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The Stochastic Multi-armed Bandit 

 Stochastic Multi-armed Bandit 

 Set of 𝑛 arms 

 Each arm is associated with an unknown reward distribution 

supported on [0,1] with mean 𝜃𝑖 

 Each time, sample an arm and receive the 

    reward independently drawn from the  

    reward distribution  

 



The Stochastic Multi-armed Bandit 

 Top-K Arm identification problem 

You can take N samples 

 -A sample:  Choose an arm, play it once, and observe  the reward 

Goal: (Approximately)  Identify the best K arms (arms with largest 

means)  

Use as few samples as possible (i.e., minimize N) 

 

 

 

 



Motivating Applications 

 Wide Applications:  

 Industrial Engineering (Koenig & Law, 85), Evolutionary 

Computing (Schmidt, 06), Simulation Optimization (Chen, Fu, 

Shi 08) 

 Motivating Application: Crowdsourcing  

Crowd 



Motivating Applications 
 Workers are noisy  

 

 

 

 

 How to identify reliable workers and exclude unreliable workers ?  

 Test workers by golden tasks  (i.e., tasks with known answers) 

 Each test costs money. How to identify the best 𝐾 workers with minimum amount 

of money?  

 

 

 

 

 

 

 

Top-𝑲 Arm Identification  

Worker Bernoulli arm with mean 𝜃𝑖    

 (𝜃𝑖:  𝑖-th worker’s reliability) 

Test with golden task Obtain a binary-valued sample 

(correct/wrong) 

0.95 0.99 0.5 



Evaluation Metric 
 Sorted means 𝜃1 ≥ 𝜃2 ≥ ⋯ ≥ 𝜃𝑛 

 Goal: find a set of 𝐾 arms 𝑇  to minimize the aggregate regret 

 

 

 

 

 Given any 𝜖, 𝛿,  the algorithm outputs a set 𝑇 of  𝐾 arms such that 𝐿𝑇 ≤ 𝜖, 
with probability at least 1 − 𝛿 (PAC learning) 

 

 For 𝐾 = 1,  i.e., find 𝑖 : 𝜃1 − 𝜃𝑖 ≤ 𝜖 w.p. 1 − 𝛿  
 [Evan-Dar, Mannor and Mansour, 06] 

 [Mannor, Tsitsiklis, 04] 

 This Talk: For general K 

 

 

𝐿𝑇 =
1

𝐾
 𝜃𝑖

𝐾

𝑖=1
−  𝜃𝑖

𝑖∈𝑇
 



Simplification 

 Assume Bernoulli distributions from now on 

 Think of a collection of biased coins 

 Try to (approximately) find K coins with largest bias 

    (towards head) 

0.5 0.55 0.6 0.45 0.8 



Why aggregate regret? 

 Misidentification Probability (Bubeck et. al., 13): 

 

 Consider the case: (K=1) 

 

 

Pr(𝑇 ≠ {1,2, … , 𝐾}) 

Distinguish such two coins with high confidence 

requires approx 10^5 samples 

(#samples depends on the gap 𝜃1 − 𝜃2) 

Using regret (say with 𝜖 = 0.01), we may choose either of them 

1 0.99999 



Why aggregate regret? 
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 Explore-K (Kalyanakrishnan et al., 12, 13) 

 Select a set of 𝐾 arms 𝑇:  ∀𝑖 ∈ 𝑇 , 𝜃𝑖 > 𝜃𝐾 − 𝜖 w.h.p.   

(𝜃𝐾: 𝐾-th largest mean) 

 

 Example: 𝜃1 ≥ ⋯ ≥ 𝜃𝐾−1 ≫ 𝜃𝐾  and 𝜃𝑖+𝐾 > 𝜃𝐾 − 𝜖 for 

𝑖 = 1, … , 𝐾   

 Set 𝑇 = 𝐾 + 1, 𝐾 + 2 … , 2𝐾  satisfies the requirement  



Naïve Solution 
Uniform Sampling 

Sample each coin M times 

Pick the K coins with the largest empirical means 

 empirical mean:  #heads/M 

 

  

How large M needs to be (in order to achieve 𝜖-regret)?? 

 

 

 

So the total number of samples is O(nlogn) 

 

𝑀 = 𝑂(
1

𝜖2
log

𝑛

𝐾
+

1

𝐾
log

1

𝛿
) = 𝑂(log 𝑛)  



Naïve Solution 

Uniform Sampling 

 With M=O(logn), we can get an estimate 𝜃𝑖
′ for 𝜃𝑖 such that 

𝜃𝑖 − 𝜃𝑖
′ ≤ 𝜖 with very high probability (say 1 −

1

𝑛2) 

 This can be proved easily using Chernoff Bound (Concentration 

bound).  

 What if we use M=O(1)  (let us say M=10) 

 E.g., consider the following example (K=1): 

 0.9, 0.5, 0.5, …………………., 0.5  (a million coins with mean 0.5) 

 Consider a coin with mean 0.5, 

          Pr[All samples from this coin are head]=(1/2)^10 

 With const prob,  there are more than 500 coins whose samples are all heads 

 



Uniform Sampling 

 In fact, we can show a matching lower bound 

𝑀 = Θ(
1

𝜖2
log

𝑛

𝐾
+

1

𝐾
log

1

𝛿
) = Θ(log 𝑛)  

 

One observation: if 𝐾 = Θ 𝑛 , 𝑀 = 𝑂(1).  

 



Can we do better?? 
 Consider the following example: 

 0.9, 0.5, 0.5, …………………., 0.5  (a million coins with mean 0.5) 

 Uniform sampling spends too many samples on bad coins. 

 

 Should spend more samples on good coins  

 However, we do not know which one is good and which is bad…… 

 

 Sample each coin M=O(1) times. 

 If the empirical mean of a coin is large, we DO NOT know whether it 

is good or bad 

 But if the empirical mean of a coin is very small, we DO know it is bad 

(with high probability) 

 



Optimal Multiple Arm Identification 

(OptMAI) 

 Input: 𝑛 (no. of arms), 𝐾 (top-𝐾 arms), 𝑄 (total no. of samples/budget) 

 

 Initialization: Active set of arms 𝑆0 = 1,2, … , 𝑛 ,  Set of top arms 𝑇0 = ∅ 

    Iteration Index 𝑟 = 0,  Parameter 𝛽 ∈ 0.75, 1  

 

 While 𝑇𝑟 < 𝐾  and 𝑆𝑟 > 0  do 
 If  𝑆𝑟 > 4𝐾 then 

 𝑆𝑟+1=Quartile-Elimination(𝑆𝑟 , 𝛽𝑟 1 − 𝛽 𝑄) 

 

 Else ( 𝑆𝑟 ≤ 4𝐾) 
 Identify the best K arms for at most 4K arms,  

    using uniform sampling 

 
 𝑟 = 𝑟 + 1    

 Output: set of selected 𝐾 arms 𝑇𝑟 

Eliminate  one 

quarter arms with 

lowest empirical 

means 



Quartile-Elimination  

 Idea: uniformly sample each arm in the active set 𝑆  and discard the worst 

quarter of arms (with the lowest empirical mean) 

 

 Input: 𝑆 (active arms), 𝑄(budget) 

 

 Sample each arm 𝑖 ∈ 𝑆  for 𝑄/ 𝑆  times & let 𝜃 𝑖 be the empirical mean 

 

 Find the lower quartile of the empirical mean 𝑞 : |{𝑖: 𝜃 𝑖 < 𝑞 }| = |𝑆|/4 

 

 Output:  𝑆′ = 𝑆 \ {𝑖: 𝜃 𝑖 < 𝑞 } 

 

 

 



Sample Complexity  
 Sample complexity 𝑄:  

Outputs 𝐾 arms s.t. 𝐿𝑇 =
1

𝐾
 𝜃𝑖

𝐾
𝑖=1 −  𝜃𝑖𝑖∈𝑇 ≤ 𝜖, w.p. 1 − 𝛿. 

 

 𝐾 ≤
𝑛

2
:   𝑄 = 𝑂

𝑛

𝜖2 1 +
ln

1

𝛿

𝐾
   (this is linear!) 

 

 𝐾 ≥
𝑛

2
: 𝑄 = 𝑂

𝑛−𝐾

𝐾

𝑛

𝜖2

𝑛−𝐾

𝐾
+

ln
1

𝛿

𝐾
    (which can be sublinear!) 

 

 Apply our algorithm to identify the worst 𝑛 − 𝐾  arms. 



Sample Complexity  
 Sample complexity 𝑄:  

Outputs 𝐾 arms s.t. 𝐿𝑇 =
1

𝐾
 𝜃𝑖

𝐾
𝑖=1 −  𝜃𝑖𝑖∈𝑇 ≤ 𝜖, w.p. 1 − 𝛿. 

 

 𝐾 ≤
𝑛

2
:   𝑄 = 𝑂

𝑛

𝜖2 1 +
ln

1

𝛿

𝐾
   (this is linear!) 

 

 𝐾 ≥
𝑛

2
: 𝑄 = 𝑂

𝑛−𝐾

𝐾

𝑛

𝜖2

𝑛−𝐾

𝐾
+

ln
1

𝛿

𝐾
    (which can be sublinear!) 

 Reduce to the 𝐾 ≤
𝑛

2
 case by identifying the worst 𝑛 − 𝐾  arms. 

Better bound if K is larger! 



Sample Complexity 

 𝐾 ≤
𝑛

2
:   𝑄 = 𝑂

𝑛

𝜖2 1 +
ln

1

𝛿

𝐾
 

 𝐾 = 1, 𝑄 = 𝑂
𝑛

𝜖2 ln
1

𝛿
  [Even-Dar et. al., 06] 

 

 For larger 𝐾,  the sample complexity is smaller: identify 𝐾 arms is simpler ! 

 Why?  Example:  𝜃1 =
1

2
+ 2𝜖, 𝜃2 = 𝜃3 = ⋯ 𝜃𝑛 =

1

2
.  

 Identify the first arm (𝐾 = 1) is hard !  Cannot pick the wrong arm.  

 Since 𝐿𝑇 ≤
2𝜖

𝐾
,  for 𝐾 ≥ 2 ,  any set is fine. 

 

 Naïve Uniform Sampling: 𝑄 = Ω 𝑛log 𝑛 ,  log 𝑛  factor worse 

 

 



Matching Lower Bounds 

 𝐾 ≤
𝑛

2
:  there is an underlying 𝜃𝑖  such that for any randomized 

algorithm, to identify a set 𝑇 with 𝐿𝑇 ≤ 𝜖 w.p. at least 1 − 𝛿, 

𝐸[𝑄] = Ω
𝑛

𝜖2
1 +

ln
1
𝛿

𝐾
 

 

 𝐾 >
𝑛

2
: 𝐸[𝑄] = Ω

𝑛−𝐾

𝐾

𝑛

𝜖2

𝑛−𝐾

𝐾
+

ln
1

𝛿

𝐾
  

 

Our algorithm is optimal for every value of 𝑛, 𝐾, 𝜖, 𝛿! 

 

 



Matching Lower Bounds 
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 First Lower bound: 𝐾 ≤
𝑛

2
, 𝑄 ≥ Ω

𝑛

𝜖2  

 Reduction to distinguishing two Bernoulli arms with means 
1

2
  

and 
1

2
+ 𝜖 with probability > 0.51, which requires at least 

Ω
1

𝜖2  samples [Chernoff, 72] 

    (anti-concentration) 

 Second Lower bound: 𝐾 ≤
𝑛

2
, 𝑄 ≥ Ω

𝑛

𝜖2

ln
1

𝛿

𝐾
 

 A standard technique in statistical decision theory 

 



Experiments 
OptMAI   𝛽 = 0.8,   𝛽 = 0.9 

SAR   Bubeck et. al., 13 

LUCB  Kalyanakrishnan et. al., 12 

Uniform  Naïve Uniform Sampling  

  

Simulated Experiments:  

 

No. of Arms:  𝑛 = 1000  
Total Budget: 𝑄 = 20𝑛, 𝑄 = 50𝑛, 𝑄 = 100𝑛 

Top-𝐾 Arms: 𝐾 = 10, 20, … , 500 

Report average result over 100 independent runs 

 

Underlying distributions:  

(1) 𝜃𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1  

(2) 𝜃𝑖 = 0.6  for 𝑖 = 1, … , 𝐾, 𝜃𝑖 = 0.5 for 𝑖 = 𝐾 + 1, … , 𝑛   
 

Metric: regret 𝐿𝑇 



Simulated Experiment 
 𝜃𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1  

 



Simulated Data 
 𝜃𝑖 = 0.6  for 𝑖 = 1, … , 𝐾, 𝜃𝑖 = 0.5 for 𝑖 = 𝐾 + 1, … , 𝑛   

 

 



Real Data 

24 

 RTE data for textual entailment  

    (Snow et. al., 08) 

 800 binary labeling tasks with true labels 

 164 workers  



Real Data 
 Empirical distribution of the number tasks assigned to a worker  

     (𝛽 = 0.9, 𝐾 = 10, 𝑄 = 20𝑛)  

A worker receives at 

most 143 tasks  

 

SAR queries an arm  

Ω
𝑄

log n
  times  

A worker receives at 

most 48 tasks  

 

OptMAI queries an 

arm 𝑂
𝑄

𝑛Ω 1   times  

 

Crowdsourcing:  

Impossible to 

assign too many 

tasks to a single 

worker 



Real Data 
 Precision = 

|𝑇∩ 1,…,𝐾 | 
𝐾

:  no. of arms in 𝑇 belongs to the top 𝐾 arms 



Conclusion 

 Top-k arm identification 

 Application in crowdsourcing 

 (Worse case) Optimal upper and lower bounds 

 

 Further direction: some instances are “easier”, i.e., 

0.9,0.1,0.1,0.1,……. Can we get better upper bounds for 

these instance?? 
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