## New Problems and Techniques in Stochastic Combinatorial Optimization

Jian Li

Institute of Interdisciplinary Information Sciences

> Tsinghua University

## Uncertain Data and Stochastic Model

- Data Integration and Information Extraction
- Sensor Networks; Information Networks
- Probabilistic models in machine learning


Sensor Readings


Probabilistic database


Social networks
The make of the claim...
Ford! Fusion I6 SEL, ...
Detroit, MI on the ...
2011. The details of...
have been verified by...
agent, and the parts ...


## Uncertain Data and Stochastic Model

- Future data are usually modeled by stochastic models



## Dealing with Uncertainty

- Handling uncertainty is a very broad topic that spans multiple disciplines
- Economics / Game Theory
- Finance
- Operation Research
- Management Science
- Probability Theory / Statistics
- Psychology
- Computer Science

Today: Problems in Stochastic Combinatorial Optimization

## Outline

- A Classical Example: E[MST] in $[0,1]^{2}$
- Estimating E[MST] and other statistics
- Expected Utility Theory
- Expected Utility Maximization
- Threshold Probability Maximization
- The Poisson Approximation Technique
- Expected Utility Maximization
- Stochastic Knapsack
- Other Applications
- Conclusion


## Ignoring uncertainty is not the right thing to do

- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]
- Question: What is E[MST]?

- Ignoring uncertainty ("replace by the expected values" heuristic)
- each edge has a fixed length 0.5
- This gives a WRONG answer $0.5(\mathrm{n}-1)$


## Ignoring uncertainty is not the right thing to do

- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]
- Question:What is E[MST]?
- Ignoring uncertainty ("replace by the expected values" heuristic)
- each edge has a fixed length 0.5
- This gives a WRONG answer 0.5(n-1)
- But the true answer is (as n goes to inf)

$$
\zeta(3)=\sum_{i=1}^{\infty} 1 / i^{3}<2
$$

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans]

## A Similar Problem

- $N$ points: i.i.d. uniform[0, 1$] \times[0,1]$

- Question: What is E[MST] ?
- Answer:


## A Similar Problem

- $N$ points: i.i.d. uniform[0, 1$] \times[0,1]$

- Question: What is E[MST] ?
- Answer: $\theta(\sqrt{n})$ [Frieze, Karp, Steele, ...]


## Outline

- A Classical Example: E[MST] in $[0,1]^{2}$
- Estimating E[MST] and other statistics
- Expected Utility Theory
- Expected Utility Maximization
- Threshold Probability Maximization
- The Fourier Series Technique
- Expected Utility Maximization
- The Poisson Approximation Technique
- Expected Utility Maximization
- Stochastic Knapsack
- Other Applications
- Conclusion


## A Computational Problem

- The position of each point is random (non-i.i.d)
- A model in wireless networks

- Question: What is E[MST] ?
- Of Course, there is no close-form formula
- Need efficient algorithms to compute E[MST]


## Our Results

| Problems |  | Existential | Locational |
| :---: | :---: | :---: | :---: |
| Closest Pair (Section 2) | $\mathbb{E}[\mathrm{CP}]$ | \#P/FPRAS | \#P/FPRAS |
|  | $\operatorname{Pr}[\mathrm{CP} \leq 1]$ | \#P $[19] /$ FPRAS | \#P/FPRAS |
|  | $\operatorname{Pr}[\mathrm{CP} \geq 1]$ | \#P/Inapprox | \#P/Inapprox |
| Diameter (Section 2.2) | $\mathbb{E}[\mathrm{D}]$ | \#P/FPRAS | \#P/FPRAS |
|  | $\operatorname{Pr}[\mathrm{D} \leq 1]$ | \#P/Inapprox | \#P/Inapprox |
|  | $\operatorname{Pr}[\mathrm{D} \geq 1]$ | \#P/FPRAS | \#P/FPRAS |
| MST (Section 3) | $\mathbb{E}[\mathrm{MST}]$ | \#P $[20] /$ FPRAS | \#P $[20] /$ FPRAS |
|  | $\operatorname{Pr}[\mathrm{MST} \leq 1]$ | \#P/Inapprox $[20]$ | \#P/Inapprox $[20]$ |
|  | $\operatorname{Pr}[\mathrm{MST} \geq 1]$ | \#P/Open | \#P/Open |
| $k$-Clustering/k-Center/k-median (Section 4) | $\mathbb{E}\left[\mathrm{C}_{k}\right]$ | \#P/FPRAS | \#P/FPRAS* |
| Perfect Matching (Section 5) | $\mathbb{E}[\mathrm{MPM}]$ |  | Open/FPRAS |
| Cycle Cover (Section 6) | $\mathbb{E}[\mathrm{CC}]$ | \#P/FPRAS | \#P/FPRAS |
| $k$ th Closest Pair (Section 4) | $\mathbb{E}[\mathrm{CP} k]$ | \#P $[19] /$ FPRAS | \#P/Open |
| $k$ th Longest $m$-Nearest Neighbor | $\mathbb{E}\left[k-N N_{m}\right]$ | \#P/Open | \#P/Open |
| Convex Hull (2D) (Section 7) | $\mathbb{E}[\mathrm{CH}]$ | Open/FPRAS | Open |

## MST over Stochastic Points

- The problem is \#P-hard [Kamousi, Chan, Suri. SoCG'11]
- So, let us focus on approximating the value
- Attempt one: list all realizations? (Exponentially many)
- Attempt two: Monte Carlo (variance can be very large)



## MST over Stochastic Points

- Our approach: (sketch)
- Law of total expectation:

$$
\mathbf{E}[X]=\sum_{y} \operatorname{Pr}[Y=y] \mathbf{E}[X \mid Y=y]
$$

A carefully chosen random event $Y$

Hopefully, we have
Easy to compute
Low variance
How to choose Y?

## MST over Stochastic Points

- The "home set" technique:

(1) $\operatorname{Pr}[$ all nodes are at home $] \approx 1$
(2) E[MST | all node are at home] can be estimated:
$\frac{\text { Diameter(home) }}{\mathrm{E}[\mathrm{MST} \mid \text { all node are at home }]} \leq$ poly


## MST over Stochastic Points

- The "home set" technique:

(1) $\operatorname{Pr}[$ all nodes are at home $] \approx 1$
(2) $\mathbf{E}[$ MST | all node are at home $]$ can be estimated (due to low variance)


Home=\{all points w.p. $\left.\geq 1 /(n m)^{2}\right\}$

## MST over Stochastic Points

- The "home set" technique:

(1) $\operatorname{Pr}[$ all nodes are at home $] \approx 1$
(2) $\mathbf{E}[\mathrm{MST} \mid$ all node are at home $]$ can be estimated (due to low variance)
(3)
$\mathbf{E}[M S T]=\sum_{y} \operatorname{Pr}[y$ nodes are at home $] \mathbf{E}[X \mid y$ nodes are at home $]$
$\approx \operatorname{Pr}[$ all nodes are at home $] \mathbf{E}[X \mid$ all nodes are at home $]+$ $\operatorname{Pr}[n-1$ nodes are at home $] \mathbf{E}[X \mid n-1$ nodes are at home $]$


## Estimating Statistics

- Another technique based on Hierarchical tree decomposition
- Interesting connection to classical counting problem:
- Counting \#perfect matchings
- Counting \#Knapsack
- Counting \#(certain subgraphs)
- Still some open questions


## Outline

- A Classical Example: E[MST] in $[0,1]^{2}$
- Estimating E[MST] and other statistics
- Expected Utility Theory
- Expected Utility Maximization
- Threshold Probability Maximization
- The Poisson Approximation Technique
- Expected Utility Maximization
- Stochastic Knapsack
- Other Applications
- Conclusion


## Inadequacy of Expected Value

- Stochastic Optimization
- Some part of the input are probabilistic
- Most common objective: Optimizing the expected value


## Inadequacy of Expected Value

- Be aware of risk!

Flaw of averages (weak form):


Flaw of averages (strong form):


Wrong value of mean:

$$
f(E[X]) \neq E[f(X)]
$$

- St. Petersburg Paradox


## Inadequacy of Expected Value

- Inadequacy of expected value:
- Unable to capture risk-averse or risk-prone behaviors
- Action 1: $\$ 100$ VS Action 2: $\$ 200$ w.p. 0.5; $\$ 0$ w.p. 0.5
- Risk-averse players prefer Action 1
- Risk-prone players prefer Action 2 (e.g., a gambler spends $\$ 100$ to play Double-or-Nothing)
- St. Petersburg Paradox
- You pay x dollars to enter the game
- Repeatedly toss a fair coin until a tail appears
- payoff=2k ${ }^{\mathrm{k}}$ where $\mathrm{k}=\#$ heads
- How much should x be?
- Expected payoff $=$
- Few people would pay even $\$ 25$ [Martin '04]


## Expected Utility Maximization

Remedy: Use a utility function
$\mu: R \rightarrow R \quad$ The utility function: value (profit/cost)-> utility
Expected Utility Maximization Principle: the decision maker should choose the action that maximizes the expected utility

## maximize. $\mathbb{E}[\mu($ profit $)]$

_Proved quite useful to explain some popular choices that seem to contradict the expected value criterion

## Expected Utility Maximization Principle

Expected Utility Maximization Principle: the decision maker should choose the action that maximizes the expected utility

- Action 1: \$100
- Action 2: \$200 w.p. 0.5; \$0 w.p. 0.5


Risk-averse


Risk-prone

- Von Neumann and Morgenstern provides an axiomitization of the principle (known as von Neumann-Morgenstern expected utility theorem).


## Threshold Probability Maximization

- If $\mu$ is a threshold function, maximizing $E[\mu($ cost $)]$ is equivalent to maximizing $\operatorname{Pr}[W(\cos t)<1]$
- minimizing overflow prob. [Kleinberg, Rabani, Tardos. STOC'97] [Goel, Indyk. FOCS'99]
- chance-constrained stochastic optimization problem [Swamy. SODA'11]



## Outline

- A Classical Example: E[MST] in $[0,1]^{2}$
- Estimating E[MST] and other statistics
- Expected Utility Theory
- Expected Utility Maximization
- Threshold Probability Maximization
- The Poisson Approximation Technique
- Expected Utility Maximization
- Stochastic Knapsack
- Other Applications
- Conclusion


## New Techniques

- A common challenge: How to deal with/ optimize on the distribution of the sum of several random variables.
- More often seen in the risk-aware setting (linearity of expectation does not help)
- Previous techniques:
- Special distributions [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06] [Goel, Indyk. FOCS'99] [Goyal, Ravi. ORL09] .....
- Effective bandwidth [Kleinberg, Rabani, Tardos STOC'97]
- LP [Dean, Goemans, Vondrak. FOCS'04] .....
- Discretization [Bhalgat, Goel, Khanna. SODA'11]
- Characteristic Function + Fourier Series Decomposition [L, Deshpande. FOCS'11]
- Today: Poisson Approximation [L, Yuan STOC'13]


## Threshold Probability Maximization

- Deterministic version:
- A set of element $\left\{e_{i}\right\}$, each associated with a weight $w_{i}$
- A solution $S$ is a subset of elements (that satisfies some property)
- Goal: Find a solution $S$ such that the total weight of the solution $w(S)=\sum_{i \epsilon S} W_{i}$ is minimized
- E.g. shortest path, minimal spanning tree, top-k query, matroid base


## Threshold Probability Maximization

- Deterministic version:
- A set of element $\left\{e_{i}\right\}$, each associated with a weight $w_{i}$
- A solution $S$ is a subset of elements (that satisfies some property)
- Goal: Find a solution $S$ such that the total weight of the solution $w(S)=\Sigma_{i \epsilon S} W_{i}$ is minimized
- E.g. shortest path, minimal spanning tree, top-k query, matroid base
- Stochastic version:
- $w_{i} \mathrm{~S}$ are independent positive random variables
- Goal: Find a solution S such that the threshold probability

$$
\operatorname{Pr}[w(S) \leq 1] \quad \text { is maximized }
$$

## Threshold Probability Maximization

- Stochastic shortest path : find an s-t path $P$ such that $\operatorname{Pr}[w(P)<1]$ is maximized



## Our Result

If the deterministic problem is "easy", then for any $\epsilon>0$, we can find a solution $S$ such that

$$
\operatorname{Pr}[w(S) \leq 1+\epsilon]>O P T-\epsilon
$$

"Easy": there is a PTAS for the corresponding $\mathrm{O}(1)$-dim packing problem:

- Shortest path, MST, matroid base, matroid intersection, min-cut

The above result can be generalized to the expected utility maximization problem:
maximize $\mathrm{E}[\mu(X(S))]$ for Lipschitz utility function $\mu$

- generalizes/simplies/improves the previous results in [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06] [Nikolova. APPROX'10] [Kleinberg, Rabani, Tardos. STOC'97] [Goel, Indyk. FOCS'99] [Goyal, Ravi. ORL09] [Bhalgat, Goel, Khanna. SODA'11] [Li, Deshpande. FOCS'11]


## Our Results

- Stochastic shortest path : find an s-t path $P$ such that $\operatorname{Pr}[w(P)<1]$ is maximized
- Previous results

- Many heuristics
- Poly-time approximation scheme (PTAS) if (1) all edge weights are normally distributed r.v.s (2) OPT>0.5[Nikolova, Kelner, Brand, Mitzenmacher. ESA’06] [Nikolova. APPROX'10]
- Bicriterion PTAS $(\operatorname{Pr}[w(P)<1+\delta]>(1-\mathrm{eps}) O P T)$ for exponential distributions [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06]
- Our result
- Bicriterion PTAS if $O P T=$ Const


## Our Results

- Stochastic knapsack: find a collection $S$ of items such that $\operatorname{Pr}[w(S)<1]>\gamma$ and the total profit is maximized


Knapsack, capacity=1

- Previous results
- $\log (1 /(1-\gamma))$-approximation [Kleinberg, Rabani, Tardos. STOC'97]
- Bicriterion PTAS for exponential distributions [Goel, Indyk. FOCS'99]
- PTAS for Bernouli distributions if $\gamma=$ Const [Goel, Indyk. FOCS'99] [Chekuri, Khanna. SODA'00]
- Bicriterion PTAS if $\gamma=$ Const [Bhalgat, Goel, Khanna. SODA'11]
- Our result
- Bicriterion PTAS if $\gamma=$ Const (with a better running time than Bhalgat et al.)
- Stochastic partial-ordered knapsack problem with tree constraints


## Outline

- A Classical Example: E[MST] in $[0,1]^{2}$
- Estimating E[MST] and other statistics
- Expected Utility Theory
- Expected Utility Maximization
- Threshold Probability Maximization
- The Fourier Series Technique
- Expected Utility Maximization
- The Poisson Approximation Technique
- Expected Utility Maximization
- Stochastic Knapsack
- Other Applications
- Conclusion


## Algorithm2 (based on Poisson Approx)

- Step 1: Discretizing the prob distr
(Similar to [Bhalgat, Goel, Khanna. SODA'11], but much simpler)
- Step 2: Reducing the problem to the multi-dim problem


## Algorithm2 (based on Poisson Approx)

- Step 1: Discretizing the prob distr
(Similar to [Bhalgat, Goel, Khanna. SODA'11], but simpler)



## Algorithm2 (based on Poisson Approx)

- Step 1: Discretizing the prob distr
(Similar to [Bhalgat, Goel, Khanna. SODA'11], but simpler)


The behaviors of $\widetilde{X}_{i}$ and $X_{i}$ are close:

$$
\begin{aligned}
& \text { 1. } \operatorname{Pr}[X(S) \leq \beta] \leq \operatorname{Pr}[\tilde{X}(S) \leq \beta+\epsilon]+O(\epsilon) \text {; } \\
& \text { 2. } \operatorname{Pr}[\widetilde{X}(S) \leq \beta] \leq \operatorname{Pr}[X(S) \leq \beta+\epsilon]+O(\epsilon) \text {. }
\end{aligned}
$$

## Algorithm2 (based on Poisson Approx)

- Step 2: Reducing the problem to the multi-dim problem
- Heavy items: $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]>\operatorname{poly}(\epsilon)$
- At most $\mathrm{O}(1 / \operatorname{poly}(\epsilon))$ many heavy items, so we can afford enumerating them


## Algorithm2 (based on Poisson Approx)

- Step 2: Reducing the problem to the multi-dim problem
- Heavy items: $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]>$ poly $(\epsilon)$
- At most $\mathrm{O}(1 / \operatorname{poly}(\epsilon))$ heavy items, so we can afford enumerating them
- Light items:
- Fix the set $H$ of heavy items
- Each $\mathrm{X}_{\mathrm{i}}$ can be represented as a $\mathrm{O}(1)$-dim vector $\mathbf{~} \mathbf{~ g}(\mathbf{i})$ (signature)

$$
\mathbf{S g}(i)=\left(\operatorname{Pr}\left[\tilde{X}_{i}=\epsilon^{4}\right], \operatorname{Pr}\left[\tilde{X}_{i}=\epsilon^{4}+\epsilon^{5}\right], \ldots \ldots\right)
$$

- Enumerating all $\mathrm{O}(1)$-dim (budget) vectors $B$
- Find a set $S$ such that $S \cup H$ is feasible and

$$
\mathbf{S g}(S)=\sum_{i \in S} \mathbf{S g}(i) \leq(1+\epsilon) B \quad \text { (using the multi-dim PTAS) }
$$

(or declare there is none S s.t. $\mathbf{~} \mathbf{g}(S) \leq B$ )

- Return $S \cup H$ for which $\operatorname{Pr}[w(S \cup H) \leq 1+\epsilon]$ is largest


## Poisson Approximation

Well known: Law of small numbers
$n$ Bernoulli r.v. $X_{i}(1-p, p)$
$n p=\mathrm{const}$
As $n \rightarrow \infty, \sum X_{i} \sim \operatorname{Poisson}(n p)$


## Poisson Approximation

Le Cam's theorem (rephrased):
$n$ r.v. $X_{i}$ (with common support $(0,1,2,3,4, \ldots)$ ) with signature

$$
\mathbf{s g}_{i}=\left(\operatorname{Pr}\left[X_{i}=1\right], \operatorname{Pr}\left[X_{i}=2\right], \ldots\right)
$$

Let $\mathbf{s g}=\sum_{i} \mathbf{s g}$
$Y_{i}$ are i.i.d. r.v. with distr $\mathbf{s g} /|\mathbf{s g}|_{1}$
$Y$ follows the compound Poisson distr (CPD) corresponding to sg

$$
Y=\sum_{i=1}^{N} Y_{i} \text { where } N \sim \text { Poisson }\left(|\mathbf{s g}|_{1}\right)
$$

Then, $\Delta\left(\sum X_{i}, Y\right) \leq \sum p_{i}^{2}$ where $p_{i}=\operatorname{Pr}\left[X_{i} \neq 0\right]$

$$
\Delta(X, Y)=\sum_{i}|\operatorname{Pr}[X=i]-\operatorname{Pr}[Y=i]|
$$

## Poisson Approximation <br> - Le Cam's theorem: $\Delta\left(\sum X_{i}, Y\right) \leq \sum p_{i}^{2}$

- Ob: If $S_{1}$ and $S_{2}$ have the same signature, then they correspond to the same CPD
- So if $\sum_{i \in S_{1}} p_{i}^{2}$ and $\sum_{i \in S_{2}} p_{i}^{2}$ are sufficiently small, the distributions of $X\left(S_{1}\right)$ and $X\left(S_{2}\right)$ are close
- Therefore, enumerating the signature of light items suffices (instead of enumerating subsets)


## Summary

- The \#dimension needs to be $L=\operatorname{poly}(1 / \epsilon)$
- We solve an poly $\left(\frac{1}{\epsilon}\right)$-dim optimization problem
- The overall running time is $n^{\operatorname{pol}(1 / \epsilon)}$
- This improves the $n^{2^{p o l y(1 / \epsilon)}}$ running time in [Bhalgat, Goel, Khanna. SODA'11]
- Can be easily extended to the multi-dimensional case, other combinatorial constraints etc.


## Outline

- A Classical Example: E[MST] in [0, 1] ${ }^{2}$
- Estimating E[MST] and other statistics
- Expected Utility Theory
- Expected Utility Maximization
- Threshold Probability Maximization
- The Poisson Approximation Technique
- Expected Utility Maximization
- Stochastic Knapsack
- Other Applications
- Conclusion


## Stochastic Knapsack

- A knapsack of capacity C
- A set of items, each having a fixed profit
- Known: Prior distr of size of each item.
- Each time we choose an item and place it in the knapsack irrevocably
- The actual size of the item becomes known after the decision
- Knapsack constraint: The total size of accepted items $<=$ C
- Goal: maximize E[Profit]


## Stochastic Knapsack

## Previous work

- 5-approx [Dean, Goemans, Vondrak. FOCS' 04]
- 3-approx [Dean, Goemans, Vondrak. MOR’08]
- ( $1+\epsilon, 1+\epsilon$ )-approx [Bhalgat, Goel, Khanna. SODA'11]
- 2-approx [Bhalgat 12]
- 8-approx (size\&profit correlation, cancellation) [Gupta, Krishnaswamy, Molinaro, Ravi. FOCS’ 11]


## Our result:

( $1+\epsilon, 1+\epsilon$ )-approx (size\&profit correlation, cancellation)
2-approx (size\&profit correlation, cancellation)

## Stochastic Knapsack

- Decision Tree

Item 1


## Exponential size!!!! (depth=n)

How to represent such a tree? Compact solution?

## Stochastic Knapsack

- By discretization, we make some simplifying assumptions:
- Support of the size distribution: $(0, \epsilon, 2 \epsilon, 3 \epsilon, \ldots \ldots, 1)$


## Still way too many possibilities, how to narrow the search space?

## Block Adaptive Policies

- Block Adaptive Policies: Process items block by block


LEMMA: [Bhalgat, Goel, Khanna. SODA'11] There is a block adaptive policy that is nearly optimal (under capacity $(1+\epsilon) C$ )

## Block Adaptive Policies

- Block Adaptive Policies: Process items block by block


Still exponential many possibilities, even in a single block
LEMMA: [Bhalgat, Goel, Khannra. SODAT1] There is a block adaptive policy that is nearly optimal (under capacity $(1+\epsilon) C$ )

## Poisson Approximation

- Each heavy item consists of a singleton block
- Light items:
- Recall if two blocks have the same signature, their size distributions are similar
- So, enumerate Signatures! (instead of enumerating subsets)


## Algorithm

- Outline: Enumerate all block structures with a signature associated with each node



## Algorithm

2. Find an assignment of items to blocks that matches all signatures

- (this can be done by standard dynamic program)


## Algorithm

2. Find an assignment of items to blocks that matches all signatures

- (this can be done by standard dynamic programming)


On any root-leaf path, each item appears at most once

## Outline

- A Classical Example: E[MST] in [0, 1] ${ }^{2}$
- Estimating E[MST] and other statistics
- Expected Utility Theory
- Expected Utility Maximization
- Threshold Probability Maximization
- The Poisson Approximation Technique
- Expected Utility Maximization
- Stochastic Knapsack
- Other Applications
- Conclusion


## Poisson Approximation-Other Applications

- Incorporating other constraints
- Size/profit correlation
- cancellation
- Bayesian Online Selection Problem with Knapsack Constraint
- Can see the actually size and profit of an item before the decision
- ( $1+\epsilon, 1+\epsilon$ )-approx (against the optimal adaptive policy)
$\checkmark$ Prophet inequalities [Chawla, Hartline, Malec, Sivan. STOC10] [Kleinberg, Weinberg. STOC12]
$\checkmark$ Close relations with Secretary problems
$\checkmark$ Applications in multi-parameter mechanism design
- Stochastic Bin Packing


## Conclusion

- Replacing the input random variable with its expectation typically is NOT the right thing to do
- Carry the randomness along the way and optimize the expectation of the objective
- Optimizing the expectation may not be the right thing to do neither
- Be aware of the risk
- We can often reduce the stochastic optimization problem (with independent random variables) to a constant dimensional packing problem
- Stochastic optimization problems with dependent random variables are typically extremely hard (i.e., inapproximable)


## Thanks

lijian83@mail.tsinghua.edu.cn

