
Jian Li 

Institute of Interdisciplinary Information Sciences 

Tsinghua University 

New Problems and Techniques in Stochastic 

Combinatorial Optimization 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAAAAAAAAAA 

lijian83@mail.tsinghua.edu.cn 

PKU 2014 



Uncertain Data and Stochastic Model 
 Data Integration and Information Extraction 

 Sensor Networks; Information Networks 

 Probabilistic models in machine learning 

 

 

 
 

Sensor ID Temp. 

1 Gauss(40,4) 

2 Gauss(50,2) 

3 Gauss(20,9) 

… … 

Sensor Readings Probabilistic database 

? 

? 

Uncertain link 

Stochastic Finite Automata 

Social networks  



Uncertain Data and Stochastic Model 
 

 

 Future data are usually modeled by stochastic models 

 



Dealing with Uncertainty 

 Handling uncertainty is a very broad topic that spans multiple 

disciplines 

 Economics / Game Theory 

 Finance  

 Operation Research 

 Management Science 

 Probability Theory / Statistics 

 Psychology 

 Computer Science 

Today: Problems in Stochastic Combinatorial Optimization 
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Ignoring uncertainty is not the right thing to do  

 A undirected graph with n nodes 

 The length of each edge: i.i.d. Uniform[0,1] 

 

 Question: What is E[MST]? 

 Ignoring uncertainty (“replace by the expected values” heuristic) 

 each edge has a fixed length 0.5 

 This gives a WRONG answer 0.5(n-1) 



Ignoring uncertainty is not the right thing to do  

 A undirected graph with n nodes 

 The length of each edge: i.i.d. Uniform[0,1] 

 

 Question: What is E[MST]? 

 Ignoring uncertainty (“replace by the expected values” heuristic) 

 each edge has a fixed length 0.5 

 This gives a WRONG answer 0.5(n-1) 

 But the true answer is (as n goes to inf)  

                     𝜁 3 =  1/𝑖3∞
𝑖=1 <2  

[McDiarmid, Dyer, Frieze, Karp, Steele, Bertsekas, Geomans] 



A Similar Problem 

 N points: i.i.d. uniform[0,1]×[0,1] 

 

 

 

 

 

 Question: What is E[MST] ? 

 

 Answer: 



A Similar Problem 

 N points: i.i.d. uniform[0,1]×[0,1] 

 

 

 

 

 

 Question: What is E[MST] ? 

 

 Answer:  𝜃( 𝑛)  [Frieze, Karp, Steele, …] 

 The problem is similar, but the answer is not similar………… 
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A Computational Problem 

 The position of each point is random (non-i.i.d) 

 A model in wireless networks 

 

 

 

 

 

 

 Question: What is E[MST] ? 

 Of Course, there is no close-form formula 

 Need efficient algorithms to compute E[MST] 

 

0.1 0.5 

0.4 

[Huang, L. ArXiv 2013] 



Our Results 



MST over Stochastic Points 

 The problem is #P-hard [Kamousi, Chan, Suri. SoCG’11] 

 So, let us focus on approximating the value 

 Attempt one: list all realizations? (Exponentially many) 

 Attempt two: Monte Carlo (variance can be very large) 

 

 

 
Small prob, 

Large value 

PDF of a random var 

A sufficient condition for MC to work (in poly time): 
{ }

poly
E[ ]

Max X

X
(just Chernoff Bound) 



MST over Stochastic Points 

 Our approach: (sketch) 

 Law of total expectation:  

𝐄 𝑋 = Pr 𝑌 = 𝑦 𝐄[𝑋 ∣ 𝑌 = 𝑦]

𝑦

 

 

 

 

How to choose Y? 

 

A carefully chosen 

random event Y 

Easy to compute Low variance Hopefully, we have 



MST over Stochastic Points 

 The “home set” technique: 

 

 

home 

(1) Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 ≈ 1 

(2) 𝐄[MST ∣ 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] can be estimated: 

   

Diameter(home)
poly

E[MST all node are at home]∣



MST over Stochastic Points 

 The “home set” technique: 

 

 

home 

(1) Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 ≈ 1 

(2) 𝐄[MST ∣ 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] can be estimated (due to low variance) 

Home={all points w.p.  ≥ 1/ 𝑛𝑚 2} 

Diameter(home)
poly

E[MST all node are at home]∣



MST over Stochastic Points 

 The “home set” technique: 

 

 

home 

(1) Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 ≈ 1 

(2) 𝐄[MST ∣ 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] can be estimated (due to low variance) 

(3)  
𝐄 𝑀𝑆𝑇 = Pr 𝑦 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄[𝑋 ∣ 𝑦 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒]

𝑦

 

≈ Pr 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄 𝑋 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 + 

 Pr 𝑛 − 1 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒 𝐄[𝑋 ∣ 𝑛 − 1 𝑛𝑜𝑑𝑒𝑠 𝑎𝑟𝑒 𝑎𝑡 ℎ𝑜𝑚𝑒] 
 

The contribution of other terms is negligible and can be ignored. 



Estimating Statistics 

 Another technique based on Hierarchical tree decomposition 

 Interesting connection to classical counting problem: 

 Counting #perfect matchings 

 Counting #Knapsack 

 Counting #(certain subgraphs) 

 Still some open questions 
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Inadequacy of Expected Value 

 Stochastic Optimization  

 Some part of the input are probabilistic 

 Most common objective: Optimizing the expected value   

 



Inadequacy of Expected Value 

 Be aware of risk! 

 

 

 

 

 

 

 

 

 

 

 St. Petersburg Paradox 



Inadequacy of Expected Value 

 Inadequacy of expected value: 

 Unable to capture risk-averse or risk-prone behaviors 
 Action 1: $100    VS   Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

 Risk-averse players prefer Action 1 

 Risk-prone players prefer Action 2 (e.g., a gambler spends $100 to play Double-
or-Nothing) 

 St. Petersburg Paradox  

 You pay x dollars to enter the game 
 Repeatedly toss a fair coin until a tail appears 

 payoff=2k where k=#heads 

 How much  should x be? 
 Expected payoff = 

 Few people would pay even $25 [Martin ’04] 

 



Expected Utility Maximization 

Expected Utility Maximization Principle: the decision maker 
should choose the action that maximizes the expected utility 

Remedy: Use a utility function 

 
Proved quite useful to explain some popular choices that seem to 
contradict the expected value criterion   

 



Expected Utility Maximization Principle 

μ 

Risk-averse 

200$ 100$ 

E[μ(action 1)] 

E[μ(action 2)] 

$ 

Risk-prone 

200$ 100$ 

μ 

E[μ(action 2)] 

E[μ(action 1)] 

 Action 1: $100     

 Action 2: $200 w.p. 0.5; $0 w.p. 0.5 

Expected Utility Maximization Principle: the decision 

maker should choose the action that maximizes the 

expected utility 

  Von Neumann and Morgenstern provides an axiomitization of the 

principle (known as von Neumann-Morgenstern expected utility theorem). 

 



Threshold Probability Maximization 
 If μ is a threshold function, maximizing E[μ(cost)] is equivalent to maximizing 

Pr[w(cost)<1] 
 minimizing overflow prob. [Kleinberg, Rabani, Tardos. STOC’97] [Goel, Indyk. FOCS’99] 

 chance-constrained stochastic optimization problem [Swamy. SODA’11] 

1 

1 0 

μ(x) 
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New Techniques 
 A common challenge: How to deal with/ optimize on the 

distribution of the sum of several random variables. 

 More often seen in the risk-aware setting (linearity of expectation 

does not help) 

 Previous techniques:  

 Special distributions [Nikolova, Kelner, Brand, Mitzenmacher. 

ESA’06] [Goel, Indyk. FOCS’99] [Goyal, Ravi. ORL09] ….. 

 Effective bandwidth [Kleinberg, Rabani, Tardos STOC’97] 

 LP [Dean, Goemans, Vondrak. FOCS’04] …..  

 Discretization [Bhalgat, Goel, Khanna. SODA’11] 

 Characteristic Function + Fourier Series Decomposition [L, 

Deshpande. FOCS’11] 

 Today: Poisson Approximation [L, Yuan STOC’13] 



Threshold Probability Maximization 
 Deterministic version: 

 A set of element {ei}, each associated with a weight wi 

 A solution S is a subset of elements (that satisfies some property) 

 Goal: Find a solution S such that the total weight of the solution w(S)=ΣiєSwi is 

minimized 

 E.g. shortest path, minimal spanning tree, top-k query, matroid base 

 



 Deterministic version: 

 A set of element {ei}, each associated with a weight wi 

 A solution S is a subset of elements (that satisfies some property) 

 Goal: Find a solution S such that the total weight of the solution w(S)=ΣiєSwi is 

minimized 

 E.g. shortest path, minimal spanning tree, top-k query, matroid base 

 Stochastic version: 

 wis are independent positive random variables 

 Goal: Find a solution S such that the threshold probability 

  Pr [𝑤 𝑆 ≤ 1]    is maximized. 

Threshold Probability Maximization 



Threshold Probability Maximization 

 Stochastic shortest path : find an s-t path P such that 

Pr[w(P)<1] is maximized 

 

 

s t 



Our Result 
If the deterministic problem is “easy”, then for any 𝜖 > 0, 

we can find a solution S such that 

 
Pr 𝑤 𝑆 ≤ 1 + 𝜖 > 𝑂𝑃𝑇 − 𝜖 

 

“Easy”: there is a PTAS for the corresponding O(1)-dim packing problem: 
  Shortest path, MST, matroid base, matroid intersection, min-cut 

 

The above result can be generalized to the expected utility maximization 
problem: 

           maximize  E[𝜇(𝑋(𝑆))] for Lipschitz utility function 𝜇 
 generalizes/simplies/improves the previous results in [Nikolova, Kelner, Brand, 

Mitzenmacher. ESA’06] [Nikolova. APPROX’10] [Kleinberg, Rabani, Tardos. 
STOC’97] [Goel, Indyk. FOCS’99] [Goyal, Ravi. ORL09] [Bhalgat, Goel, 
Khanna. SODA’11] [Li, Deshpande. FOCS’11] 

 

 

 



Our Results 
 Stochastic shortest path : find an s-t path P such that 

Pr[w(P)<1] is maximized 

 

 

 Previous results 

 Many heuristics  

 Poly-time approximation scheme (PTAS) if (1) all edge weights are normally 

distributed r.v.s (2) OPT>0.5[Nikolova, Kelner, Brand, Mitzenmacher. ESA’06] 

[Nikolova. APPROX’10] 

 Bicriterion PTAS (Pr[w(P)<1+δ]>(1-eps)OPT) for exponential distributions 
[Nikolova, Kelner, Brand, Mitzenmacher. ESA’06] 

 Our result 

 Bicriterion PTAS if OPT=  Const 

s t 

Uncertain length 



Our Results 
 Stochastic knapsack: find a collection S of items such that 

Pr[w(S)<1]>γ and the total profit is maximized 
 

 

 

 Previous results 
 log(1/(1- γ))-approximation [Kleinberg, Rabani, Tardos. STOC’97] 

 Bicriterion PTAS for exponential distributions [Goel, Indyk. FOCS’99] 

 PTAS for Bernouli distributions if γ= Const [Goel, Indyk. FOCS’99] [Chekuri, Khanna. 
SODA’00] 

 Bicriterion PTAS if γ= Const [Bhalgat, Goel, Khanna. SODA’11] 

 Our result 
 Bicriterion PTAS if γ= Const (with a better running time than Bhalgat et al.) 

 Stochastic partial-ordered knapsack problem with tree constraints 

Knapsack, capacity=1 
Each item has a deterministic profit and a 

(uncertain) size  
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Algorithm2 (based on Poisson Approx) 

 Step 1: Discretizing the prob distr 
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but much simpler) 

 Step 2: Reducing the problem to the multi-dim problem 



 Step 1: Discretizing the prob distr 
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but simpler) 

 

 

 

 

 

 

 

 

 

1 𝜖4 

𝜖4 + 𝜖5 

𝜖4 + 2𝜖5 

pdf of Xi 

1 𝜖4 

𝜖4 + 𝜖5 

𝜖4 + 2𝜖5 

Discretized version: 𝑋𝑖  

0 

0 

0 0 
0 0 

Algorithm2 (based on Poisson Approx) 



 Step 1: Discretizing the prob distr 
(Similar to [Bhalgat, Goel, Khanna. SODA’11], but simpler) 

 

 

 

 

 

 

 

 

 

1 𝜖4 

𝜖4 + 𝜖5 

𝜖4 + 2𝜖5 

pdf of Xi 

1 𝜖4 

𝜖4 + 𝜖5 

𝜖4 + 2𝜖5 

Discretized version: 𝑋𝑖  

0 

0 

0 0 
0 0 

The behaviors of 𝑋𝑖  and 𝑋𝑖 are close:  

Algorithm2 (based on Poisson Approx) 



 Step 2: Reducing the problem to the multi-dim problem 

 Heavy items: E[Xi]>poly(𝜖) 

 At most O(1/poly(𝜖)) many heavy items, so we can afford enumerating 

them 

 

 

 

  

 

 

Algorithm2 (based on Poisson Approx) 



 Step 2: Reducing the problem to the multi-dim problem 

 Heavy items: E[Xi]>poly(ϵ) 

 At most O(1/poly(𝜖)) heavy items, so we can afford enumerating them 

 Light items: 

 Fix the set H of heavy items 

 Each Xi can be represented as a O(1)-dim vector Sg(i) (signature) 

   𝐒𝐠 𝑖 = (Pr 𝑋 𝑖 = 𝜖4 , Pr 𝑋 𝑖 = 𝜖4 + 𝜖5 , …… ) 

 Enumerating all O(1)-dim (budget) vectors B 

 Find a set S such that 𝑆 ∪ 𝐻 is feasible and 

  𝐒𝐠 𝑆 =  𝐒𝐠(𝑖)𝑖∈𝑆 ≤ (1 + 𝜖)𝐵   (using the multi-dim PTAS) 

     (or declare there is none S s.t. 𝐒𝐠 𝑆 ≤ 𝐵 ) 

 Return 𝑆 ∪ 𝐻 for which Pr 𝑤 𝑆 ∪ 𝐻 ≤ 1 + 𝜖   is largest 

 

 

 

 

  

 

 

Algorithm2 (based on Poisson Approx) 



 

Well known: Law of small numbers 

 n Bernoulli r.v. 𝑋𝑖 (1-p, p) 

 𝑛𝑝 = 𝑐𝑜𝑛𝑠𝑡 

As 𝑛 → ∞, 𝑋𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑝) 

Poisson Approximation 



Le Cam’s theorem (rephrased): 

n r.v. 𝑋𝑖 (with common support (0,1,2,3,4,…)) with signature 

𝐬𝐠𝑖 = (Pr 𝑋𝑖 = 1 , Pr 𝑋𝑖 = 2 ,… ) 

Let 𝐬𝐠 =  𝐬𝐠𝑖  

𝑌𝑖  are i.i.d. r.v. with distr  𝐬𝐠/ 𝐬𝐠 1 

𝑌 follows the compound Poisson distr (CPD) corresponding to sg 

                   𝑌 =  𝑌𝑖
𝑁
𝑖=1  where 𝑁 ∼ Poisson( 𝐬𝐠 1) 

 

Then,   Δ  𝑋𝑖 , 𝑌 ≤  𝑝𝑖
2 where 𝑝𝑖 = Pr[𝑋𝑖 ≠ 0] 

 Variational distance: 

 Δ 𝑋, 𝑌 =  | Pr 𝑋 = 𝑖 − Pr[𝑌 = 𝑖] |𝑖  

Poisson Approximation 



Poisson Approximation 

 Le Cam’s theorem: Δ  𝑋𝑖 , 𝑌 ≤  𝑝𝑖
2 

 

 Ob: If 𝑆1 and 𝑆2 have the same signature, then 
they correspond to the same CPD 

 

 So if  𝑝𝑖
2

𝑖∈𝑆1
  and  𝑝𝑖

2
𝑖∈𝑆2

 are sufficiently small, 
the distributions of 𝑋(𝑆1) and 𝑋(𝑆2) are close 

 

 Therefore, enumerating the signature of light items 
suffices (instead of enumerating subsets) 

 



Summary 

 The #dimension needs to be 𝐿 = 𝑝𝑜𝑙𝑦(1/𝜖)  

 We solve an 𝑝𝑜𝑙𝑦
1

𝜖
-dim optimization problem 

 

 The overall running time is 

 

 This improves the                       running time in [Bhalgat, Goel, 

Khanna. SODA’11]   

 Can be easily extended to the multi-dimensional case, other 

combinatorial constraints etc. 
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Stochastic Knapsack 

 A knapsack of capacity C 

 A set of items, each having a fixed profit 

 Known: Prior distr of size of each item. 

 Each time we choose an item and place it in the knapsack 

irrevocably 

 The actual size of the item becomes known after the decision   

 Knapsack constraint: The total size of accepted items <= C 

 Goal: maximize E[Profit]  

[L, Yuan STOC13] 



Stochastic Knapsack 

Previous work 

 5-approx [Dean, Goemans, Vondrak. FOCS’04] 

 3-approx [Dean, Goemans, Vondrak. MOR’08] 

 (1+𝜖, 1+𝜖)-approx [Bhalgat, Goel, Khanna. SODA’11] 

 2-approx [Bhalgat 12] 

 8-approx (size&profit correlation, cancellation) 

   [Gupta, Krishnaswamy, Molinaro, Ravi. FOCS’11]  

Our result: 

(1+𝜖, 1+𝜖)-approx  (size&profit correlation, cancellation) 

2-approx  (size&profit correlation, cancellation) 

 

 

 



Stochastic Knapsack 
 Decision Tree 

Item 1 

Exponential size!!!! (depth=n) 

How to represent such a tree? Compact solution? 

Size=𝜖 Size=3𝜖 Size=10𝜖 
Size=1-𝜖 

Item 2 Item 3 Item 7 

…
.. 



Stochastic Knapsack 

 By discretization, we make some simplifying assumptions: 

 Support of the size distribution: （0, 𝜖, 2𝜖, 3𝜖, …… , 1）. 

 

 

Still way too many possibilities, how 
to narrow the search space? 



 Block Adaptive Policies: Process items block by block 

 
Items 

1,5,7 

Items 

2,3 
Items 

3,6 
Items 

6,8,9 

LEMMA: [Bhalgat, Goel, Khanna. SODA’11] There is a block adaptive 
policy that is nearly optimal (under capacity 1 + 𝜖 𝐶) 

Item 2 Item 3 Key Properties: 
(1) Depth=O(1) 
(2) Degree=O(1) 
So #nodes=O(1) 
Note: O(1) depends on 𝜖 

Block Adaptive Policies 



Items 

1,5,7 

Items 

2,3 
Items 

3,6 
Items 

6,8,9 

Item 2 Item 3 Key Properties: 
(1) Depth=O(1) 
(2) Degree=O(1) 
So #nodes=O(1) 
Note: O(1) depends on 𝜖 

Still exponential many possibilities, even in a single block 

LEMMA: [Bhalgat, Goel, Khanna. SODA’11] There is a block adaptive 
policy that is nearly optimal (under capacity 1 + 𝜖 𝐶) 

Block Adaptive Policies 

 Block Adaptive Policies: Process items block by block 

 



Poisson Approximation 

 Each heavy item consists of a singleton block 

 Light items: 

 Recall if two blocks have the same signature, their size 

distributions are similar 

 So, enumerate Signatures! (instead of enumerating subsets) 

 



 Outline: Enumerate all block structures with a 

signature associated with each node 

 

 

 

 

(0.4,1.1,0,…) 

(0,1,1,2.2,…) 

(5,1,1.7,2,…) 

(1.1,1,1,1.5,…) 

(1,1,2,…) 

(0,1.4,1.2,2.1,…) 

(0,0,1.5,2,…) 

- O(1) nodes 
 

- Poly(n) possible 
      signatures for each node 
 
- So total #configuration   
      =poly(n) 

Algorithm 



2. Find an assignment of items to blocks that matches all 

signatures  

 – (this can be done by standard dynamic program) 

 

Algorithm 



2. Find an assignment of items to blocks that matches all 

signatures  

 – (this can be done by standard dynamic programming) 

 
Item 1 

(0.2,0.04,0…..) 

(0.2,0.04,0.1…..) 

(0.1,0,0…..) 

(0.1,0.2,0.1…..) 

(0.15,0,0…..) 

(0.15,0.2,0.22…..) 

Item 2 Item 3 
(0.4,1.1,0,…) 

(0,1,1,2.2,…) 

(5,1,1.7,2,…) 

(1.1,1,1,1.5,
…) 

(1,1,2,
…) 

(0,1.4,1.2,2.1,…) 

(0,0,1.5,2,…) 

On any root-leaf path, each item appears at most once 

Algorithm 

Item 4 Item 5 Item 6 
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Poisson Approximation-Other Applications 

 Incorporating other constraints 

 Size/profit correlation 

 cancellation 

 Bayesian Online Selection Problem with Knapsack Constraint 

 Can see the actually size and profit of an item before the decision 

 (1+𝜖, 1+𝜖)-approx (against the optimal adaptive policy) 

 

 

 

 Stochastic Bin Packing 

 Prophet inequalities [Chawla, Hartline, Malec, Sivan. STOC10] [Kleinberg, 

Weinberg. STOC12] 

 Close relations with Secretary problems 

 Applications in multi-parameter  mechanism design 

[L, Yuan STOC13] 



Conclusion 
 

 

 Replacing the input random variable with its expectation typically is 
NOT the right thing to do 
 Carry the randomness along the way and optimize the expectation of the 

objective  

 Optimizing the expectation may not be the right thing to do neither 
 Be aware of the risk  

 We can often reduce the stochastic optimization problem (with 
independent random variables) to a constant dimensional packing 
problem 

 Stochastic optimization problems with dependent random variables 
are typically extremely hard (i.e., inapproximable) 



Thanks 
 

lijian83@mail.tsinghua.edu.cn 


