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Abstract 

In this paper, we model a realistic AGV system by a 
multi robots system with mesh layout. Based on certain 
reasonable assumptions, we propose an improved routing 
algorithm, and prove that it has a good time performance 
with high probability. 

1. Introduction 

Automated Guided Vehicles (or AGVs for short) have 
become an important option in material handling [1-7, 
9-11, 6].  In many applications, such as container 
terminals[1, 9-11], the service area is often arranged into 
rectangular blocks, which leads to a mesh-like path 
topology. Therefore, developing efficient algorithms for 
AGV routing on this topology has become an important 
research topic. 
 
There are many existing results about AGV [5]. However, 
relatively little is known about routing on the mesh 
topology. [2-3] gave the analysis of time and space 
complexities for some basic AGV routing operations on 
2D-mesh topology. The upper bounds of time and space 

complexities for AGV routing are )n( 2Θ and 

)n( 3Θ respectively, where n denotes the number of nodes 

in the path topology. However, the paper does not give the 
details of the routing algorithms and techniques to avoid 
congestion, conflicts, deadlocks, etc.  
 
[6-7] presented different methods to schedule and route 
simultaneously in an nn×  mesh-like path topology. In 

these papers, the routing process is formulated as a sorting 
problem. Although there are no conflicts during the 
permutation, it requires 3n steps of well-defined physical 

moves, which requires AGVs to travel extra distance and 
consume extra energy to finish the tasks. 
 
Actually an AGV system is also a multi robot system. 
There has been research done on the routing strategy in 
the multi robot system[12-15], but these solutions assume 
a small number of robots on the mesh layout—no more 

than )N(O  or )n(O  for an nnN ×=  mesh layout. 

However, since there are 2n  nodes in the mesh layout, it 

should be able to accommodate more AGVs/ robots. In 

[15], )
nlog

n
(O

2

 number of robots is considered, and a 

good routing algorithm is presented to finish all tasks in 

)n(O  steps with high probability. 

 
In this paper, we improve the routing algorithm of [15] 
and we show that using our routing algorithm, the 

permutation tasks can be finished in )n(O  steps with 

higher probability than that in [15]. 
 
The remainder of the paper is organized as follows. 
Section 2 describes the routing model. Section 3 gives the 
routing algorithm. In Section 4, we analyze the time 
performance of the routing algorithm. Finally, Section 5 
discusses possibilities of relaxing certain constraints and 
points out directions of future study. 

2. Routing model 

In our AGV system, there are in total nn×  blocks, 
namely n  blocks in each column and n  blocks in each 

row. Each block has the same size. Each block has one 
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Pick up-Drop off station (or P/D station for short), located 
at the upper right and upper top corner of the block. On 
the upper-left side, there is a vehicle park where all AGVs 
are stationed initially and to which they will return upon 
completion of all tasks. 
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Figure 1. Realistic mesh layout 
 
Although there are some important details for AGV 
routing, such as the size of the junction, the radius of turns, 
the length of the AGV, etc.[4-7], it is reasonable and 
realistic for us to simplify the mesh model for 
convenience of analysis and discussion. In the simplified 
mesh layout model, as shown in Figure 2, there are 
junctions of pathways. A junction and the associated 
neighboring station are collectively regarded as a node. 
Each node is assigned with the coordinates as its address 
or ID, where x and y represent respectively the row and 
column IDs. This mesh layout is modeled by a graph. The  
vertices of the graph represent junction nodes, and the 
bi-directional edges represent two paths between two 
adjacent junction nodes, and the length of each edge is a 
constant. 
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Figure 2. Simplified mesh routing model 

 

We organize the AGV movements into three phases. In 
the first phase, let AGVs set out from the park to their pick 
up stations. In the second phase, let AGVs pick up loads 
and travel to their destinations and drop-off loads. In the 
third phase, let AGVs return to the park from their 
drop-off stations. Because it is easy for us to dispatch the 
AGV moving without any conflict in the first phase and 
the third phase, we will focus only on the second phase 
when the loaded AGVs move on the mesh layout. In the 
following, a step of an AGV means that it moves from one 
node to one of its neighboring nodes.  
 
In the mesh topology, we assume that the number of 

AGVs, m , is bounded by )
nlog

n
(O

2

. Thus, in the 

following, we suppose that 
nlog

n
cm

2

m= . 

 
The movement pattern is a 1-1 partial permutation, which 
is defined as follows. 

}m||,11is,ZZZZ:|{ nnnnnn =−×→×=� × σσσσ , 

where )
nlog

n
(Om

2

= . 

At the same time, we assume that the communication 
mechanism among all AGVs allows each AGV to detect 
the AGVs which are one unit distance around it. As 
shown in Figure 3, the AGV in center can detect the 
AGVs in the "dot" points.  

 

Figure 3. Communication level 
 
As in [15], the mesh layout for routing is partitioned into 
imaginary squares. Each square consists of 

nlogcnlogc ×  nodes of the grids, as shown in Figure 

4 (a).  There are 
nlogc

n
 rows of squares and 

nlogc

n
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columns of squares. Each square is marked by the 
coordinates (i,j) as its address or ID, where i and j 
represent respectively the row and column. At the same 
time, we assume all AGVs in each square can only travel 
in the pre-specified cycle direction shown in Figure 4(b). 
The directions of any two neighboring cycles are different. 
The cycles are represented by L0, L1, L2,…, Lk, where Lk 
represents the boundary, and L1 represents the next 
internal cycle, …, Lk represents the innermost cycle in the 
square.   

clogn

clogn

n

n

L0

L1

L2

L3

 
(a).The partition of mesh layout   (b). Imaginary cycles in 

each square in imaginary squares 
Figure 4. Pre-specialization of the mesh layout. 

 
At the same time, we follow the formal definition of good 
partial permutations defined by [15].  
 
Definition A.1: For a permutation 

nnnn ZZZZ: ×→×σ , �∈ ×nnσ , if at most nlogCg  

AGVs are originated from (or destined to) every square, 
we call σ  a good partial permutation, where 

}6,cc12max{C1c3 m

2

g ≥≥− . 

 
Since in nn× mesh layout, a random �∈ ×nnσ is a good 

partial permutation with high probability 1
n

1
1

3
≈− , for 

large n, it is reasonable for us to assume that in our routing 
system, the permutation is a good partial permutation. Our 
routing algorithm is based on this assumption. In Section 
5, we will show how to deal with the routing problem if 
this assumption is relaxed. 
 
Based on the pre-specified squares in the mesh layout and 
the good partial permutation, we formally define the 
following notations.  
 

Definition (Job): A job is identified by an ordered pair 
J((PX,PY),(DX,DY)), where (PX,PY) represents the 
address of the pickup station, (DX,DY) represents the 
address of the drop-off station, and 

)DY,DX()PY,PX( ≠ . 

Definition (Or igin square job set): An origin square job 

set P
j)(i,S denoting a job set in which each job is originated 

from the square (i,j), i.e. 

}j)square(i,PY)(PX,|DY))(DX,PY),((PX,J{SP

j)(i, ∈=  

Note that, by our assumption, nlogC|S| g

P

j)(i, ≤ . 

Definition (Destination square job set): A destination 

square job set D

j)(i,S denoting a job set in which each job is 

destined  to the square (i,j), i.e. 

}j)square(i,DY)(DX,|DY))(DX,PY),((PX,J{SD

j)(i, ∈=  

Note that, by our assumption, nlogC|S| g

D

j)(i, ≤ . 

Definition (Square cycle): A square cycle L denoting  a 
cycle an AGV’s   job set in which each job is destined  to 
the square (i,j), i.e. 

}j)square(i,DY)(DX,|DY))(DX,PY),((PX,J{SD

j)(i, ∈=  

Note that, by our assumption, nlogC|S| g

D

j)(i, ≤ . 

 
Definition (AGV’s status): An AGV’s status denoting the 
position of the AGV in the mesh layout is defined by 

))y,x(,L),S,S((A yx , where )S,S( yx  is the AGV’s square 

ID, and )y,x( is the AGV’s position ID within the square 

)S,S( yx . L is the AGV’s cycle position in the square. 

 
Definition (Pr ior ity)[15]: The priority is that AGVs 
which continue circling on the same square boundary are 
preferred over AGVs that try to go into a neighboring 
square boundary” .   
 
For example, in the right side of Figure 5, if the AGV on 
node 7 wants to go to the boundary of the square on its 
right hand side, then AGV on node 5 has higher priority. 
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3. Routing algor ithm 

[15] proposed Square Algorithm, as illustrated in Figure 5, 
which consists of three phases: In the first phase, every 
robot tries to move from its origin to the boundary of the 
square, using the imaginary internal Hamiltonian cycle in 
the square containing its origin. In the second phase, using 
only nodes on the boundary of the square that contains its 
destination. In the third phase, every robot moves from 
the square’s boundary to the destination inside the square, 
also walking through the Hamiltonian cycle. 
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Figure 5. The square algorithm in [15] 

 
Our AGV routing algorithm also consists of three phases.  
The difference is that in the first and last phases, we use 
square cycles instead of Hamiltonian cycles. In the middle 
phase, we have more than one path to go, not only one 
specified way as in the square algorithm in [15]. 

 
Based on the same assumption of good partial 
permutation, our routing algorithm is given as follows. 
 
Suppose that an AGV’s status is ))y,x(,L),S,S((A yx , 

and its job is DY))(DX,PY),J((PX, . Square )S,S( '

y

'

x  is 

the neighboring square of )S,S( yx , then we know that 

1SS x

'

x ±=  or 1SS y

'

y ±= . 

 

The algorithm, divided into three phases, is given as 
follows. 
 
Phase 1. Move the AGVs from their origins to the 
square’s boundary. 

Repeat for nlogc 22  steps (in Section 4, we will prove 

that in the worst case, after nlogc 22  steps, all AGVs will 

finish their first phase). 
I f the AGV is on the boundary L0 
Then advance on the boundary in clockwise 
          direction 
Else if the AGV is on the cycle Li and there is no 
            AGV with higher priority on the cycle    
            Li-1,  
       Then it moves into the  Li-1 
        Else it advances on the cycle Li 
 
 
Phase 2.   Move the AGVs from their origin square 
boundaries to their destination square boundaries. 
  
Repeat at each step  
I f  )DY,DX()S,S( yx =  

Then it starts last phase 
Else I f )PXDXsgn(SS x

'

x −+=  and there is no 

            AGV with higher priority in )S,S( '

y

'

x  for   

            AGV A (where sgn(DX-PX)=1, if DX>PX;   
            otherwise, sgn(DX-PX)=0) 
        Then it moves into the square )S,S( '

y

'

x  

         Else it advances on the boundary of square 
                 )S,S( yx  

 
Phase 3. Move the AGVs from the boundary of the 
destination’s square to their destination. 

Repeat for nlogc 22  steps (in Section 4, we will prove 

that in worst case, after nlogc 22  steps, all AGVs will 

finish their last phase). 
I f the AGV reaches its destination )DY,DX(  

Then it enters the buffer and leaves the mesh 
Else if the AGV is on the cycle Li and there is no 
            AGV with higher priority on the cycle    
            Li+1 ,  
       Then it jumps to the  Li+1 
        Else it advances on the cycle Li 
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(b) 
Figure 6. Our routing algorithm.  

4. Analysis of time complexity 

We analyze the time performance of each phase in our 
routing algorithm.  
 
Claim 4.1: In the worst case, the first phase in our routing 

algorithm takes )n(logO 3  steps for all AGVs to complete 

their permutation operations. 
 
[Proof]: Since the directions of two neighboring cycles 
are different, the AGVs on one cycle can only “disturb”  
each AGV on another cycle once (“  disturb”  means an 
AGV--A blocks another one to come to the same cycle 
because of A has higher priority). Because 

nlogcnlogc4 g> , for the second cycle L1, which is close 

to the square boundary and the size of which is 

)2nlogc()2nlogc( −×− , in the worst case, an AGV on 

it will take )2nlogc(4 − steps to reach the boundary. 

Similarly, for the AGV on the next cycle L2, it will take 

)4nlogc(4 −  steps to reach the cycle L1, then it would 

take another )2nlogc(4 −  steps, in the worst case. We 

can analyze the similar cases for the other cycles. 
Therefore, we get the running time of the first phase in the 
worst case. 

nlogc

]24)4nlogc(4)2nlogc(4[...

)]4nlogc(4)2nlogc(4[)2nlogc(4T

33

1

≤
×+−+−++

−+−+−≤
 

�
 

 
Claim 4.2: In the worst case, the third phase in our 

routing algorithm takes )n(logO 3  steps. 

 
[Proof]: The proof is very similar to that of Claim 4.1 and 
is therefore omitted.                  

�
 

 
Claim 4.3: In the second phase of our routing algorithm, 

with high probability nlogc

n2

3
4

c )

n

1
1(

1 −
− , all AGVs will 

reach their destination square’s boundary in )n(O  steps. 

 
[Proof]: The proof uses an argument similar to that of 
[15]. The following version of Chernoff bound [8] is used 
in our proof. 

Chernoff Bound[8]  Let Rp,...,p,p n21 ∈  with 

1p0 i ≤≤ , for n,...,2,1i = . Let 
n

p...pp
p n21 +++=  

and npm= , and let n21 X,...,X,X  be independent 

Bernoulli random variables with ii p]X[obPr ≤ , for 

n,...,2,1i = , n21 X...XXS +++= . Then for m6r ≥ , 

r2]rS[obPr −≤≥ . 

 
We also need need the following lemma. 
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Lemma 4.3.1  After the first phase, with probability 

nlogc

n2

3
4

c )

n

1
1(

1 −
− , 

  1. during each of the first 
nlogc

n2  rounds, every AGV 

moves to the next square in its path,    
      and  
  2. during these rounds, at each step, every square has no 

more than nlogc2 1  AGVs, 

where 1c5c 1 +≥  and g1 c120c ≥ . 

[Proof of Lemma 4.3.1]:  
Firstly, let’s introduce the definitions of certain events 
also defined in [15]. 

=origE {at most lognCg  AGVs are outbound in every 

square}, 

=destE {at most lognCg  AGVs are inbound to arrive at  

every square}, 
and 

destorig0 EEE �=  ,  

where }cmax{6,12cC m

2

g ≥ . 

For 0i >∀  

=iA {at round i all outbound AGVs move to the next 

square in their path }, 

=iB {at end of round i there are at most  lognc1 AGVs 

in every square }, 

and }BA{E iii �= , where 1c5c 1 +≥  and g1 c120c ≥ . 

Since we assume the good partial permutation, 

1]E[obPr 0 = . 

In order to prove the lemma, we introduce the following 
claims. 

Claim 4.3.1: For every 
nlogc

n2
t1 ≤≤ , if � 1t

0i iE−
=  occurs, 

then tA also occurs. 

[Proof of Claim 4.3.1]:  
The proof is the same as that of [15]. 

�
 

Claim 4.3.2: For every 
nlogc

n2
t1 ≤≤ , 

�
1t
0i

3
4

cit
1

n

1
1]E|B[obPr −

=
−

−≥ . 

[Proof of Claim 4.3.2]: 
See Appendix A. 

 
�

 
 
Based on Claim 4.3.1 and Claim 4.3.2, we conclude that  

3
4

c
1t
0i it

1t
0i itt

1t
0i it

1

n

1
1]E|B[obPr

]E|BA[obPr]E|E[obPr

−

−
=

−
=

−
=

−≥=

=

�

�� �

 

Therefore, 
nlogc

n2
t1 ≤≤∀ we have  

)1]E[obPr()

n

1
1(

]E[obPr]E|E[obPr...

]E|E[obPr]E|E[obPr]E[obPr

0

t

3
4

c

001

2t

0i
i1t

1t

0i
it

t

0i
i

1
=−≥

×××

×≥

−

−

=
−

−

==

�

���

 

Substituting 
nlogc

n2
t =  into the inequality, we have 

nlogc

n2

3
4

c

nlogc

n2

0i
i )

n

1
1(]E[obPr

1 −=
−≥� . 

Thus, we get the proof of Lemma 4.3.1. 
�

 
 
 
According to Lemma 4.3.1, at each one of the first 

nlogc

n2
 rounds, all AGVs move to the next square during 
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their paths. Each path contain at most 
nlogc

n2
 squares, 

and each round needs nlogc4  steps, so we know that 

with probability nlogc

n2

3
4

c )
n

1
1(

1 −
− , the second phase takes 

)n(Onlogc4
nlogc

n2 =×  steps. 

Therefore, we get the proof of Claim 4.3 
�
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(a) In the square algorithm 
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right

 

(b) In our routing algorithm 

Figure 7. The squares of )j,i(

tD . The path marked by 

dashed line is the one for the job J((k,l),(h,g)). For a 

square )j,i(

tD)j,i( ∈ , t|jl||ik| =−+− . 

 

Claim 4.4: In our routing algorithm, with high probability, 

all AGVs will reach their destinations in )n(O  steps. 

[Proof]:  Based on Claim 4.1, Claim 4.2 and Claim 4.3, 

and since )n(O)n(logO 3 = , we can easily get the proof.  

�
 

5. Discussions and conclusions 

In this paper, we have analyzed a realistic AGV system 
with a mesh layout, and considered the case where the 

number of AGVs is bounded by )
nlog

n
(O

2

. Based on 

some pre-specified path of the mesh layout and the good 
partial permutation, we present an improved routing 
algorithm, and prove that with high probability, it can be 

done in )n(O steps. 

Our algorithm is an improvement over the results in [15]. 
In the second phase of the routing algorithm in [15], each 
robot can only travel in one special path to reach its 
destination. In our routing algorithm, every AGV has 
more paths to choose from than in the square algorithm, 
when it tries to move towards its destination. Intuitively, 
because we allow AGVs to move into any square that 
decreases the square distance to their destinations, it 
should have more chances to avoid potential conflicts, so 
it is easier to reach its destination. From the probability 
analysis, it has also been confirmed. 
   
We assume that the AGVs have good partial permutation. 
However, when this assumption is not satisfied, we can 
use a big Hamiltonian cycle in the whole mesh layout, 
then in the worst case, the permutations which are not 

good partial ones can be finished in )n(O 2  steps. 

 
Our routing algorithm relies on the minimal local 
communication mechanism. However, the 
communication level can be extended. Then there should 
exist a more efficient routing algorithm for finishing the 
permutation operation. 
 
We have assumed that the permutations are 1-1, and each 
AGV is only assigned to one job. These assumptions can 
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also be relaxed. When an AGV just finishes dropping off a 
box (or container, etc.) and picks up a new one, we can 
regard it a new AGV originating at that time moment 
(suppose that the assumption of good partial permutation 
is still satisfied. Therefore, removing this assumption 
would not add much difficulty to our analysis. 
 
In this paper, we only consider the time performance in 
the routing algorithm. But in our mesh routing algorithm, 
all AGVs should make many turns before they reach their 
destinations, thus, they consume more energy than some 
other greedy routing algorithms [5]. Therefore, it is 
important for us to consider the energy efficiency in the 
routing algorithm. 
 
There are still many open issues for future research. 
Firstly, how to extend the simplified routing model in 
which each block is not a square, but instead,  a rectangle. 
Secondly, we assumed that the buffer of each node can 
only accommodate one AGV, and there is no queue in the 
routing model. How to determine the size of the buffer 
and the queue, if the assumption is relaxed? Thirdly, in 
our study, we did not consider the case when some AGVs 
break down, or when the communication system is broken. 
These failures could lead to a serious problem of the 
whole system. Therefore, it is essential to consider 
fault-tolerant algorithms. 
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Appendix A: Proof of Claim 4.3.2 

 
[Proof]:   

From Claim 4.3.1, if � 1t
0i iE−

= , then tA  occurs, namely, all 

outbound AGVs which are on the boundary of the square 
at the beginning of round t, will leave the square during 
the round. So we only need to consider the AGVs entering 
the square at the t-th round. For this purpose, we consider 
the following events. 

=)j,i(

tB {at most  lognc1 AGVs are arriving into square 

(i,j) at round t }, 

then we know that )j,i(

tt BB �= . 

=)j,i(

tD { the set of all squares that are at a distance of t 

squares from (i,j)}, 

The squares of )j,i(

tD are shown in Figure 7 (b). 

We use the following Bernoulli variables. 
                  1    if the m-th AGV originating 

                        from l)(k, has j)(i, on its path 

=)j,i(

m),l,k(X  

                  0  otherwise (including the case 
                      in which less than m AGVs  

                      originate in l)(k, ), 

where j)(i,

tDl)(k, ∈ , and nlogcm g≤ (by the assumption of 

good partial permutations) 
 
In order to use the Chernoff bound, each variable must be 

independent. However, in our formula, )j,i(

m),l,k(X  is not 

independent of )j,i(

'm),'l,'k(X , for 'm),'l,'k(m),l,k( ≠ . Each of 

the four sets marked by different patterns in Figure 7 (b) is 
independent of the others, so we introduce the following 
independent events according to Figure 7 (b). 
 

}nlog
4

c
X{C 1

m,ki,D)l,k(
)j,i(

m),l,k(up
)j,i(

t
≤�= <∈  

}nlog
4

c
X{C 1

m,ki,D)l,k(
)j,i(

m),l,k(down
)j,i(

t
≤�= >∈  

}nlog
4

c
X{C 1

m,ki,jl,D)l,k(
)j,i(

m),l,k(right
)j,i(

t
≤�= =>∈  

}nlog
4

c
X{C 1

m,ki,jl,D)l,k(
)j,i(

m),l,k(leftt
)j,i(

t
≤�= =<∈  

Now we will calculate 

]E|C[obPr 1t
0i iup �

−
= , ]E|C[obPr 1t

0i idown �
−
= ,

]E|C[obPr 1t
0i ileft �

−
= , and 

]E|C[obPr 1t
0i iright �

−
= respectively, where C  denotes the 

complement of C.  

)1]E[obPr] (C[obPr2]E|C[obPr2

n11

]E|C[obPr

]E|E[obPr

]E|C[obPr

]E|E[obPr

)]E|E(C[obPr
]E|C[obPr

0up0up

0up

0

1t
1i i

0up

0

1t
1i i

0

1t
1i iup1t

0i iup

=×≤×≤

−
≤≤

=

−
=

−
=

−
=−

=

�

�

�

��
�

According to Figure 7 (b), we know that there are at least 

)nlogcnn( 2 − (for 2n ≥ ) nodes that can be the 

destinations of AGVs that originate in )l,k(  for the m-th 

AGV(all the nodes minus the nodes of the “up”  set). 
 
What interest us are the nodes that can be possible 
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destination nodes. According to Lemma A.1, the largest 

number of squares in )j,i(

tD is 
nlogc

n

2

5 × , and there are at 

most nlogc 22  destination nodes in every square. So 

there are at most nlogcn
2

5
nlogc

nlogc

n

2

5 22 =××  nodes 

that can be possible destination nodes. Therefore, we have 

≤]X[E )j,i(

m),l,k( n

nlogc5

nlogcnn

nlogcn
2

5

2
≤

−
 

 
Next, in order to use the Chernoff bound, we argue that 

� <∈ m,ki,D)l,k(
)j,i(

m),l,k(
)j,i(

t
X  is stochastically dominated by the 

sum � =c
nc

1j j

g

Y , where jY  are independent Bernoulli trials 

with success probability 
n

nlogc5
 (we sum to 

c

ncg  since 

there are totally 
c

nc
nlogc

nlogc

n g

g =×  nodes in the “up”  

set). 
Thus we have 

nlogc5
n

nlogc5

c

nc
]Y[E]X[E g

g
c

nc

1j jm,ki,D)l,k(
)j,i(

m),l,k(

g

)j,i(
t

==�≤� =<∈

 

By Chernoff bound we get for g1 c120c ≥  

4

c
4

nlogc
1

j

1
m,ki,D)l,k(

)j,i(

m),l,k(

1

1

)j,i(
t

n

1
2}

4

nlogc
Y{obPr

}
4

nlogc
X{obPr

≤≤≥�≤

≥�

−

<∈

 

Therefore, we have 

4

c

1t
0i iup 1

n

1
]E|C[obPr ≤−

=� . 

 
Since the “down”  set is symmetrical to the “up”  set, we 
have 

4

c

1t
0i idown 1

n

1
]E|C[obPr ≤−

=� . 

 Because there are at most nlogcg  AGVs originating in 

each square, and g1 c4c > , we have 

 

0}nlogcX{obPr

}
4

nlogc
X{obPr

gm,ki,jl,D)l,k(
)j,i(

m),l,k(

1
m,ki,jl,D)l,k(

)j,i(

m),l,k(

)j,i(
t

)j,i(
t

=≥�≤

≥�

=>∈

=>∈
 

So  0]E|C[obPr 1t
0i iright =−

=� . Similarly we get 

0]E|C[obPr 1t
0i ileft =−

=� . 

Now we continue to prove Claim 4.3.2. 

Since )CCCC(B leftrightdownup

)j,i(

t ���⊇ , we get 

1
4

c

4

c

1t
0i ileftrightdownup

1t
0i ileftrightdownup

1t
0i i

)j,i(

t

11

n

1
1

n

1
21

]E|CCCC[obPr1

]E|CCCC[obPr]E|B[obPr

−

−
=

−
=

−
=

−≥×−≥

−=

≥

����

�����

 
Thus, we have 

3
4

c

22

2

)j,i( 1
4

c
)j,i(

1t
0i i

)j,i(

t

1t
0i i

)j,i(

)j,i(

t

1t
0i i

)j,i(

)j,i(

t

1t
0i it

1t
0i it

11
4
1c

1

n

1
1

n

nlogc

n

1

n

1
1]E|B[prob1

]E|B[prob1

]E|B[obPr1

]E|B[obPr1]E|B[obPr

−

−

−
=

−
=

−
=

−
=

−
=

−≥−=

�−≥�−≥

−≥

−=

−=

−

�

��

��

��

 

 
 Therefore we complete the proof of Claim 4.3.2.  

�
 

Lemma A.1: Consider a mesh with PP×  number of 
squares. For a given squares (i,j), there are at most  

possible P
2

5
 squares that are the destinations of the 

AGVs that originate from square  which is in )j,i(

tD  and 

have the square (i,j) on their paths. 
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[Proof]: When (i,j) is the center of the mesh, we have the 

maximum of the possible destination, where 
2

P
t = . For 

convenience, we set (i,j) to be the (0,0) point of the 
coordinates. For a given square (k,l) in )j,i(

tD , and any 

square (h,g) is a square that has the AGVs that originate 
from square (k,l) and have square (i,j) on their paths, as 

shown in Figure 7 (b), there are totally 
!l!k

)!lk(
S1

+=  

square paths from (k,l) to (i,j), and  totally 

!g!h

)!gh(
S2

+= square paths from (i,j) to (h,g). At the same 

time, there are totally 
)!gl()!kh(

)!ghlk(
S

++
+++=  paths from 

(i,j) to (h,g). 

The probability, of which (h,g) can be the square 
originating and having the square (i,j) on its path, is given 
as follows. 

 

=×=
S

SS
Pr 21)g,h(

)1gh)...(1ghlk)(ghlk(

)1l)...(1gl)(gl()1k)...(1hk)(hk(

++−++++++
+−++×+−++

 

where 
2

P
lk ≤+ and 

2

P
g,h0 ≤≤ . 

When h or g increases, Pr decreases. Suppose that there 
are at most S possible squares that satisfies the 
requirement, we have 

�≤
==

2
P

0gh

)g,h(PrPS#  

For )0x(xgh >== , we have  

3x

)x,x(

x

1

4

2
Pr <≤ . 

Therefore, we have  

P
2

5
)

P

2

2

1
(PP2dx

x

1
PP2

)
x

1
2(P)Pr2(PS#

2
2

P

1 3

2
P

2x
3

2
P

2gh

)g,h(

≤−� +≤+≤

�+≤�+≤
===

 

�
 


