Optimal PAC Multiple Arm Identification with Applications to Crowdsourcing

Jian Li

Institute for Interdisciplinary Information Sciences
Tsinghua University

The Stochastic Multi-armed Bandit

- Stochastic Multi-armed Bandit
- Set of n arms
- Each arm is associated with an unknown reward distribution supported on $[0,1]$ with mean θ_{i}
- Each time, sample an arm and receive the reward independently drawn from the reward distribution

The Stochastic Multi-armed Bandit

- Top-K Arm identification problem

You can take N samples
-A sample: Choose an arm, play it once, and observe the reward
Goal: (Approximately) Identify the best K arms (arms with largest means)
Use as few samples as possible (i.e., minimize N)

Motivating Applications

- Wide Applications:
- Industrial Engineering (Koenig \& Law, 85), Evolutionary

Computing (Schmidt, 06), Simulation Optimization (Chen, Fu, Shi 08)

- Motivating Application: Crowdsourcing

Motivating Applications

- Workers are noisy

0.95

0.99

0.5
- How to identify reliable workers and exclude unreliable workers ?
- Test workers by golden tasks (i.e., tasks with known answers)
* Each test costs money. How to identify the best K workers with minimum amount of money?

Top-K Arm Identification
Worker
Bernoulli arm with mean θ_{i} (θ_{i} : i-th worker's reliability)
Test with golden task Obtain a binary-valued sample (correct/wrong)

Evaluation Metric

- Sorted means $\theta_{1} \geq \theta_{2} \geq \cdots \geq \theta_{n}$
- Goal: find a set of K arms T to minimize the aggregate regret

$$
L_{T}=\frac{1}{K}\left(\sum_{i=1}^{K} \theta_{i}-\sum_{i \in T} \theta_{i}\right)
$$

- Given any ϵ, δ, the algorithm outputs a set T of K arms such that $L_{T} \leq \epsilon$, with probability at least $1-\delta$ (PAC learning)
- For $K=1$, i.e., find $\hat{\imath}: \theta_{1}-\theta_{\hat{\imath}} \leq \epsilon$ w.p. $1-\delta$
- [Evan-Dar, Mannor and Mansour, 06]
- [Mannor, Tsitsiklis, 04]
- This Talk: For general K

Simplification

- Assume Bernoulli distributions from now on
- Think of a collection of biased coins
- Try to (approximately) find K coins with largest bias (towards head)

0.5

0.55

0.6

0.45

0.8

Why aggregate regret?

- Misidentification Probability (Bubeck et. al., 13):

$$
\operatorname{Pr}(T \neq\{1,2, \ldots, K\})
$$

- Consider the case: $(\mathrm{K}=1)$

Distinguish such two coins with high confidence requires approx $10^{\wedge} 5$ samples (\#samples depends on the gap $\theta_{1}-\theta_{2}$)

Using regret (say with $\epsilon=0.01$), we may choose either of them

Why aggregate regret?

- Explore-K (Kalyanakrishnan et al., 12, 13)
- Select a set of K arms $T: \forall i \in T, \theta_{i}>\theta_{K}-\epsilon$ w.h.p. ($\theta_{K}: K$-th largest mean)
- Example: $\theta_{1} \geq \cdots \geq \theta_{K-1} \gg \theta_{K}$ and $\theta_{i+K}>\theta_{K}-\epsilon$ for $i=1, \ldots, K$
- Set $T=\{K+1, K+2 \ldots, 2 K\}$ satisfies the requirement

Naïve Solution

Uniform Sampling

Sample each coin M times
Pick the K coins with the largest empirical means empirical mean: \#heads/M

How large M needs to be (in order to achieve ϵ-regret)?

$$
M=O\left(\frac{1}{\epsilon^{2}}\left(\log \frac{n}{K}+\frac{1}{K} \log \frac{1}{\delta}\right)\right)=O(\log n)
$$

So the total number of samples is $\mathrm{O}(\mathrm{nlogn})$

Naïve Solution

Uniform Sampling

- With $\mathrm{M}=\mathrm{O}(\operatorname{logn})$, we can get an estimate θ_{i}^{\prime} for θ_{i} such that $\left|\theta_{i}-\theta_{i}^{\prime}\right| \leq \epsilon$ with very high probability (say $1-\frac{1}{n^{2}}$)
- This can be proved easily using Chernoff Bound (Concentration bound).
- What if we use $\mathrm{M}=\mathrm{O}(1)$ (let us say $\mathrm{M}=10$)
- E.g., consider the following example ($\mathrm{K}=1$):
- $0.9,0.5,0.5, \ldots \ldots \ldots \ldots \ldots \ldots, 0.5$ (a million coins with mean 0.5)
- Consider a coin with mean 0.5,
$\operatorname{Pr}[$ All samples from this coin are head $]=(1 / 2)^{\wedge} 10$
- With const prob, there are more than 500 coins whose samples are all heads

Uniform Sampling

- In fact, we can show a matching lower bound

$$
M=\Theta\left(\frac{1}{\epsilon^{2}}\left(\log \frac{n}{K}+\frac{1}{K} \log \frac{1}{\delta}\right)\right)=\Theta(\log n)
$$

One observation: if $K=\Theta(n), M=O(1)$.

Can we do better??

- Consider the following example:

- Uniform sampling spends too many samples on bad coins.
- Should spend more samples on good coins
- However, we do not know which one is good and which is bad......
- Sample each coin $\mathrm{M}=\mathrm{O}(1)$ times.
- If the empirical mean of a coin is large, we DO NOT know whether it is good or bad
- But if the empirical mean of a coin is very small, we DO know it is bad (with high probability)

Optimal Multiple Arm Identification (OptMAI)

- Input: n (no. of arms), K (top- K arms), Q (total no. of samples/budget)
- Initialization: Active set of arms $S_{0}=\{1,2, \ldots, n\}$, Set of top arms $T_{0}=$ Iteration Index $r=0$, Parameter $\beta \in(0.75,1)$
- While $\left|T_{r}\right|<K$ and $\left|S_{r}\right|>0$ do
- If $\left|S_{r}\right|>4 K$ then
$S_{r+1}=$ Quartile-Elimination $\left(S_{r}, \beta^{r}(1-\beta) Q\right)$
- Else $\left(\left|S_{r}\right| \leq 4 K\right)$
- Identify the best K arms for at most 4 K arms, using uniform sampling
- $r=r+1$
- Output: set of selected K arms T_{r}

Quartile-Elimination

- Idea: uniformly sample each arm in the active set S and discard the worst quarter of arms (with the lowest empirical mean)

Input: S (active arms), Q (budget)

- Sample each arm $i \in S$ for $Q /|S|$ times \& let $\hat{\theta}_{i}$ be the empirical mean
- Find the lower quartile of the empirical mean $\hat{q}:\left|\left\{i: \hat{\theta}_{i}<\hat{q}\right\}\right|=|S| / 4$

Output: $S^{\prime}=S \backslash\left\{i: \hat{\theta}_{i}<\hat{q}\right\}$

Sample Complexity

- Sample complexity Q :

Outputs K arms s.t. $L_{T}=\frac{1}{K}\left(\sum_{i=1}^{K} \theta_{i}-\sum_{i \in T} \theta_{i}\right) \leq \epsilon$, w.p. $1-\delta$.

- $K \leq \frac{n}{2}: Q=O\left(\frac{n}{\epsilon^{2}}\left(1+\frac{\ln \left(\frac{1}{\delta}\right)}{K}\right)\right)$ (this is linear!)
- $K \geq \frac{n}{2}: Q=O\left(\frac{n-K}{K} \frac{n}{\epsilon^{2}}\left(\frac{n-K}{K}+\frac{\ln \left(\frac{1}{\delta}\right)}{K}\right)\right) \quad$ (which can be sublinear!)
- Apply our algorithm to identify the worst $(n-K)$ arms.

Sample Complexity

- Sample complexity Q :

Outputs K arms s.t. $L_{T}=\frac{1}{K}\left(\sum_{i=1}^{K} \theta_{i}-\sum_{i \in T} \theta_{i}\right) \leq \epsilon$, w.p. $1-\delta$.

- $K \leq \frac{n}{2}: Q=O\left(\frac{n}{\epsilon^{2}}\left(1+\frac{\ln \left(\frac{1}{\delta}\right)}{K}\right)\right)$ (this is linear!)

$$
\text { Better bound if } K \text { is larger! }
$$

- $K \geq \frac{n}{2}: Q=O\left(\frac{n-K}{K} \frac{n}{\epsilon^{2}}\left(\frac{n-K}{K}+\frac{\ln \left(\frac{1}{\delta}\right)}{K}\right)\right) \quad$ (which can be sublinear!)
- Reduce to the $K \leq \frac{n}{2}$ case by identifying the worst ($n-K$) arms.

Sample Complexity

- $K \leq \frac{n}{2}: Q=O\left(\frac{n}{\epsilon^{2}}\left(1+\frac{\ln \left(\frac{1}{\delta}\right)}{K}\right)\right)$
$\because K=1, Q=O\left(\frac{n}{\epsilon^{2}} \ln \left(\frac{1}{\delta}\right)\right)$ [Even-Dar et. al., 06]
*For larger K, the sample complexity is smaller: identify K arms is simpler !
Why? Example: $\theta_{1}=\frac{1}{2}+2 \epsilon, \theta_{2}=\theta_{3}=\cdots \theta_{n}=\frac{1}{2}$.
- Identify the first arm $(K=1)$ is hard! Cannot pick the wrong arm.
- Since $L_{T} \leq \frac{2 \epsilon}{K}$, for $K \geq 2$, any set is fine.
* Naïve Uniform Sampling: $Q=\Omega(n \log (n)), \log (n)$ factor worse

Matching Lower Bounds

- $K \leq \frac{n}{2}$: there is an underlying $\left\{\theta_{i}\right\}$ such that for any randomized algorithm, to identify a set T with $L_{T} \leq \epsilon$ w.p. at least $1-\delta$,

$$
E[Q]=\Omega\left(\frac{n}{\epsilon^{2}}\left(1+\frac{\ln \left(\frac{1}{\delta}\right)}{K}\right)\right)
$$

- $K>\frac{n}{2}: E[Q]=\Omega\left(\frac{n-K}{K} \frac{n}{\epsilon^{2}}\left(\frac{n-K}{K}+\frac{\ln \left(\frac{1}{\delta}\right)}{K}\right)\right)$

Our algorithm is optimal for every value of n, K, ϵ, δ !

Matching Lower Bounds

- First Lower bound: $K \leq \frac{n}{2}, Q \geq \Omega\left(\frac{n}{\epsilon^{2}}\right)$
- Reduction to distinguishing two Bernoulli arms with means $\frac{1}{2}$ and $\frac{1}{2}+\epsilon$ with probability >0.51, which requires at least $\Omega\left(\frac{1}{\epsilon^{2}}\right)$ samples [Chernoff, 72]
(anti-concentration)
- Second Lower bound: $K \leq \frac{n}{2}, Q \geq \Omega\left(\frac{n}{\epsilon^{2}}\left(\frac{\ln \left(\frac{1}{\delta}\right)}{K}\right)\right)$
- A standard technique in statistical decision theory

Exderiments

OptMAI	$\beta=0.8, \quad \beta=0.9$
SAR	Bubeck et. al., 13
LUCB	Kalyanakrishnan et. al., 12
Uniform	Naïve Uniform Sampling

Simulated Experiments:
No. of Arms: $n=1000$
Total Budget: $Q=20 n, Q=50 n, Q=100 n$
Top- K Arms: $K=10,20, \ldots, 500$
Report average result over 100 independent runs
Underlying distributions:
(1) $\theta_{i} \sim$ Uniform $[0,1]$
(2) $\theta_{i}=0.6$ for $i=1, \ldots, K, \theta_{i}=0.5$ for $i=K+1, \ldots, n$

Metric: regret L_{T}

Simulated Experiment

* $\theta_{i} \sim$ Uniform $[0,1]$

$\theta \sim \operatorname{Unif}[0,1], Q=20 \cdot n$

$\theta \sim \operatorname{Unif}[0,1], Q=50 \cdot n$

$\theta \sim \operatorname{Unif}[0,1], Q=100 \cdot n$

Simulated Data

$\theta_{i}=0.6$ for $i=1, \ldots, K, \theta_{i}=0.5$ for $i=K+1, \ldots, n$

$\theta=0.6 / 0.5, Q=20 \cdot n$

$\theta=0.6 / 0.5, Q=50 \cdot n$

$\theta=0.6 / 0.5, Q=100 \cdot n$

Real Data

- RTE data for textual entailment (Snow et. al., 08)
- 800 binary labeling tasks with true labels
- 164 workers

Histogram of θ_{i}

Regret $(Q=50 \cdot n)$

Real Data

- Empirical distribution of the number tasks assigned to a worker
($\beta=0.9, K=10, Q=20 n$)

No. of Tasks (SAR)
A worker receives at most 143 tasks

SAR queries an arm $\Omega\left(\frac{Q}{\log (\mathbf{n})}\right)$ times

A worker receives at most 48 tasks

OptMAI queries an $\operatorname{arm} O\left(\frac{Q}{n^{\Omega(1)}}\right)$ times

Crowdsourcing: Impossible to assign too many tasks to a single worker

Real Data

- Precision $=\frac{|T \cap\{1, \ldots, K\}|}{K}$: no. of arms in T belongs to the top $K \mathrm{arms}$

Precision $(Q=10 \cdot n)$

Precision $(Q=20 \cdot n)$

Conclusion

- Top-k arm identification
- Application in crowdsourcing
- (Worse case) Optimal upper and lower bounds
- Further direction: some instances are "easier", i.e., $0.9,0.1,0.1,0.1, \ldots \ldots$. Can we get better upper bounds for these instance??

Thanks.
lapordge@gmail.com

