ICML 2014

Optimal PAC Multiple Arm Identification with

Applications to Crowdsourcing

Jian Li

Institute for Interdisciplinary Information Sciences

Tsinghua University

K joint work with Yuan Zhou (CMU) and Xi Chen (Berkeley) /




The Stochastic Multi-armed Bandit

® Stochastic Multi-armed Bandit

® Set of n arms

® Each arm is associated with an unknown reward distribution

supported on [0,1] with mean 8;
® Each time, sample an arm and receive the
reward independently drawn from the

reward distribution




The Stochastic Multi-armed Bandit

® Top-K Arm identification problem
You can take N samples
-A sample: Choose an arm, play it once, and observe the reward

Goal: (Approximately) Identity the best K arms (arms with largest

means)

Use as few samples as possible (i.e., minimize N)




Motivating Applications

* Wide Applications:

® Industrial Engineering (Koenig & Law, 85), Evolutionary
Computing (Schmidt, 06), Simulation Optimization (Chen, Fu,
Shi 08)

® Motivating Application: Crowdsourcing




Motivating Applications

e Workers are noisy

e How to identify reliable workers and exclude unreliable workers ?

® 'Test workers by golden tasks (i.e., tasks with known answers)

*»» Each test costs money. How to identify the best K workers with minimum amount

,
of monecey: Top-K Arm Identification

Worker Bernoulli arm with mean 6;

(0;: i-th worker’s reliability)

Test with golden task Obtain a binary-valued sample

(correct/wrong) /




Evaluation Metric

Sorted means 81 = 0, = -+ = 0,

Goal: find a set of K arms T to minimize the aggregate regret

1 K
! K( i=1 i€T l)

Given any €, 0, the algorithm outputs a set T of K arms such that Lt < €,
with probability at least 1 — 0 (PAC learning)

ForK =1, ie,findi:0; —0; <ewp.1—0
® [Evan-Dar, Mannor and Mansour, 06]
® [Mannor, Tsitsiklis, 04]

This Talk: For general K




Simplification
e Assume Bernoulli distributions from now on

® Think of a collection of biased coins

* Try to (approximately) find K coins with largest bias
(towards head)




Why aggregate regret?
® Misidentification Probability (Bubeck et. al., 13):

Pr(T # {1,2, ..., K})
® Consider the case: (K=1)

0.99999

Distinguish such two coins with high confidence
requires approx 105 samples
(#samples depends on the gap 6, — 6,)

Using regret (say with e = 0.01), we may choose either of them




Why aggregate regret?

* Explore-K (Kalyanakrishnan et al., 12, 13)

® Selectasetof KarmsT: Vi €T ,0; > 0 — € wh.p.
(Ok: K-th largest mean)

® Example: 01 = e = 9[(—1 > HK and 0i+K > HK — € for
i1=1,..,K
e SetT ={K+ 1,K + 2 ..., 2K} satisfies the requirement




Nalve Solution
Uniform Sampling

Sample each coin M times
Pick the K coins with the largest empirical means

empirical mean: #heads/M

How large M needs to be (in order to achieve €-regret)??

M =0 (10e + Lioet )y = 001
= (E2 08 Kog5)— (logn)

So the total number of samples is O(nlogn)




Nailve Solution

Uniform Sampling
* With M=O(logn), we can get an estimate 0; for B; such that
16; — 6;| < € with very high probability (say 1 — %)
e This can be proved easily using Chernoff Bound (Concentration
bound).

* What if we use M=O(1) (let us say M=10)

* E.g., consider the following example (K=1):
0.9,05,05, ....................L. , 0.5 (a million coins with mean 0.5)

Consider a coin with mean 0.5,

Pr[All samples from this coin are head]=(1/2)"10

With const prob, there are more than 500 coins whose samples are all heads

/




Uniform Sampling

® In fact, we can show a matching lower bound

M =0 (1oa™ + L10e1 )y = (1
= (E2 08 Kog(g)— (logn)

One observation: if K = 0(n),M = 0(1).




Can we do better??

® Consider the following example:
0.9,05,05, ...................... , 0.5 (amillion coins with mean 0.5)

Uniform sampling spends too many samples on bad coins.

Should spend more samples on good coins

* However, we do not know which one is good and which is bad......

Sample each coin M=O(1) times.

* If the empirical mean of a coin is large, we DO NOT know whether it

is good or bad

* But if the empirical mean of a coin is very small, we DO know it is bad

(with high probability)




Optimal Multiple Arm Identification
(OptMAI)

* Input: N (no. of arms), K (top-K arms), ) (total no. of samples/budget)

™~

* Initialization: Active set of arms Sy = {1,2, ..., n}, Set of top arms Ty =
Iteration Index 7 = 0, Parameter 8 € (0.75, 1)

‘Whll€|T|<K and|S|>0 do
'If |S|>4Kthen

Identify the best K arms for at most 4K arms,

S, +1=Quartile-Elimination(S,, 87 (1 — £)Q) Eliminate one
quarter arms with
/o Else (lSrl < 4K ) lowest empirical

means

using uniform sarnpling

\U

er=r+1
* Output: set of selected K arms T}




Quartile-Elimination

® |dea: uniformly sample each arm in the active set S and discard the worst

quarter of arms (with the lowest empirical mean)

4

Input: S (active arms), ((budget)

\

* Sample eacharm i € S for Q/ |S| times & let éi be the empirical mean

* Find the lower quartile of the empirical mean §: |{i: éi < g} =|S|/4

\'\Output: S'=85\{i: éi < q} /
N /




Sample Complexity

* Sample complexity Q:
Outputs K arms s.t. Ly = %(Z{il 0; — ierbi) < €,wp.1—9.

n n In(x
e K < P Q=0 <—(1 + I((S))> (this is linear!)

1

))> (which can be sublinear!)
K K

* Apply our algorithm to identity the worst (n — K) arms.

-




Sample Complexity

* Sample complexity Q:
Outputs K arms s.t. Ly = %(Z{il 0; — ierbi) < €,wp.1—9.

1n(6))> (this is linear!)

mnd if K is larger'

_ In 1
g Q=0 <n Ko (n K (6 )) (which can be sublinear!)
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® Reduce to the K < g case by identifying the worst (n — K) arms.

-




Sample Complexity

<2 0-o(3(1+43)
* K=1, Q=0 (612 In (%)) [Even-Dar et. al., 06]

< For larger K, the sample complexity is smaller: identity K arms is simpler !
1

< Why? Example: 6, =%+ 2¢,0, =03 =--0, = .

= Identify the first arm (K = 1) is hard ! Cannot pick the wrong arm.

2€
= Since Lt < = for K = 2, any set is fine.

“ Naive Uniform Sampling: ) = Q(nlog(n)), log(n) factor worse




Matching Lower Bounds

o K < % . there is an underlying {0;} such that for any randomized
algorithm, to identify a set T with Lt < € w.p. atleast 1 — 9,

e

E[Q] =Q =2

)

n-Kn (n—K 1“( )
K €2\ K K

_|_

* K> E[Q] =Q<

Our algorithm is optimal for every value of n, K, €, 0!

-




Matching Lower Bounds

e First Lower bound: K < -, 0 = Q( )

1
® Reduction to distinguishing two Bernoulli arms with means >

and 1 + € with probability > 0.51, which requires at least
Q ( 1 ) samples [Chernolt, 72|

€2
(anti-concentration)

n n (1)
® Second Lower bound: K < , Q= <

® A standard technique in statistical decision theory




Experiments
OptMAI =08 =09
SAR Bubeck et. al., 13
LUCB Kalyanakrishnan et. al., 12
Uniform Naive Uniform Sampling

Simulated Experiments:

No. of Arms: n = 1000

Total Budget: Q = 20n,Q = 50n,Q = 100n

Top-K Arms: K = 10, 20, ..., 500

Report average result over 100 independent runs

Underlying distributions:
(1) 6;~Uniform|[0,1]

(2)0; =06 fori=1,..,K,0,=05fori=K+1,...

Metric: regret L+




Regret
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Simulated Data
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Real Data .
e RTE data for textual entailment a
e 257
(Snow et. al., 08) 5o
® 800 binary labeling tasks with true labels s'|
10
® 164 workers |
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© Empirical distribution of the number tasks assigned to a worker

(B =09,K=10,Q = 20n)

0
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Real Data
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Real Data
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Conclusion

® Top—k arm identification
© Application in crowdsourcing

® (Worse case) Optimal upper and lower bounds

¢ Further direction: some instances are “easier”, i.e.,
0.9,0.1,0.1,0.1,....... Can we get better upper bounds for

these instance??
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