PKU 2014

New Problems and Techniques in Stochastic Combinatorial Optimization

Jian Li

Institute of Interdisciplinary Information Sciences Tsinghua University

lijian83@mail.tsinghua.edu.cn

Uncertain Data and Stochastic Model

- Data Integration and Information Extraction
- Sensor Networks; Information Networks
- Probabilistic models in machine learning

Sensor ID	Temp.
1	Gauss(40,4)
2	Gauss(50,2)
3	Gauss(20,9)

Uncertain Data and Stochastic Model

• Future data are usually modeled by stochastic models

Dealing with Uncertainty

- Handling uncertainty is a very broad topic that spans multiple disciplines
 - Economics / Game Theory
 - Finance
 - Operation Research
 - Management Science
 - Probability Theory / Statistics
 - Psychology
 - Computer Science

Today: Problems in Stochastic Combinatorial Optimization

Outline

- A Classical Example: E[MST] in [0,1]²
- Estimating E[MST] and other statistics
- Expected Utility Theory
 - Expected Utility Maximization
 - Threshold Probability Maximization
- The Poisson Approximation Technique
 - Expected Utility Maximization
 - Stochastic Knapsack
 - Other Applications
- Conclusion

Ignoring uncertainty is not the right thing to do

- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]

- Question: What is **E[MST]**?
- Ignoring uncertainty ("replace by the expected values" heuristic)
 - each edge has a fixed length 0.5
 - This gives a WRONG answer 0.5(n-1)

Ignoring uncertainty is not the right thing to do

- A undirected graph with n nodes
- The length of each edge: i.i.d. Uniform[0,1]
- Question: What is **E**[MST]?
- Ignoring uncertainty ("replace by the expected values" heuristic)
 - each edge has a fixed length 0.5
 - This gives a WRONG answer 0.5(n-1)
- But the true answer is (as n goes to inf)

 $\zeta(3) = \sum_{i=1}^{\infty} 1/i^3 \le 2$

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans]

E[MST] ("replace by the expected values" heuristic) WRONG 0.5(n-1) $\zeta(3) = \sum_{i=1}^{\infty} 1/i^3 < 2$

McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans]

A Similar Problem

• N points: i.i.d. uniform $[0,1] \times [0,1]$

• Question: What is **E[MST]** ?

• Answer:

A Similar Problem

• N points: i.i.d. uniform $[0,1] \times [0,1]$

- Question: What is **E[MST]** ?
- Answer: $\theta(\sqrt{n})$ [Frieze, Karp, Steele, ...]

The problem is similar, but the answer is not similar.....

Outline

- A Classical Example: E[MST] in [0,1]²
- Estimating E[MST] and other statistics
- Expected Utility Theory
 - Expected Utility Maximization
 - Threshold Probability Maximization
- The Fourier Series Technique
 - Expected Utility Maximization
- The Poisson Approximation Technique
 - Expected Utility Maximization
 - Stochastic Knapsack
 - Other Applications
- Conclusion

A Computational Problem

- The position of each point is random (non-i.i.d)
- A model in wireless networks

- Question: What is **E[MST]** ?
- Of Course, there is no close-form formula
- Need efficient algorithms to compute E[MST]

Our Results

Problems		Existential	Locational
Closest Pair (Section 2)	$\mathbb{E}[CP]$	#P/FPRAS	#P/FPRAS
	$\Pr[CP \le 1]$	#P [19]/FPRAS	#P/FPRAS
	$\Pr[CP \ge 1]$	#P/Inapprox	#P/Inapprox
Diameter (Section 2.2)	$\mathbb{E}[D]$	#P/FPRAS	#P/FPRAS
	$\Pr[D \le 1]$	#P/Inapprox	#P/Inapprox
	$\Pr[D \ge 1]$	#P/FPRAS	#P/FPRAS
MST (Section 3)	$\mathbb{E}[MST]$	#P [20]/FPRAS	#P [20]/FPRAS
	$\Pr[MST \le 1]$	#P/Inapprox [20]	#P/Inapprox [20]
	$\Pr[MST \ge 1]$	#P/Open	#P/Open
k-Clustering/k-Center/k-median (Section 4)	$\mathbb{E}[C_k]$	$\#P/FPRAS^{*1}$	$\#P/FPRAS^*$
Perfect Matching (Section 5)	$\mathbb{E}[MPM]$	\	Open/FPRAS
Cycle Cover (Section 6)	$\mathbb{E}[CC]$	#P/FPRAS	#P/FPRAS
kth Closest Pair (Section 4)	$\mathbb{E}[CP_k]$	#P [19]/FPRAS	#P/Open
kth Longest m-Nearest Neighbor	$\mathbb{E}[k-NN_m]$	#P/Open	#P/Open
Convex Hull (2D) (Section 7)	$\mathbb{E}[CH]$	Open/FPRAS	Open

- The problem is #P-hard [Kamousi, Chan, Suri. SoCG'11]
- So, let us focus on approximating the value
- Attempt one: list all realizations? (Exponentially many)
- Attempt two: Monte Carlo (variance can be very large)

- Our approach: (sketch)
- Law of total expectation:

How to choose Y?

• The "home set" technique:

(1) $Pr[all nodes are at home] \approx 1$ (2) E[MST | all node are at home] can be estimated:

 $\frac{\text{Diameter(home)}}{\text{E[MST| all node are at home]}} \le \text{poly}$

• The "home set" technique:

(1) $Pr[all nodes are at home] \approx 1$

(2) **E**[MST | *all node are at home*] can be estimated (due to low variance)

 $\frac{\text{Diameter(home)}}{\text{E[MST| all node are at home]}} \le \text{poly}$

Home={all points w.p. $\geq 1/(nm)^2$ }

• The "home set" technique:

(1) $Pr[all nodes are at home] \approx 1$

(2) E[MST | all node are at home] can be estimated (due to low variance)
(3)

 $\mathbf{E}[MST] = \sum_{y} \Pr[y \text{ nodes are at home}] \mathbf{E}[X \mid y \text{ nodes are at home}]$

 \approx Pr[all nodes are at home] **E**[X | all nodes are at home] + Pr[n - 1 nodes are at home] **E**[X | n - 1 nodes are at home]

The contribution of other terms is negligible and can be ignored.

Estimating Statistics

- Another technique based on Hierarchical tree decomposition
- Interesting connection to classical counting problem:
 - Counting #perfect matchings
 - Counting #Knapsack
 - Counting #(certain subgraphs)
- Still some open questions

Outline

- A Classical Example: E[MST] in [0,1]²
- Estimating E[MST] and other statistics
- Expected Utility Theory
 - Expected Utility Maximization
 - Threshold Probability Maximization
- The Poisson Approximation Technique
 - Expected Utility Maximization
 - Stochastic Knapsack
 - Other Applications
- Conclusion

Inadequacy of Expected Value

- Stochastic Optimization
 - Some part of the input are probabilistic
 - Most common objective: Optimizing the expected value

Inadequacy of Expected Value

• Be aware of risk!

• St. Petersburg Paradox

Inadequacy of Expected Value

• Inadequacy of expected value:

- Unable to capture risk-averse or risk-prone behaviors
 - Action 1: \$100 VS Action 2: \$200 w.p. 0.5; \$0 w.p. 0.5
 - Risk-averse players prefer Action 1
 - Risk-prone players prefer Action 2 (e.g., a gambler spends \$100 to play Doubleor-Nothing)
- St. Petersburg Paradox
 - You pay x dollars to enter the game
 - Repeatedly toss a fair coin until a tail appears
 - payoff=2^k where k=#heads
 - How much should x be?
 - Expected payoff =
 - Few people would pay even \$25 [Martin '04]

Expected Utility Maximization

Remedy: Use a utility function

 $\mu: R o R$: The utility function: value (profit/cost)-> utility

Expected Utility Maximization Principle: the decision maker should choose the action that maximizes the **expected utility**

maximize. $\mathbb{E}[\mu(\text{profit})]$

Proved quite useful to explain some popular choices that seem to contradict the expected value criterion

Expected Utility Maximization Principle

Expected Utility Maximization Principle: the decision maker should choose the action that maximizes the **expected utility**

- Action 1: \$100
- Action 2: \$200 w.p. 0.5; \$0 w.p. 0.5

 Von Neumann and Morgenstern provides an axiomitization of the principle (known as von Neumann-Morgenstern expected utility theorem).

Threshold Probability Maximization

- If μ is a threshold function, maximizing $E[\mu(cost)]$ is equivalent to maximizing $\Pr[w(cost) < 1]$
 - *minimizing overflow prob*. [Kleinberg, Rabani, Tardos. STOC'97] [Goel, Indyk. FOCS'99]
 - chance-constrained stochastic optimization problem [Swamy. SODA'11]

Outline

- A Classical Example: E[MST] in [0,1]²
- Estimating E[MST] and other statistics
- Expected Utility Theory
 - Expected Utility Maximization
 - Threshold Probability Maximization
- The Poisson Approximation Technique
 - Expected Utility Maximization
 - Stochastic Knapsack
 - Other Applications
- Conclusion

New Techniques

- A common challenge: How to deal with/ optimize on the distribution of the sum of several random variables.
 - More often seen in the risk-aware setting (linearity of expectation does not help)
- Previous techniques:
 - Special distributions [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06] [Goel, Indyk. FOCS'99] [Goyal, Ravi. ORL09]
 - Effective bandwidth [Kleinberg, Rabani, Tardos STOC'97]
 - LP [Dean, Goemans, Vondrak. FOCS'04]
 - Discretization [Bhalgat, Goel, Khanna. SODA'11]
 - Characteristic Function + Fourier Series Decomposition [L, Deshpande. FOCS'11]
- Today: Poisson Approximation [L, Yuan STOC'13]

Threshold Probability Maximization

Deterministic version:

- A set of element $\{e_i\}$, each associated with a weight w_i
- A solution *S* is a subset of elements (that satisfies some property)
- **Goal:** Find a solution *S* such that the total weight of the solution $w(S) = \sum_{i \in S} w_i$ is minimized
- E.g. shortest path, minimal spanning tree, top-k query, matroid base

Threshold Probability Maximization

Deterministic version:

- A set of element $\{e_i\}$, each associated with a weight w_i
- A solution *S* is a subset of elements (that satisfies some property)
- **Goal:** Find a solution *S* such that the total weight of the solution $w(S) = \sum_{i \in S} w_i$ is minimized
- E.g. shortest path, minimal spanning tree, top-k query, matroid base
- Stochastic version:
 - w_i s are independent positive random variables
 - **Goal:** Find a solution S such that the *threshold probability*

 $\Pr[w(S) \le 1]$ is maximized.

Threshold Probability Maximization Stochastic shortest path : find an s-t path P such that *Pr[w(P)<1*] is maximized

S

Our Result

If the deterministic problem is "easy", then for any $\epsilon > 0$, we can find a solution S such that

$\Pr[w(S) \le 1 + \epsilon] > OPT - \epsilon$

"Easy": there is a PTAS for the corresponding O(1)-dim packing problem:

• Shortest path, MST, matroid base, matroid intersection, min-cut

The above result can be generalized to the expected utility maximization problem:

maximize $E[\mu(X(S))]$ for Lipschitz utility function μ

 generalizes/simplies/improves the previous results in [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06] [Nikolova. APPROX'10] [Kleinberg, Rabani, Tardos. STOC'97] [Goel, Indyk. FOCS'99] [Goyal, Ravi. ORL09] [Bhalgat, Goel, Khanna. SODA'11] [Li, Deshpande. FOCS'11]

Our Results Stochastic shortest path : find an s-t path P such that Pr[w(P)<1] is maximized

Previous results

- Many heuristics
- Poly-time approximation scheme (PTAS) if (1) all edge weights are normally distributed r.v.s (2) *OPT*>0.5[Nikolova, Kelner, Brand, Mitzenmacher. ESA'06]
 [Nikolova. APPROX'10]
- Bicriterion PTAS ($Pr[w(P) \le 1 + \delta] \ge (1 eps)OPT$) for exponential distributions [Nikolova, Kelner, Brand, Mitzenmacher. ESA'06]
- Our result
 - Bicriterion PTAS if *OPT* = *Const*

Our Results Stochastic knapsack: find a collection S of items such that *Pr[w(S)<1]>γ* and the total profit is maximized

Each item has a deterministic profit and a (uncertain) size

Knapsack, capacity=1

Previous results

- $log(1/(1-\gamma))$ -approximation [Kleinberg, Rabani, Tardos. STOC'97]
- Bicriterion PTAS for exponential distributions [Goel, Indyk. FOCS'99]
- PTAS for Bernouli distributions if $\gamma = Const$ [Goel, Indyk. FOCS'99] [Chekuri, Khanna. SODA'00]
- Bicriterion PTAS if $\gamma = Const$ [Bhalgat, Goel, Khanna. SODA'11]
- Our result
 - Bicriterion PTAS if γ = *Const* (with a better running time than Bhalgat et al.)
 - Stochastic partial-ordered knapsack problem with tree constraints

Outline

- A Classical Example: E[MST] in [0,1]²
- Estimating E[MST] and other statistics
- Expected Utility Theory
 - Expected Utility Maximization
 - Threshold Probability Maximization
- The Fourier Series Technique
 - Expected Utility Maximization
- The Poisson Approximation Technique
 - Expected Utility Maximization
 - Stochastic Knapsack
 - Other Applications
- Conclusion

- Step 1: Discretizing the prob distr (Similar to [Bhalgat, Goel, Khanna. SODA'11], but much simpler)
- Step 2: Reducing the problem to the multi-dim problem

• Step 1: Discretizing the prob distr

(Similar to [Bhalgat, Goel, Khanna. SODA'11], but simpler)

• Step 1: Discretizing the prob distr

(Similar to [Bhalgat, Goel, Khanna. SODA'11], but simpler)

The behaviors of \tilde{X}_i and X_i are close:

1. $\Pr[X(S) \le \beta] \le \Pr[\widetilde{X}(S) \le \beta + \epsilon] + O(\epsilon);$ 2. $\Pr[\widetilde{X}(S) \le \beta] \le \Pr[X(S) \le \beta + \epsilon] + O(\epsilon).$

- Step 2: Reducing the problem to the multi-dim problem
 - Heavy items: $E[X_i] \ge poly(\epsilon)$
 - At most $O(1/\text{poly}(\epsilon))$ many heavy items, so we can afford enumerating them

- Step 2: Reducing the problem to the multi-dim problem
 - Heavy items: $E[X_i] \ge poly(\epsilon)$
 - At most $O(1/poly(\epsilon))$ heavy items, so we can afford enumerating them
 - Light items:
 - Fix the set *H* of heavy items
 - Each X_i can be represented as a O(1)-dim vector **Sg(i)** (signature) **Sg**(*i*) = (Pr[$\tilde{X}_i = \epsilon^4$], Pr[$\tilde{X}_i = \epsilon^4 + \epsilon^5$],)
 - Enumerating all O(1)-dim (budget) vectors B
 - Find a set S such that $S \cup H$ is feasible and

 $\mathbf{Sg}(S) = \sum_{i \in S} \mathbf{Sg}(i) \le (1 + \epsilon)B$ (using the multi-dim PTAS)

(or declare there is none S s.t. $Sg(S) \le B$)

• Return $S \cup H$ for which $\Pr[w(S \cup H) \le 1 + \epsilon]$ is largest

Poisson Approximation

Well known: Law of small numbers *n* Bernoulli r.v. X_i (1-*p*, *p*) np = constAs $n \to \infty$, $\sum X_i \sim Poisson(np)$

Poisson Approximation

Le Cam's theorem (rephrased):

- *n* r.v. X_i (with common support (0,1,2,3,4,...)) with signature $\mathbf{sg}_i = (\Pr[X_i = 1], \Pr[X_i = 2], ...)$
- Let $\mathbf{sg} = \sum_i \mathbf{sg}$
- Y_i are i.i.d. r.v. with distr $sg/|sg|_1$
- *Y* follows the compound Poisson distr (CPD) corresponding to sg $Y = \sum_{i=1}^{N} Y_i \text{ where } N \sim \text{Poisson}(|\mathbf{sg}|_1)$

Then, $\Delta(\sum X_i, Y) \leq \sum p_i^2$ where $p_i = \Pr[X_i \neq 0]$

Variational distance: $\Delta(X,Y) = \sum_{i} |\Pr[X = i] - \Pr[Y = i]|$

Poisson Approximation • Le Cam's theorem: $\Delta(\sum X_i, Y) \le \sum p_i^2$

- Ob: If S_1 and S_2 have the same signature, then they correspond to the same CPD
- So if $\sum_{i \in S_1} p_i^2$ and $\sum_{i \in S_2} p_i^2$ are sufficiently small, the distributions of $X(S_1)$ and $X(S_2)$ are close
- Therefore, enumerating the signature of light items suffices (instead of enumerating subsets)

Summary

- The #dimension needs to be $L = poly(1/\epsilon)$
- We solve an $poly\left(\frac{1}{\epsilon}\right)$ -dim optimization problem
- The overall running time is $n^{poly(1/\epsilon)}$
- This improves the $n^{2^{poly(1/\epsilon)}}$ running time in [Bhalgat, Goel, Khanna. SODA'11]
- Can be easily extended to the multi-dimensional case, other combinatorial constraints etc.

Outline

- A Classical Example: E[MST] in [0,1]²
- Estimating E[MST] and other statistics
- Expected Utility Theory
 - Expected Utility Maximization
 - Threshold Probability Maximization
- The Poisson Approximation Technique
 - Expected Utility Maximization
 - Stochastic Knapsack
 - Other Applications
- Conclusion

- A knapsack of capacity C
- A set of items, each having a fixed profit
- Known: Prior distr of size of each item.
- Each time we choose an item and place it in the knapsack irrevocably
- The actual size of the item becomes known after the decision

[L, Yuan STOC13]

- Knapsack constraint: The total size of accepted items <= C
- Goal: maximize E[Profit]

Previous work

- 5-approx [Dean, Goemans, Vondrak. FOCS'04]
- 3-approx [Dean, Goemans, Vondrak. MOR'08]
- $(1+\epsilon, 1+\epsilon)$ -approx [Bhalgat, Goel, Khanna. SODA'11]
- 2-approx [Bhalgat 12]
- 8-approx (size&profit correlation, cancellation)
 [Gupta, Krishnaswamy, Molinaro, Ravi. FOCS'11]

Our result:

 $(1+\epsilon, 1+\epsilon)$ -approx (size&profit correlation, cancellation) 2-approx (size&profit correlation, cancellation)

• Decision Tree

Exponential size!!!! (depth=n)

How to represent such a tree? Compact solution?

- By discretization, we make some simplifying assumptions:
 - Support of the size distribution: $(0, \epsilon, 2\epsilon, 3\epsilon, \dots, 1)$.

Still way too many possibilities, how to narrow the search space?

Block Adaptive Policies

• Block Adaptive Policies: Process items block by block

LEMMA: [Bhalgat, Goel, Khanna. SODA'11] There is a block adaptive policy that is nearly optimal (under capacity $(1 + \epsilon)C$)

Block Adaptive Policies

• Block Adaptive Policies: Process items block by block

Poisson Approximation

- Each heavy item consists of a singleton block
- Light items:
 - Recall if two blocks have the same signature, their size distributions are similar
 - So, enumerate Signatures! (instead of enumerating subsets)

Algorithm

• Outline: Enumerate all block structures with a signature associated with each node

Algorithm

2. Find an assignment of items to blocks that matches all signatures

- (this can be done by standard dynamic program)

Algorithm

- 2. Find an assignment of items to blocks that matches all signatures
 - (this can be done by standard dynamic programming)

Outline

- A Classical Example: E[MST] in [0,1]²
- Estimating E[MST] and other statistics
- Expected Utility Theory
 - Expected Utility Maximization
 - Threshold Probability Maximization
- The Poisson Approximation Technique
 - Expected Utility Maximization
 - Stochastic Knapsack
 - Other Applications
- Conclusion

Poisson Approximation-Other Applications

- Incorporating other constraints
 - Size/profit correlation
 - cancellation
- Bayesian Online Selection Problem with Knapsack Constraint
 - Can see the actually size and profit of an item before the decision
 - $(1+\epsilon, 1+\epsilon)$ -approx (against the optimal adaptive policy)
 - Prophet inequalities [Chawla, Hartline, Malec, Sivan. STOC10] [Kleinberg, Weinberg. STOC12]
 - Close relations with Secretary problems
 - ✓ Applications in multi-parameter mechanism design
- Stochastic Bin Packing

[L, Yuan STOC13]

Conclusion

- Replacing the input random variable with its expectation typically is NOT the right thing to do
 - Carry the randomness along the way and optimize the expectation of the objective
- Optimizing the expectation may not be the right thing to do neither
 - Be aware of the risk
- We can often reduce the stochastic optimization problem (with independent random variables) to a constant dimensional packing problem
- Stochastic optimization problems with dependent random variables are typically extremely hard (i.e., inapproximable)

Thanks

lijian83@mail.tsinghua.edu.cn