is much better than in

Table 6, and it shows the value of HASH. These test results

indicate that the Ha chemical shifts predicted by HASH play

an important role in the downstream side-chain resonance

assignment, NOE assignment and structure calculation

processes.

Conclusions

In this paper, we propose a novel machine learning algo-

rithm for Ha chemical shifts prediction by specifically

exploiting the experimentally-assigned resonances of

nearby backbone atoms. Our results show that the chemical

shifts of nearby backbone atoms can provide a reliable

source of information for predicting accurate Ha chemical

shifts. In addition, we showed that our chemical shift

prediction methodology can contribute to the side-chain

and NOE assignment processes using only NOESY data

(Zeng et al. 2010). In the future, we will generalize our

current approach to predict the chemical shifts of any other

backbone atoms that cannot be assigned experimentally

from NMR spectra, due to signal loss or peak overlap.
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