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Abstract. It has recently been observed that the node degrees of many
real-world large-scale networks, such as the Internet and the Web, fol-
low a power law distributions. Since the classical random graph models
are inadequate for explaining this phenomenon, alternative models have
been proposed. However, most of the existing models unrealistically as-
sume that each new joining node knows about all the existing nodes in
the network. We relax this assumption and propose a model in which
each new joining node uniformly and randomly chooses a sample set of
existing nodes, and then connects to some nodes in the sample set ac-
cording to the Preferential Attachment rule. We show that the power
law of degree distribution still holds true even if each new joining node
knows only a logarithmic number of existing nodes. Compared with the
existing models, our construction of scale-free networks based on partial
information seems to better approximate the evolution of certain com-
plex networks arising in the real world. Our results may also be applied
to the constructions of large-scale distributed systems such as peer-to-
peer networks, where the global information is generally unavailable for
any individual node in the network.

1 Introduction

It has been reported empirically by several researchers, e.g. in [2, 11, 17], that
both the Internet and the Web have a scale-free (i.e. size-independent) prop-
erty: The proportion Pk of nodes with degree k follows a power law distribution:
Pk ∼ k−r, where r ≤ 3. The well known models of random graphs introduced by
Erdős and Rényi [21] do not yield the power law distribution, and thus require
modifications for modelling and analyzing these large-scale networks. Barabási
and Albert [4] proposed the first scale-free network model referred to as the
BA model based on the preferential attachment (PA) rule. The BA model is a
dynamic stochastic process, i.e., a new node is added into the network at each
time step, and the probability that an existing old node gets a link from the new
node is proportional to its degree. Kumar et al. [19] independently presented a
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so-called copying model, motivated by the fact that a new web node is often gen-
erated by copying an old one and changing some of its old links. Aiello, Chung,
and Lu [1] introduced a scale-free model with a prescribed degree sequence, where
the probability of two nodes being connected is proportional to the product of
their expected degrees. Fabrikant, Koutsoupias, and Papadimitriou (FKP) [16]
considered the underlying geometric metric and proposed a “Highly Optimized
Tolerance” (HOT) framework to model the Internet network, i.e., the connec-
tion of the new node is constructed according to an adjustable neighborhood
consideration. The more details of degree distribution of the FKP model and its
extended model are studied in [5] and [6] respectively. A mathematical survey
on some scale-free models can be found in [7].

Many variations of the preferential attachment rule originated from the BA
model have been developed [9, 10, 14, 15, 12, 13]. Bollobás and Riordan refined the
BA model and make it more precise and theoretically analyzable [9, 10]. They
found that although the BA model is a dynamic stochastic process, it can be
regarded as a “LCD (Linearized Chord Diagrams)” [9], which is a static problem
and is easier to solve. A variation on the BA model, in which each node has an
“initial attractiveness” was introduced independently by two different groups,
Dorogovtsev et al. [14] and Drinea et al. [15]. A precise and rigorous analysis
of this model was given by Buckley and Osthus [12]. Cooper and Frieze [13]
presented a general model which considers more parameters, such as a variable
number of edges or nodes generated at each time step, a mixture of uniform and
PA selection, etc.

Although these scale-free models are consistent with the power law observa-
tion of real-world large-scale networks, unfortunately, most of existing models
assume that a newly added node knows all existing nodes, such as their node
degrees [4], or the Euclidean distance [16], or the hop distance to the network
center [6], etc. This is an unrealistic assumption with real-world large-scale net-
works such as the Internet or Web, as it requires a node to access and process
the extremely large amount of the global information. We will, instead, assume
that each node has access to only a small subset of logarithmic size of all the
existing nodes.

As in [4, 9], we also allow only one node to be added into the network at each
time step. The node uniformly and randomly chooses a sample set of existing
nodes, and then connects to some nodes in the sample set according to the PA
rule. Our results show that the power law of degree distribution still holds true
even if each new joining node knows only a logarithmic number of existing nodes.
Compared to the existing models, our construction of scale-free networks based
on partial information seems to better approximate the evolution of real-world
complex networks.

Our results may also be applied to the constructions of large-scale distributed
systems such as peer-to-peer networks, where the global information is generally
unavailable for any individual node in the network.

1.1 The Model and Notations

Let m denote an integer constant. Our construction is described as follows.



Step 1:
Start with Gm

1 , the graph with only one single node denoted by v1 with m self-

loops.

Step t:
A new node denoted by vt is added to the graph Gm

t−1 to form Gm
t . This new node

sends m edges to the existing nodes in Gm
t−1 according to the following rule: First

randomly and independently choose St−1 nodes from Gm
t−1 to form the sample set

Tt−1. Then node vt sends m edges to the nodes in the sample set Tt−1 according

to the preferential attachment rule, i.e., the probability that vt is connected to a

node u ∈ Tt−1 is

Pr[vt → u] =
degt−1(u)

∑

i∈Tt−1
degt−1(i)

,

where degt−1(x) denotes the degree of node x in the graph Gm
t−1.

We will show that to ensure the power law, it suffices to choose St = β lg t 1,
where β denotes a constant to be specified later. During the initial steps, it is
possible that St ≤ t. In this case, we choose all the existing nodes as the sample
set. Such initial choices will not affect our asymptotic results. We assume that
all edges in the graph are undirected. The directed variant of our model can be
easily obtained by applying a similar method as in [13].

Below are the notations that will be used in our analysis.

degt(x): The degree of node x in the graph Gm
t ;

Tt: The sample set chosen at the time step t;

St: The size of the sample set Tt, i.e., St = |Tt|;

Dt: The sum of the node degrees of all nodes in the sample set Tt, i.e.,
Dt =

∑

x∈Tt
degt(x);

dt(i): The number of nodes with degree i in the graph Gm
t ;

dt,s(i): The number of nodes with degree i in the sample set Tt;

d̄t(i): The expectation of dt(i);

d̄t,s(i): The expectation of dt,s(i);

Mt: The maximum degree of the graph Gm
t ;

Diam(Gm
t ): The diameter of the graph Gm

t ;

n: The size of the final graph Gm
n .

Throughout the paper, we will identify the node vx with the integer number
x to simplify the notation.

1.2 Our Main Results

Our main results are stated as follows:

1 The logarithmic symbol log is with the base 2, if not otherwise specified. Also, we
remove the ceiling or floor for simplicity throughout the paper.



Result 1 (Node Degree Distribution): Let m and β denote sufficiently

large constants, and let St = β lg t denote the size of the sample set in Step t.
Let dn(i) denote the number of nodes with degree i in Gm

n . Then whp

dn(i) =
cn

i(i + 1)(i + 2)
+ O(nθ),

where θ and c denote constants, and 0 < θ < 1.

Since each node has a degree of at least m, it is trivial to calculate dt(i) for
i ≤ m. In the subsequent analysis, when we talk about dt(i), we assume that
i > m.
Result 2 (Maximum Degree): Let Mn denote the maximum degree of the

graph Gm
n . Then for any constant ε ∈ (0, 1

2 ), whp

C2n
1
2
−ε ≤ Mn ≤ C1n

1
2
+ε,

where C1 and C2 denote constants.

Result 3 (Network Diameter): Let Diam(Gm
n ) denote the diameter of the

graph Gm
n . If m ≥ C3 lg n for a sufficiently large constant C3, then whp

Diam(Gm
n ) ≤ 2 lg n.

Although we only show that Diam(Gm
n ) = O(lg n) for the case m = Ω(lg n),

we conjecture that Diam(Gm
n ) = O(lg n) also holds for m = Θ(1).

The proof of Result 1 is relatively more challenging and its proof is given in
Section 2. Due to page limitation, the proofs of Result 2 and Result 3 are not
shown in this conference paper. The reader is referred to [22] for more details.

2 The Degree Distribution

The following is a roadmap for the proof of Result 1. Firstly, Section 2.1 gives
the expectation of Dt and shows that Dt concentrates around its expectation
by applying an extension of the martingale method [20]. Secondly, based on the
concentration result of Dt, a recurrence relation of d̄t(i) is given in Section 2.2.
We then inductively show that its solution follows a power law. In Section 2.3,
we argue that dt(i) concentrates around its expectation by applying a similar
analysis of the concentration of Dt.

2.1 Concentration of Dt

We first analyze the expectation of Dt.
Since the sample nodes in Tt are selected randomly and independently from

the current nodes in Gm
t , we can easily obtain the following lemma.

Lemma 1. E[dt,s(i)] = St

t E[dt(i)].



Based on the above lemma, the expectation of Dt can be easily obtained.

Lemma 2. E[Dt] = 2mSt.

Proof:

E[Dt] = E[
∑

i>0

dt,s(i)] =
∑

i>0

E[dt,s(i)] =
∑

i>0

St

t
E[dt(i)] (by Lemma 1)

=
St

t

∑

i>0

E[dt(i)] =
St

t
E[

∑

i>0

dt(i)] =
St

t
2mt = 2mSt.

Our analysis of the concentration result is mainly based on the following
probabilistic tool, which is an extension of the martingale method [3].

Lemma 3 (Martingale extension [20]). Let X = (X1, · · ·,Xn) be a family

of random variables with Xk taking value in a set Ak, and let f be a bounded

real-valued function defined on ΠAk = A1 × A2 × · · · × An. Let xi ∈ Ai for

each i = 1, · · ·, k − 1. For x ∈ Ak, let gk(x) = E[f(X)|Xk = x] − E[f(X)].
Let rk = sup{|gk(x) − gk(y)| : x, y ∈ Ak}, and R2(X) =

∑n
k=1 r2

k. Let r̂2 =
sup{R2(X)for all X ∈ ΠAk}. Then

Pr[|f(X) − E[f(X)]| ≥ c] ≤ 2 exp(−2c2/r̂2),

where c > 0

The following lemma gives a lower bound of Dt which is useful for our sub-
sequent analysis. Due to space limitation, its proof is referred to our full ver-
sion [22].

Lemma 4. Let m and β denote sufficiently large constants, and let St = β lg t as

defined earlier and let n0 = n5/6. Then there exists a constant δ where 0 < δ < 1,
such that

Pr
[

Dt ≥ (1 + δ)mSt

]

> 1 −
1

n2
,

for all t > n0.

Let Ni denote the set of neighbors of node i when it first enters the network
at step i. Then Ni is a tuple of nodes x = (x1, · · ·, xm) ∈ {1, · · ·, i − 1}m. Let
gτ,t(x) = E[Dt|N1, · · ·, Nτ−1, Nτ = x], where the sequence of N1, · · ·, Nτ−1 is
fixed and x ∈ {1, ···, τ−1}m, 1 ≤ τ ≤ t. Let rτ,t = sup

{

|gτ,t(x)−gτ,t(y)| : x,y ∈

{1, · · ·, τ − 1}m
}

. In order to bound rτ,t and apply the martingale extension in
Lemma 3 to analyze the concentration of Dt, we introduce the following node-
edge marking rule:

As in [10, 9], we regard one edge as two “half-ward” directed edges. At a time
step τ , we initially mark the nodes in the set Nτ as “τ -influenced nodes”, and
mark all the half edges connected to Nτ as “τ -influenced half edges”. During
the next time step τ + 1, if an outgoing half edge sent by the new node τ + 1
is connected to a τ -influenced node, it is also marked as a τ -influenced edge.



Applying the same rule for the constructions of the sequence of graphs Gm
τ+2, · ·

·, Gm
t , then the value of E[Dt|N1, ···, Nτ−1, Nτ = x]−E[Dt|N1, ···, Nτ−1, Nτ = y]

is upper bounded by the number of all τ -influenced edges that are attached to
the sample set Tt. Let ∆σ denote the expected number of τ -influenced edges in
the graph Gm

σ , then we have rτ,t ≤
St

t ∆t.
Based on the above observations, we have the following lemma.

Lemma 5. Define rτ,t and ∆τ as above. Let m and β denote sufficiently large

constants, and let St = β lg t. Let δ denote a constant such that 0 < δ < 1. Then,

rτ,t ≤

{

St

t ∆τ
n0

τ

(

t
n0

)
1

1+δ , when 1 ≤ τ ≤ n0;
St

t ∆τ

(

t
τ

)
1

1+δ , when n0 < τ ≤ t.

where n0 = n5/6.

Proof: Recall that ∆σ is the expected number of τ -influenced edges in the
graph Gm

σ . Let Yσ denote the expected number of new τ -influenced edges gen-
erated from Gm

σ during step σ + 1. Then by linearity of expectation, we have
∆σ+1 = ∆σ + Yσ.

Let eσ
i denote the number of nodes with i τ -influenced edges among Gm

σ ,
then ∆σ =

∑

i>0 i · eσ
i . So

Yσ ≤
∑

i>0

m · eσ
i · Sσ

σ · i

Dσ
=

mSσ

σDσ

∑

i>0

eσ
i · i =

mSσ∆σ

σDσ
.

We bound Yσ according to two different cases.
Case 1 n0 < σ < t: Let Eσ denote the event that Dσ ≥ (1 + δ)mSσ. From
Lemma 4, we have Pr[Eσ] ≥ 1 − 1

n2 . Let E =
⋂t

σ=τ Eσ, then the event E occurs
with probability at least 1 − 1

n . Thus we can assume that Dσ ≥ (1 + δ)mSσ for
all n0 < σ ≤ t in the following. Thus,

Yσ ≤
mSσ∆σ

σDσ
≤

∆σ

(1 + δ)σ

Case 2 τ < σ ≤ n0: It is obvious that Dσ ≥ mSσ. So we have

Yσ ≤
mSσ∆σ

σDσ
≤

∆σ

σ

Combining the above two cases, when 1 ≤ τ ≤ n0, we have

∆t ≤ ∆τ

n0
∏

σ=τ+1

σ + 1

σ

t
∏

σ=n0+1

(

1 +
1

(1 + δ)σ

)

≤ ∆τ
n0

τ

( t

n0

)
1

1+δ

By using the fact that 1 + ax ≤ (1 + xa) for x > −1 and a ≥ 1, we have
1 + 1

(1+δ)σ ≤ (1 + 1
σ )1/(1+δ). Thus, we have

∆t ≤ ∆τ

n0
∏

σ=τ+1

σ + 1

σ

t
∏

σ=n0+1

(

1 +
1

σ

)
1

1+δ ≤ ∆τ
n0

τ

( t

n0

)
1

1+δ



When n0 < τ < t, only case 1 applies, so we have

∆t ≤ ∆τ

t
∏

σ=τ+1

(

1 +
1

(1 + δ)σ

)

≤ ∆τ

t
∏

σ=τ+1

(

1 +
1

σ

)
1

1+δ ≤ ∆τ

( t

τ

)
1

1+δ

Since rτ,t ≤
St

t ∆t, we have

rτ,t ≤

{

St

t ∆τ
n0

τ

(

t
n0

)
1

1+δ , when 1 ≤ τ ≤ n0;
St

t ∆τ

(

t
τ

)
1

1+δ , when n0 < τ ≤ t.

Theorem 1. Let m and β denote sufficiently large constants, and let St = β lg t
as before. Let n1 = n

11
12 . Then there exists a constant 0 < ϕ < 1 such that

Pr[|Dt − 2mSt| ≥ mStt
ϕ−1] ≤

1

n2
,

for all t > n1.

Proof: Let R2
t =

∑t
τ=1(rτ,t)

2. From Lemma 5, we have

R2
t =

t
∑

τ=1

(rτ,t)
2 ≤

n0
∑

τ=1

(St

t
∆τ

n0

τ
(

t

n0
)

1
1+δ

)2
+

t
∑

τ=n0+1

(St

t
∆τ (

t

τ
)

1
1+δ

)2

=
(St

t
∆τ t

1
1+δ

)2(
n

2− 2
1+δ

0

n0
∑

τ=1

1

τ2
+

t
∑

τ=n0+1

1

τ2

)

= O
(

(
St

t
∆τ t

1
1+δ n

1− 1
1+δ

0 )2
)

Since node τ affects at most 2m degrees at the time step τ , ∆τ ≤ 2m. Hence,

R2
t = O

(

(St

t ∆τ t
1

1+δ n
1− 1

1+δ

0 )2
)

= O
(

(St

t mt
1

1+δ n
1− 1

1+δ

0 )2
)

.

So r̂2 = sup{R2
t } = O

(

(St

t mt
1

1+δ n
1− 1

1+δ

0 )2
)

. By Lemma 3, we have

Pr
[

|Dt − 2mSt| ≥
mSt

t
t

1
1+δ n

1− 1
1+δ

0 lg n
]

= exp
(

− Ω(lg2 n)
)

Since n1 = n
11
12 > n0 = n

5
6 , there exists a constant 0 < ϕ < 1 such that

Pr
[

|Dt − 2mSt| ≥ mStt
ϕ−1

]

≤
1

n2
,

for all t > n1

2.2 Power Law Distribution of d̄t(i)

Theorem 2. Let m and β denote sufficiently large constants, and let St = β lg t.
Then there exists a constant 0 < θ < 1 such that whp

d̄n(i) =
cn

i(i + 1)(i + 2)
+ O(nθ),

for a constant c.



Proof: By construction of our model (cf. Section 1.1), we have the following
relation:

E[dt+1(i)|G
m
t ] = dt(i) + mdt,s(i − 1)

i − 1

Dt
− mdt,s(i)

i

Dt
.

Taking the expectation on both sides, we have

E[dt+1(i)] = E[dt(i)] + m(i − 1)E
[dt,s(i − 1)

Dt

]

− miE
[dt,s(i)

Dt

]

. (1)

Let F denote the event that |Dt − 2mSt| < mStt
ϕ−1, then Pr[¬F ] ≤ n−2

for all t > n1 = n
11
12 according to Theorem 1. It is obvious that Dt ≥ i · dt,s(i),

hence

E
[dt,s(i)

Dt

]

= E
[dt,s(i)

Dt
|F

]

Pr[F ] + E
[dt,s(i)

Dt
|¬F

]

Pr[¬F ]

≤ E
[dt,s(i)

Dt
|F

]

Pr[F ] +
Pr[¬F ]

i
.

Let a = 2mSt and b = mStt
ϕ−1. In the event F , we have a− b ≤ Dt ≤ a+ b.

Thus, 1
Dt

≤ 1
a−b in this case. So

1

Dt

(a − b

a

)

≤
( 1

a − b

)(a − b

a

)

=
1

a

⇒
1

Dt
≤

1

a
+

b

a

1

Dt
=

1

2mSt
+

tϕ−1

2

1

Dt

Thus we have

E
[dt,s(i)

Dt

]

≤ E
[dt,s(i)

2mSt
+

dt,s(i)

Dt

tϕ−1

2

]

Pr[F ] +
Pr[¬F ]

i

≤
E[dt,s(i)]

2mSt
+

tϕ−1

2i
+

Pr[¬F ]

i
.

Since Pr[¬F ] ≤ n−2 for all t > n1 = n
11
12 , we have

E
[dt,s(i)

Dt

]

≤
E[dt,s(i)]

2mSt
+

tϕ−1

i
.

According to Lemma 1, E[dt,s(i)] = St

t E[dt(i)]. So if t > n1 = n
11
12 , we have

whp

E
[dt,s(i)

Dt

]

=
d̄t(i)

2mt
+ O

( tϕ−1

i

)

.

Similarly, we obtain

E
[dt,s(i − 1)

Dt

]

=
d̄t(i − 1)

2mt
+ O

( tϕ−1

i − 1

)

.

Thus, Eq. (1) can be converted into

d̄t+1(i) = d̄t(i) +
d̄t(i − 1)

2t
(i − 1) −

d̄t(i)

2t
i + O

(

tϕ−1
)

,



for all t > n1 = n
11
12 .

This formula is similar to the recurrence equation in [18]. Thus, by a similar
inductive analysis, we can get the following solution for all 1 ≤ t ≤ n:

d̄t(i) =
ct

i(i + 1)(i + 2)
+ O(nθ),

where c denotes a constant, and max{ϕ, 11
12} < θ < 1.

2.3 Concentration of dt(i)

Theorem 3. Let m and β denote sufficiently large constants, and let St = β lg t
for our model. Then there exists a constant 0 < ξ < 1 such that

Pr
[

|dn(i) − d̄n(i)| ≥ nξ
]

≤ n−2.

Proof: The proof can be obtained by applying a similar analysis of the con-
centration of Dt.

3 Concluding Remarks

We have proposed a new scale-free model for large-scale networks where a new
joining node connects to some nodes in a small sample set; the connections
follow the preferential attachment rule. We show that the power law of degree
distribution still holds true. Compared with the existing models, our construction
based on partial information can better approximate the evolution of large-scale
distributed systems arising in the real world. Our results may also be applied
to the constructions of peer-to-peer networks, where the global information is
generally unavailable for any individual node in the network.

We have also experimentally evaluated the distribution of node degree in our
model. Due to space limitation, the reader is referred to [22] for more details.
Our simulations show that, when |St| ≥ 5, the proportion Pk of nodes with de-
gree k follows a power law distribution: Pk v k−r, where r ≈ 3 denotes as the
slope of the log-log curve. Our experimental results indicate that our theoretical
result (Result 1) is a little conservative. We conjecture that when |St| = Ω(1),
the distribution will obey a power law distribution. The rigorous proof of this
conjecture remains open.
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