
 1

An AGV-Routing Algor ithm in the Mesh Topology with

Random Par tial Permutation

Zeng Jianyang, Hsu Wen-Jing and Vee Voon Yee

Centre for Advanced Information Systems, School of Computer Engineering
Nanyang Technological University, Singapore 639798

{ pg03858494, hsu, ASVYVEE} @ntu.edu.sg

Abstract

In this paper, we model a realistic AGV system by a
multi robots system with mesh layout. Based on certain
reasonable assumptions, we propose an improved routing
algorithm, and prove that it has a good time performance
with high probability.

1. Introduction

Automated Guided Vehicles (or AGVs for short) have
become an important option in material handling [1-7,
9-11, 6]. In many applications, such as container
terminals[1, 9-11], the service area is often arranged into
rectangular blocks, which leads to a mesh-like path
topology. Therefore, developing efficient algorithms for
AGV routing on this topology has become an important
research topic.

There are many existing results about AGV [5]. However,
relatively little is known about routing on the mesh
topology. [2-3] gave the analysis of time and space
complexities for some basic AGV routing operations on
2D-mesh topology. The upper bounds of time and space

complexities for AGV routing are)n(2Θ and

)n(3Θ respectively, where n denotes the number of nodes

in the path topology. However, the paper does not give the
details of the routing algorithms and techniques to avoid
congestion, conflicts, deadlocks, etc.

[6-7] presented different methods to schedule and route
simultaneously in an nn× mesh-like path topology. In

these papers, the routing process is formulated as a sorting
problem. Although there are no conflicts during the
permutation, it requires 3n steps of well-defined physical

moves, which requires AGVs to travel extra distance and
consume extra energy to finish the tasks.

Actually an AGV system is also a multi robot system.
There has been research done on the routing strategy in
the multi robot system[12-15], but these solutions assume
a small number of robots on the mesh layout—no more

than)N(O or)n(O for an nnN ×= mesh layout.

However, since there are 2n nodes in the mesh layout, it

should be able to accommodate more AGVs/ robots. In

[15],)
nlog

n
(O

2

 number of robots is considered, and a

good routing algorithm is presented to finish all tasks in

)n(O steps with high probability.

In this paper, we improve the routing algorithm of [15]
and we show that using our routing algorithm, the

permutation tasks can be finished in)n(O steps with

higher probability than that in [15].

The remainder of the paper is organized as follows.
Section 2 describes the routing model. Section 3 gives the
routing algorithm. In Section 4, we analyze the time
performance of the routing algorithm. Finally, Section 5
discusses possibilities of relaxing certain constraints and
points out directions of future study.

2. Routing model

In our AGV system, there are in total nn× blocks,
namely n blocks in each column and n blocks in each

row. Each block has the same size. Each block has one

 2

Pick up-Drop off station (or P/D station for short), located
at the upper right and upper top corner of the block. On
the upper-left side, there is a vehicle park where all AGVs
are stationed initially and to which they will return upon
completion of all tasks.

� � � �� � � � �

� 	�
 �

��� � � � � � �

� �

� �

��������������������

��������������������

� � � �
�

�

�! !"

Figure 1. Realistic mesh layout

Although there are some important details for AGV
routing, such as the size of the junction, the radius of turns,
the length of the AGV, etc.[4-7], it is reasonable and
realistic for us to simplify the mesh model for
convenience of analysis and discussion. In the simplified
mesh layout model, as shown in Figure 2, there are
junctions of pathways. A junction and the associated
neighboring station are collectively regarded as a node.
Each node is assigned with the coordinates as its address
or ID, where x and y represent respectively the row and
column IDs. This mesh layout is modeled by a graph. The
vertices of the graph represent junction nodes, and the
bi-directional edges represent two paths between two
adjacent junction nodes, and the length of each edge is a
constant.

#%$%& ')(* +!, -

.

/

Figure 2. Simplified mesh routing model

We organize the AGV movements into three phases. In
the first phase, let AGVs set out from the park to their pick
up stations. In the second phase, let AGVs pick up loads
and travel to their destinations and drop-off loads. In the
third phase, let AGVs return to the park from their
drop-off stations. Because it is easy for us to dispatch the
AGV moving without any conflict in the first phase and
the third phase, we will focus only on the second phase
when the loaded AGVs move on the mesh layout. In the
following, a step of an AGV means that it moves from one
node to one of its neighboring nodes.

In the mesh topology, we assume that the number of

AGVs, m , is bounded by)
nlog

n
(O

2

. Thus, in the

following, we suppose that
nlog

n
cm

2

m= .

The movement pattern is a 1-1 partial permutation, which
is defined as follows.

}m||,11is,ZZZZ:|{ nnnnnn =−×→×=� × σσσσ ,

where)
nlog

n
(Om

2

= .

At the same time, we assume that the communication
mechanism among all AGVs allows each AGV to detect
the AGVs which are one unit distance around it. As
shown in Figure 3, the AGV in center can detect the
AGVs in the "dot" points.

Figure 3. Communication level

As in [15], the mesh layout for routing is partitioned into
imaginary squares. Each square consists of

nlogcnlogc × nodes of the grids, as shown in Figure

4 (a). There are
nlogc

n
 rows of squares and

nlogc

n

 3

columns of squares. Each square is marked by the
coordinates (i,j) as its address or ID, where i and j
represent respectively the row and column. At the same
time, we assume all AGVs in each square can only travel
in the pre-specified cycle direction shown in Figure 4(b).
The directions of any two neighboring cycles are different.
The cycles are represented by L0, L1, L2,…, Lk, where Lk
represents the boundary, and L1 represents the next
internal cycle, …, Lk represents the innermost cycle in the
square.

clogn

clogn

n

n

L0

L1

L2

L3

(a).The partition of mesh layout (b). Imaginary cycles in

each square in imaginary squares
Figure 4. Pre-specialization of the mesh layout.

At the same time, we follow the formal definition of good
partial permutations defined by [15].

Definition A.1: For a permutation

nnnn ZZZZ: ×→×σ , �∈ ×nnσ , if at most nlogCg

AGVs are originated from (or destined to) every square,
we call σ a good partial permutation, where

}6,cc12max{C1c3 m

2

g ≥≥− .

Since in nn× mesh layout, a random �∈ ×nnσ is a good

partial permutation with high probability 1
n

1
1

3
≈− , for

large n, it is reasonable for us to assume that in our routing
system, the permutation is a good partial permutation. Our
routing algorithm is based on this assumption. In Section
5, we will show how to deal with the routing problem if
this assumption is relaxed.

Based on the pre-specified squares in the mesh layout and
the good partial permutation, we formally define the
following notations.

Definition (Job): A job is identified by an ordered pair
J((PX,PY),(DX,DY)), where (PX,PY) represents the
address of the pickup station, (DX,DY) represents the
address of the drop-off station, and

)DY,DX()PY,PX(≠ .

Definition (Or igin square job set): An origin square job

set P
j)(i,S denoting a job set in which each job is originated

from the square (i,j), i.e.

}j)square(i,PY)(PX,|DY))(DX,PY),((PX,J{SP

j)(i, ∈=

Note that, by our assumption, nlogC|S| g

P

j)(i, ≤ .

Definition (Destination square job set): A destination

square job set D

j)(i,S denoting a job set in which each job is

destined to the square (i,j), i.e.

}j)square(i,DY)(DX,|DY))(DX,PY),((PX,J{SD

j)(i, ∈=

Note that, by our assumption, nlogC|S| g

D

j)(i, ≤ .

Definition (Square cycle): A square cycle L denoting a
cycle an AGV’s job set in which each job is destined to
the square (i,j), i.e.

}j)square(i,DY)(DX,|DY))(DX,PY),((PX,J{SD

j)(i, ∈=

Note that, by our assumption, nlogC|S| g

D

j)(i, ≤ .

Definition (AGV’s status): An AGV’s status denoting the
position of the AGV in the mesh layout is defined by

))y,x(,L),S,S((A yx , where)S,S(yx is the AGV’s square

ID, and)y,x(is the AGV’s position ID within the square

)S,S(yx . L is the AGV’s cycle position in the square.

Definition (Pr ior ity)[15]: The priority is that AGVs
which continue circling on the same square boundary are
preferred over AGVs that try to go into a neighboring
square boundary” .

For example, in the right side of Figure 5, if the AGV on
node 7 wants to go to the boundary of the square on its
right hand side, then AGV on node 5 has higher priority.

 4

3. Routing algor ithm

[15] proposed Square Algorithm, as illustrated in Figure 5,
which consists of three phases: In the first phase, every
robot tries to move from its origin to the boundary of the
square, using the imaginary internal Hamiltonian cycle in
the square containing its origin. In the second phase, using
only nodes on the boundary of the square that contains its
destination. In the third phase, every robot moves from
the square’s boundary to the destination inside the square,
also walking through the Hamiltonian cycle.

1

2

1

2

7

5

6

8

3

4

Figure 5. The square algorithm in [15]

Our AGV routing algorithm also consists of three phases.
The difference is that in the first and last phases, we use
square cycles instead of Hamiltonian cycles. In the middle
phase, we have more than one path to go, not only one
specified way as in the square algorithm in [15].

Based on the same assumption of good partial
permutation, our routing algorithm is given as follows.

Suppose that an AGV’s status is))y,x(,L),S,S((A yx ,

and its job is DY))(DX,PY),J((PX, . Square)S,S('

y

'

x is

the neighboring square of)S,S(yx , then we know that

1SS x

'

x ±= or 1SS y

'

y ±= .

The algorithm, divided into three phases, is given as
follows.

Phase 1. Move the AGVs from their origins to the
square’s boundary.

Repeat for nlogc 22 steps (in Section 4, we will prove

that in the worst case, after nlogc 22 steps, all AGVs will

finish their first phase).
I f the AGV is on the boundary L0
Then advance on the boundary in clockwise
 direction
Else if the AGV is on the cycle Li and there is no
 AGV with higher priority on the cycle
 Li-1,
 Then it moves into the Li-1
 Else it advances on the cycle Li

Phase 2. Move the AGVs from their origin square
boundaries to their destination square boundaries.

Repeat at each step
I f)DY,DX()S,S(yx =

Then it starts last phase
Else I f)PXDXsgn(SS x

'

x −+= and there is no

 AGV with higher priority in)S,S('

y

'

x for

 AGV A (where sgn(DX-PX)=1, if DX>PX;
 otherwise, sgn(DX-PX)=0)
 Then it moves into the square)S,S('

y

'

x

 Else it advances on the boundary of square
)S,S(yx

Phase 3. Move the AGVs from the boundary of the
destination’s square to their destination.

Repeat for nlogc 22 steps (in Section 4, we will prove

that in worst case, after nlogc 22 steps, all AGVs will

finish their last phase).
I f the AGV reaches its destination)DY,DX(

Then it enters the buffer and leaves the mesh
Else if the AGV is on the cycle Li and there is no
 AGV with higher priority on the cycle
 Li+1 ,
 Then it jumps to the Li+1
 Else it advances on the cycle Li

 5

1

2

(a)

�

�

�

�

�

�

�

�

� 	

�
�

� �

� �

(b)
Figure 6. Our routing algorithm.

4. Analysis of time complexity

We analyze the time performance of each phase in our
routing algorithm.

Claim 4.1: In the worst case, the first phase in our routing

algorithm takes)n(logO 3 steps for all AGVs to complete

their permutation operations.

[Proof]: Since the directions of two neighboring cycles
are different, the AGVs on one cycle can only “disturb”
each AGV on another cycle once (“ disturb” means an
AGV--A blocks another one to come to the same cycle
because of A has higher priority). Because

nlogcnlogc4 g> , for the second cycle L1, which is close

to the square boundary and the size of which is

)2nlogc()2nlogc(−×− , in the worst case, an AGV on

it will take)2nlogc(4 − steps to reach the boundary.

Similarly, for the AGV on the next cycle L2, it will take

)4nlogc(4 − steps to reach the cycle L1, then it would

take another)2nlogc(4 − steps, in the worst case. We

can analyze the similar cases for the other cycles.
Therefore, we get the running time of the first phase in the
worst case.

nlogc

]24)4nlogc(4)2nlogc(4[...

)]4nlogc(4)2nlogc(4[)2nlogc(4T

33

1

≤
×+−+−++

−+−+−≤

�

Claim 4.2: In the worst case, the third phase in our

routing algorithm takes)n(logO 3 steps.

[Proof]: The proof is very similar to that of Claim 4.1 and
is therefore omitted.

�

Claim 4.3: In the second phase of our routing algorithm,

with high probability nlogc

n2

3
4

c)

n

1
1(

1 −
− , all AGVs will

reach their destination square’s boundary in)n(O steps.

[Proof]: The proof uses an argument similar to that of
[15]. The following version of Chernoff bound [8] is used
in our proof.

Chernoff Bound[8] Let Rp,...,p,p n21 ∈ with

1p0 i ≤≤ , for n,...,2,1i = . Let
n

p...pp
p n21 +++=

and npm= , and let n21 X,...,X,X be independent

Bernoulli random variables with ii p]X[obPr ≤ , for

n,...,2,1i = , n21 X...XXS +++= . Then for m6r ≥ ,

r2]rS[obPr −≤≥ .

We also need need the following lemma.

 6

Lemma 4.3.1 After the first phase, with probability

nlogc

n2

3
4

c)

n

1
1(

1 −
− ,

 1. during each of the first
nlogc

n2 rounds, every AGV

moves to the next square in its path,
 and
 2. during these rounds, at each step, every square has no

more than nlogc2 1 AGVs,

where 1c5c 1 +≥ and g1 c120c ≥ .

[Proof of Lemma 4.3.1]:
Firstly, let’s introduce the definitions of certain events
also defined in [15].

=origE {at most lognCg AGVs are outbound in every

square},

=destE {at most lognCg AGVs are inbound to arrive at

every square},
and

destorig0 EEE �= ,

where }cmax{6,12cC m

2

g ≥ .

For 0i >∀

=iA {at round i all outbound AGVs move to the next

square in their path },

=iB {at end of round i there are at most lognc1 AGVs

in every square },

and }BA{E iii �= , where 1c5c 1 +≥ and g1 c120c ≥ .

Since we assume the good partial permutation,

1]E[obPr 0 = .

In order to prove the lemma, we introduce the following
claims.

Claim 4.3.1: For every
nlogc

n2
t1 ≤≤ , if � 1t

0i iE−
= occurs,

then tA also occurs.

[Proof of Claim 4.3.1]:
The proof is the same as that of [15].

�

Claim 4.3.2: For every
nlogc

n2
t1 ≤≤ ,

�
1t
0i

3
4

cit
1

n

1
1]E|B[obPr −

=
−

−≥ .

[Proof of Claim 4.3.2]:
See Appendix A.

�

Based on Claim 4.3.1 and Claim 4.3.2, we conclude that

3
4

c
1t
0i it

1t
0i itt

1t
0i it

1

n

1
1]E|B[obPr

]E|BA[obPr]E|E[obPr

−

−
=

−
=

−
=

−≥=

=

�

�� �

Therefore,
nlogc

n2
t1 ≤≤∀ we have

)1]E[obPr()

n

1
1(

]E[obPr]E|E[obPr...

]E|E[obPr]E|E[obPr]E[obPr

0

t

3
4

c

001

2t

0i
i1t

1t

0i
it

t

0i
i

1
=−≥

×××

×≥

−

−

=
−

−

==

�

���

Substituting
nlogc

n2
t = into the inequality, we have

nlogc

n2

3
4

c

nlogc

n2

0i
i)

n

1
1(]E[obPr

1 −=
−≥� .

Thus, we get the proof of Lemma 4.3.1.
�

According to Lemma 4.3.1, at each one of the first

nlogc

n2
 rounds, all AGVs move to the next square during

 7

their paths. Each path contain at most
nlogc

n2
 squares,

and each round needs nlogc4 steps, so we know that

with probability nlogc

n2

3
4

c)
n

1
1(

1 −
− , the second phase takes

)n(Onlogc4
nlogc

n2 =× steps.

Therefore, we get the proof of Claim 4.3
�

t

(i,j)

(k,l)

(h,g)

(a) In the square algorithm

t

(i,j)

(k,l)

(h,g)

up

down

left

right

(b) In our routing algorithm

Figure 7. The squares of)j,i(

tD . The path marked by

dashed line is the one for the job J((k,l),(h,g)). For a

square)j,i(

tD)j,i(∈ , t|jl||ik| =−+− .

Claim 4.4: In our routing algorithm, with high probability,

all AGVs will reach their destinations in)n(O steps.

[Proof]: Based on Claim 4.1, Claim 4.2 and Claim 4.3,

and since)n(O)n(logO 3 = , we can easily get the proof.

�

5. Discussions and conclusions

In this paper, we have analyzed a realistic AGV system
with a mesh layout, and considered the case where the

number of AGVs is bounded by)
nlog

n
(O

2

. Based on

some pre-specified path of the mesh layout and the good
partial permutation, we present an improved routing
algorithm, and prove that with high probability, it can be

done in)n(O steps.

Our algorithm is an improvement over the results in [15].
In the second phase of the routing algorithm in [15], each
robot can only travel in one special path to reach its
destination. In our routing algorithm, every AGV has
more paths to choose from than in the square algorithm,
when it tries to move towards its destination. Intuitively,
because we allow AGVs to move into any square that
decreases the square distance to their destinations, it
should have more chances to avoid potential conflicts, so
it is easier to reach its destination. From the probability
analysis, it has also been confirmed.

We assume that the AGVs have good partial permutation.
However, when this assumption is not satisfied, we can
use a big Hamiltonian cycle in the whole mesh layout,
then in the worst case, the permutations which are not

good partial ones can be finished in)n(O 2 steps.

Our routing algorithm relies on the minimal local
communication mechanism. However, the
communication level can be extended. Then there should
exist a more efficient routing algorithm for finishing the
permutation operation.

We have assumed that the permutations are 1-1, and each
AGV is only assigned to one job. These assumptions can

 8

also be relaxed. When an AGV just finishes dropping off a
box (or container, etc.) and picks up a new one, we can
regard it a new AGV originating at that time moment
(suppose that the assumption of good partial permutation
is still satisfied. Therefore, removing this assumption
would not add much difficulty to our analysis.

In this paper, we only consider the time performance in
the routing algorithm. But in our mesh routing algorithm,
all AGVs should make many turns before they reach their
destinations, thus, they consume more energy than some
other greedy routing algorithms [5]. Therefore, it is
important for us to consider the energy efficiency in the
routing algorithm.

There are still many open issues for future research.
Firstly, how to extend the simplified routing model in
which each block is not a square, but instead, a rectangle.
Secondly, we assumed that the buffer of each node can
only accommodate one AGV, and there is no queue in the
routing model. How to determine the size of the buffer
and the queue, if the assumption is relaxed? Thirdly, in
our study, we did not consider the case when some AGVs
break down, or when the communication system is broken.
These failures could lead to a serious problem of the
whole system. Therefore, it is essential to consider
fault-tolerant algorithms.

Acknowledgment

We acknowledge the Maritime and Port Authority,
A*STAR and Nanyang Technological University, all of
Singapore, for their support of the research project.

References

[1] Evers, J. J. M. and S. A. J. Koppers. Automatic
guided vehicle traffic control at a container
terminal. Transportation Research Part A,
30(1):21-34,1996.

[2] HSU, W.-J. and HUANG, S.-Y., 1994, Route
planning of automated guided vehicles.
Proceedings of Intelligent Vehicles, Paris,
pp.479-485.

[3] Huang, S.-Y. and W.-J. Hsu. Routing automated

guided vehicles on mesh like topologies. In
Proceedings of International Conference on
Automation, Robotics and Computer Vision, 1994.

[4] Qiu, L. and W.-J. Hsu, A bi-directional path layout
for conflict-free routing of AGVs. International
Journal of Production Research, 39(10):
2177-2195, 2001.

[5] Qiu, L., W. –J. Hsu, Shell-Ying Huang, and Han
Wang, "Scheduling and Routing Algorithms for
AGVs: a Survey". International Journal of
Production Research, Vol. 40, No. 3, pp. 745-760,
2002.

[6] Qiu, L., W. –J. Hsu, "Routing AGVs on a Mesh-like
Path Topology". In Proceedings of the IEEE
Intelligent Vehicles Symposium 2000 (IVS 2000),
pp. 392-397, Dearborn, Michigan, USA, Oct. 3-5,
2000.

[7] Qiu, L., W. –J. Hsu, "Algorithms for Routing AGVs
on a Mesh Topology". In Proceedings of the 2000
European Conference on Parallel Computing
(Euro-par 2000), pp. 595-599, Technical
University of Munich, Munich, Germany, Aug.
29-Sep. 1, 2000.

[8] T. Hagerup and C. Rub, A guided tour of Chernoff
bounds. Information Processing Letters 33,
305-308, 1989-90.

[9] Ye, R., W.-J. Hsu, and V.-Y. Vee. Distributed routing
and simulation of automated guided vehicles. In
Proceedings of TENCON 2000, volume II, pages
315-320, Kuala Lumpur, Malaysia, September
24-27, 2000.

[10] Ye, R., V.-Y. Vee, W.-J. Hsu and S.N. Shah. Parallel
simulation of AGVs in container port operations.
In Proceedings of 4th International
Conference/Exhibition on High Performance
Computing in Asia-pacific Region (HPC-ASIA
2000), volume I, pages 1058-1063, Beijing, China,
May 14-17, 2000.

[15] Yu, X. and S.-Y. Huang, A Centralized Routing
Algorithm for AGVS in Container Ports. In
Proceedings of the 4th International Conference on
Computer Integrated Manufacturing, Singapore,
pages 589-600, 1997.

[12] Y. Moses and M. Tennenholtz, On computational
aspects of artificial social systems. In Proceedings
of DAI-92, 1992.

 9

[13] Y. Shoham and M. Tennenholtz, On traffic laws for
mobile robots. In First Conference on AI Planning
Systems, 1992.

[14] Y. Shoham and M. Tennenholtz, On social laws for
artificial agent societiew: Off-line design.
Artificial Intelligence, vol. 73, 1995.

[15] Preminger, S. Complexity analysis of movement in
multi robot system. Master’s thesis, Department of
Applied Mathematics, the Weizmann Institute of
Science, Rehovot, Israel, 1995.

[16] Zeng, J., Hsu W. –J. and Qiu L.. An Energy-Efficient
Algorithm For Conflict-Free AGV Routing On A
Linear Path Layout. In Proceedings of the
International Computer Symposium (ICS 2002),
Hualian, Taiwan, Dec. 18-21, 2002.

Appendix A: Proof of Claim 4.3.2

[Proof]:

From Claim 4.3.1, if � 1t
0i iE−

= , then tA occurs, namely, all

outbound AGVs which are on the boundary of the square
at the beginning of round t, will leave the square during
the round. So we only need to consider the AGVs entering
the square at the t-th round. For this purpose, we consider
the following events.

=)j,i(

tB {at most lognc1 AGVs are arriving into square

(i,j) at round t },

then we know that)j,i(

tt BB �= .

=)j,i(

tD { the set of all squares that are at a distance of t

squares from (i,j)},

The squares of)j,i(

tD are shown in Figure 7 (b).

We use the following Bernoulli variables.
 1 if the m-th AGV originating

 from l)(k, has j)(i, on its path

=)j,i(

m),l,k(X

 0 otherwise (including the case
 in which less than m AGVs

 originate in l)(k,),

where j)(i,

tDl)(k, ∈ , and nlogcm g≤ (by the assumption of

good partial permutations)

In order to use the Chernoff bound, each variable must be

independent. However, in our formula,)j,i(

m),l,k(X is not

independent of)j,i(

'm),'l,'k(X , for 'm),'l,'k(m),l,k(≠ . Each of

the four sets marked by different patterns in Figure 7 (b) is
independent of the others, so we introduce the following
independent events according to Figure 7 (b).

}nlog
4

c
X{C 1

m,ki,D)l,k(
)j,i(

m),l,k(up
)j,i(

t
≤�= <∈

}nlog
4

c
X{C 1

m,ki,D)l,k(
)j,i(

m),l,k(down
)j,i(

t
≤�= >∈

}nlog
4

c
X{C 1

m,ki,jl,D)l,k(
)j,i(

m),l,k(right
)j,i(

t
≤�= =>∈

}nlog
4

c
X{C 1

m,ki,jl,D)l,k(
)j,i(

m),l,k(leftt
)j,i(

t
≤�= =<∈

Now we will calculate

]E|C[obPr 1t
0i iup �

−
= ,]E|C[obPr 1t

0i idown �
−
= ,

]E|C[obPr 1t
0i ileft �

−
= , and

]E|C[obPr 1t
0i iright �

−
= respectively, where C denotes the

complement of C.

)1]E[obPr] (C[obPr2]E|C[obPr2

n11

]E|C[obPr

]E|E[obPr

]E|C[obPr

]E|E[obPr

)]E|E(C[obPr
]E|C[obPr

0up0up

0up

0

1t
1i i

0up

0

1t
1i i

0

1t
1i iup1t

0i iup

=×≤×≤

−
≤≤

=

−
=

−
=

−
=−

=

�

�

�

��
�

According to Figure 7 (b), we know that there are at least

)nlogcnn(2 − (for 2n ≥) nodes that can be the

destinations of AGVs that originate in)l,k(for the m-th

AGV(all the nodes minus the nodes of the “up” set).

What interest us are the nodes that can be possible

 10

destination nodes. According to Lemma A.1, the largest

number of squares in)j,i(

tD is
nlogc

n

2

5 × , and there are at

most nlogc 22 destination nodes in every square. So

there are at most nlogcn
2

5
nlogc

nlogc

n

2

5 22 =×× nodes

that can be possible destination nodes. Therefore, we have

≤]X[E)j,i(

m),l,k(n

nlogc5

nlogcnn

nlogcn
2

5

2
≤

−

Next, in order to use the Chernoff bound, we argue that

� <∈ m,ki,D)l,k(
)j,i(

m),l,k(
)j,i(

t
X is stochastically dominated by the

sum � =c
nc

1j j

g

Y , where jY are independent Bernoulli trials

with success probability
n

nlogc5
 (we sum to

c

ncg since

there are totally
c

nc
nlogc

nlogc

n g

g =× nodes in the “up”

set).
Thus we have

nlogc5
n

nlogc5

c

nc
]Y[E]X[E g

g
c

nc

1j jm,ki,D)l,k(
)j,i(

m),l,k(

g

)j,i(
t

==�≤� =<∈

By Chernoff bound we get for g1 c120c ≥

4

c
4

nlogc
1

j

1
m,ki,D)l,k(

)j,i(

m),l,k(

1

1

)j,i(
t

n

1
2}

4

nlogc
Y{obPr

}
4

nlogc
X{obPr

≤≤≥�≤

≥�

−

<∈

Therefore, we have

4

c

1t
0i iup 1

n

1
]E|C[obPr ≤−

=� .

Since the “down” set is symmetrical to the “up” set, we
have

4

c

1t
0i idown 1

n

1
]E|C[obPr ≤−

=� .

 Because there are at most nlogcg AGVs originating in

each square, and g1 c4c > , we have

0}nlogcX{obPr

}
4

nlogc
X{obPr

gm,ki,jl,D)l,k(
)j,i(

m),l,k(

1
m,ki,jl,D)l,k(

)j,i(

m),l,k(

)j,i(
t

)j,i(
t

=≥�≤

≥�

=>∈

=>∈

So 0]E|C[obPr 1t
0i iright =−

=� . Similarly we get

0]E|C[obPr 1t
0i ileft =−

=� .

Now we continue to prove Claim 4.3.2.

Since)CCCC(B leftrightdownup

)j,i(

t ���⊇ , we get

1
4

c

4

c

1t
0i ileftrightdownup

1t
0i ileftrightdownup

1t
0i i

)j,i(

t

11

n

1
1

n

1
21

]E|CCCC[obPr1

]E|CCCC[obPr]E|B[obPr

−

−
=

−
=

−
=

−≥×−≥

−=

≥

����

�����

Thus, we have

3
4

c

22

2

)j,i(1
4

c
)j,i(

1t
0i i

)j,i(

t

1t
0i i

)j,i(

)j,i(

t

1t
0i i

)j,i(

)j,i(

t

1t
0i it

1t
0i it

11
4
1c

1

n

1
1

n

nlogc

n

1

n

1
1]E|B[prob1

]E|B[prob1

]E|B[obPr1

]E|B[obPr1]E|B[obPr

−

−

−
=

−
=

−
=

−
=

−
=

−≥−=

�−≥�−≥

−≥

−=

−=

−

�

��

��

��

 Therefore we complete the proof of Claim 4.3.2.

�

Lemma A.1: Consider a mesh with PP× number of
squares. For a given squares (i,j), there are at most

possible P
2

5
 squares that are the destinations of the

AGVs that originate from square which is in)j,i(

tD and

have the square (i,j) on their paths.

 11

[Proof]: When (i,j) is the center of the mesh, we have the

maximum of the possible destination, where
2

P
t = . For

convenience, we set (i,j) to be the (0,0) point of the
coordinates. For a given square (k,l) in)j,i(

tD , and any

square (h,g) is a square that has the AGVs that originate
from square (k,l) and have square (i,j) on their paths, as

shown in Figure 7 (b), there are totally
!l!k

)!lk(
S1

+=

square paths from (k,l) to (i,j), and totally

!g!h

)!gh(
S2

+= square paths from (i,j) to (h,g). At the same

time, there are totally
)!gl()!kh(

)!ghlk(
S

++
+++= paths from

(i,j) to (h,g).

The probability, of which (h,g) can be the square
originating and having the square (i,j) on its path, is given
as follows.

=×=
S

SS
Pr 21)g,h(

)1gh)...(1ghlk)(ghlk(

)1l)...(1gl)(gl()1k)...(1hk)(hk(

++−++++++
+−++×+−++

where
2

P
lk ≤+ and

2

P
g,h0 ≤≤ .

When h or g increases, Pr decreases. Suppose that there
are at most S possible squares that satisfies the
requirement, we have

�≤
==

2
P

0gh

)g,h(PrPS#

For)0x(xgh >== , we have

3x

)x,x(

x

1

4

2
Pr <≤ .

Therefore, we have

P
2

5
)

P

2

2

1
(PP2dx

x

1
PP2

)
x

1
2(P)Pr2(PS#

2
2

P

1 3

2
P

2x
3

2
P

2gh

)g,h(

≤−� +≤+≤

�+≤�+≤
===

�

